split_tree: convert Handle to enum

pull/8217/head
Mitchell Hashimoto 2025-08-12 13:34:34 -07:00
parent 145d1c1739
commit fb846b669c
No known key found for this signature in database
GPG Key ID: 523D5DC389D273BC
2 changed files with 103 additions and 83 deletions

View File

@ -242,7 +242,7 @@ pub const SplitTree = extern struct {
// The handle we create the split relative to. Today this is the active
// surface but this might be the handle of the given parent if we want.
const handle = self.getActiveSurfaceHandle() orelse 0;
const handle = self.getActiveSurfaceHandle() orelse .root;
// Create our split!
var new_tree = try old_tree.split(
@ -329,7 +329,7 @@ pub const SplitTree = extern struct {
if (active == target) return false;
// Get the surface at the target location and grab focus.
const surface = tree.nodes[target].leaf;
const surface = tree.nodes[target.idx()].leaf;
surface.grabFocus();
return true;
@ -389,7 +389,7 @@ pub const SplitTree = extern struct {
pub fn getActiveSurface(self: *Self) ?*Surface {
const tree = self.getTree() orelse return null;
const handle = self.getActiveSurfaceHandle() orelse return null;
return tree.nodes[handle].leaf;
return tree.nodes[handle.idx()].leaf;
}
fn getActiveSurfaceHandle(self: *Self) ?Surface.Tree.Node.Handle {
@ -697,7 +697,7 @@ pub const SplitTree = extern struct {
// Note: we don't need to ref this or anything because its
// guaranteed to remain in the new tree since its not part
// of the handle we're removing.
break :next_focus old_tree.nodes[next_handle].leaf;
break :next_focus old_tree.nodes[next_handle.idx()].leaf;
};
// Remove it from the tree.
@ -817,7 +817,7 @@ pub const SplitTree = extern struct {
if (!tree.isEmpty()) {
priv.tree_bin.setChild(self.buildTree(
tree,
tree.zoomed orelse 0,
tree.zoomed orelse .root,
));
}
@ -844,7 +844,7 @@ pub const SplitTree = extern struct {
tree: *const Surface.Tree,
current: Surface.Tree.Node.Handle,
) *gtk.Widget {
return switch (tree.nodes[current]) {
return switch (tree.nodes[current.idx()]) {
.leaf => |v| v.as(gtk.Widget),
.split => |s| SplitTreeSplit.new(
current,
@ -1003,7 +1003,7 @@ const SplitTreeSplit = extern struct {
self.as(gtk.Widget),
) orelse return 0;
const tree = split_tree.getTree() orelse return 0;
const split: *const Surface.Tree.Split = &tree.nodes[priv.handle].split;
const split: *const Surface.Tree.Split = &tree.nodes[priv.handle.idx()].split;
// Current, min, and max positions as pixels.
const pos = paned.getPosition();

View File

@ -78,7 +78,24 @@ pub fn SplitTree(comptime V: type) type {
/// A handle into the nodes array. This lets us keep track of
/// nodes with 16-bit handles rather than full pointer-width
/// values.
pub const Handle = u16;
pub const Handle = enum(Backing) {
root = 0,
_,
pub const Backing = u16;
pub inline fn idx(self: Handle) usize {
return @intFromEnum(self);
}
/// Offset the handle by a given amount.
pub fn offset(self: Handle, v: usize) Handle {
const self_usize: usize = @intCast(@intFromEnum(self));
const final = self_usize + v;
assert(final < std.math.maxInt(Backing));
return @enumFromInt(final);
}
};
};
pub const Split = struct {
@ -166,17 +183,17 @@ pub fn SplitTree(comptime V: type) type {
};
pub const Iterator = struct {
i: Node.Handle = 0,
i: Node.Handle = .root,
nodes: []const Node,
pub fn next(self: *Iterator) ?ViewEntry {
// If we have no nodes, return null.
if (self.i >= self.nodes.len) return null;
if (@intFromEnum(self.i) >= self.nodes.len) return null;
// Get the current node and increment the index.
const handle = self.i;
self.i += 1;
const node = self.nodes[handle];
self.i = @enumFromInt(handle.idx() + 1);
const node = self.nodes[handle.idx()];
return switch (node) {
.leaf => |v| .{ .handle = handle, .view = v },
@ -188,7 +205,10 @@ pub fn SplitTree(comptime V: type) type {
/// Change the zoomed state to the given node. Assumes the handle
/// is valid.
pub fn zoom(self: *Self, handle: ?Node.Handle) void {
if (handle) |v| assert(v >= 0 and v < self.nodes.len);
if (handle) |v| {
assert(@intFromEnum(v) >= 0);
assert(@intFromEnum(v) < self.nodes.len);
}
self.zoomed = handle;
}
@ -226,8 +246,8 @@ pub fn SplitTree(comptime V: type) type {
return switch (to) {
.previous => self.previous(from),
.next => self.next(from),
.previous_wrapped => self.previous(from) orelse self.deepest(.right, 0),
.next_wrapped => self.next(from) orelse self.deepest(.left, 0),
.previous_wrapped => self.previous(from) orelse self.deepest(.right, .root),
.next_wrapped => self.next(from) orelse self.deepest(.left, .root),
.spatial => |d| spatial: {
// Get our spatial representation.
var sp = try self.spatial(alloc);
@ -249,7 +269,7 @@ pub fn SplitTree(comptime V: type) type {
) Node.Handle {
var current: Node.Handle = from;
while (true) {
switch (self.nodes[current]) {
switch (self.nodes[current.idx()]) {
.leaf => return current,
.split => |s| current = switch (side) {
.left => s.left,
@ -268,7 +288,7 @@ pub fn SplitTree(comptime V: type) type {
/// may want to change this to something that better matches a
/// spatial view of the tree later.
fn previous(self: *const Self, from: Node.Handle) ?Node.Handle {
return switch (self.previousBacktrack(from, 0)) {
return switch (self.previousBacktrack(from, .root)) {
.result => |v| v,
.backtrack, .deadend => null,
};
@ -276,7 +296,7 @@ pub fn SplitTree(comptime V: type) type {
/// Same as `previous`, but returns the next view instead.
fn next(self: *const Self, from: Node.Handle) ?Node.Handle {
return switch (self.nextBacktrack(from, 0)) {
return switch (self.nextBacktrack(from, .root)) {
.result => |v| v,
.backtrack, .deadend => null,
};
@ -301,7 +321,7 @@ pub fn SplitTree(comptime V: type) type {
// value of, then we need to backtrack from here.
if (from == current) return .backtrack;
return switch (self.nodes[current]) {
return switch (self.nodes[current.idx()]) {
// If we hit a leaf that isn't our target, then deadend.
.leaf => .deadend,
@ -337,7 +357,7 @@ pub fn SplitTree(comptime V: type) type {
current: Node.Handle,
) Backtrack {
if (from == current) return .backtrack;
return switch (self.nodes[current]) {
return switch (self.nodes[current.idx()]) {
.leaf => .deadend,
.split => |s| switch (self.nextBacktrack(from, s.right)) {
.result => |v| .{ .result = v },
@ -358,7 +378,7 @@ pub fn SplitTree(comptime V: type) type {
from: Node.Handle,
direction: Spatial.Direction,
) ?Node.Handle {
const target = sp.slots[from];
const target = sp.slots[from.idx()];
var result: ?struct {
handle: Node.Handle,
@ -366,7 +386,7 @@ pub fn SplitTree(comptime V: type) type {
} = null;
for (sp.slots, 0..) |slot, handle| {
// Never match ourself
if (handle == from) continue;
if (handle == from.idx()) continue;
// Only match leaves
switch (self.nodes[handle]) {
@ -392,7 +412,7 @@ pub fn SplitTree(comptime V: type) type {
if (distance >= n.distance) continue;
}
result = .{
.handle = @intCast(handle),
.handle = @enumFromInt(handle),
.distance = distance,
};
}
@ -417,7 +437,7 @@ pub fn SplitTree(comptime V: type) type {
// who directly access the nodes to be able to modify them
// (without nasty stuff like this), but given this is internal
// usage its perfectly fine to modify the node in-place.
const s: *Split = @constCast(&self.nodes[at].split);
const s: *Split = @constCast(&self.nodes[at.idx()].split);
s.ratio = ratio;
}
@ -445,7 +465,7 @@ pub fn SplitTree(comptime V: type) type {
// We know we're going to need the sum total of the nodes
// between the two trees plus one for the new split node.
const nodes = try alloc.alloc(Node, self.nodes.len + insert.nodes.len + 1);
if (nodes.len > std.math.maxInt(Node.Handle)) return error.OutOfMemory;
if (nodes.len > std.math.maxInt(Node.Handle.Backing)) return error.OutOfMemory;
// We can copy our nodes exactly as they are, since they're
// mostly not changing (only `at` is changing).
@ -461,8 +481,8 @@ pub fn SplitTree(comptime V: type) type {
.leaf => {},
.split => |*s| {
// We need to offset the handles in the split
s.left += @intCast(self.nodes.len);
s.right += @intCast(self.nodes.len);
s.left = s.left.offset(self.nodes.len);
s.right = s.right.offset(self.nodes.len);
},
};
@ -476,12 +496,12 @@ pub fn SplitTree(comptime V: type) type {
// Copy our previous value to the end of the nodes list and
// create our new split node.
nodes[nodes.len - 1] = nodes[at];
nodes[at] = .{ .split = .{
nodes[nodes.len - 1] = nodes[at.idx()];
nodes[at.idx()] = .{ .split = .{
.layout = layout,
.ratio = ratio,
.left = @intCast(if (left) self.nodes.len else nodes.len - 1),
.right = @intCast(if (left) nodes.len - 1 else self.nodes.len),
.left = @enumFromInt(if (left) self.nodes.len else nodes.len - 1),
.right = @enumFromInt(if (left) nodes.len - 1 else self.nodes.len),
} };
// We need to increase the reference count of all the nodes.
@ -501,10 +521,10 @@ pub fn SplitTree(comptime V: type) type {
gpa: Allocator,
at: Node.Handle,
) Allocator.Error!Self {
assert(at < self.nodes.len);
assert(at.idx() < self.nodes.len);
// If we're removing node zero then we're clearing the tree.
if (at == 0) return .empty;
if (at == .root) return .empty;
// The new arena for our new tree.
var arena = ArenaAllocator.init(gpa);
@ -514,7 +534,7 @@ pub fn SplitTree(comptime V: type) type {
// Allocate our new nodes list with the number of nodes we'll
// need after the removal.
const nodes = try alloc.alloc(Node, self.countAfterRemoval(
0,
.root,
at,
0,
));
@ -529,9 +549,9 @@ pub fn SplitTree(comptime V: type) type {
assert(self.removeNode(
&result,
0,
0,
.root,
at,
) > 0);
) != 0);
// Increase the reference count of all the nodes.
try refNodes(gpa, nodes);
@ -542,17 +562,17 @@ pub fn SplitTree(comptime V: type) type {
fn removeNode(
old: *Self,
new: *Self,
new_offset: Node.Handle,
new_offset: usize,
current: Node.Handle,
target: Node.Handle,
) Node.Handle {
) usize {
assert(current != target);
// If we have a zoomed node and this is it then we migrate it.
if (old.zoomed) |v| {
if (v == current) {
assert(new.zoomed == null);
new.zoomed = new_offset;
new.zoomed = @enumFromInt(new_offset);
}
}
@ -563,7 +583,7 @@ pub fn SplitTree(comptime V: type) type {
// usage its perfectly fine to modify the node in-place.
const new_nodes: []Node = @constCast(new.nodes);
switch (old.nodes[current]) {
switch (old.nodes[current.idx()]) {
// Leaf is simple, just copy it over. We don't ref anything
// yet because it'd make undo (errdefer) harder. We do that
// all at once later.
@ -596,19 +616,19 @@ pub fn SplitTree(comptime V: type) type {
s.left,
target,
);
assert(left > 0);
assert(left != 0);
const right = old.removeNode(
new,
new_offset + 1 + left,
new_offset + left + 1,
s.right,
target,
);
assert(right > 0);
assert(right != 0);
new_nodes[new_offset] = .{ .split = .{
.layout = s.layout,
.ratio = s.ratio,
.left = new_offset + 1,
.right = new_offset + 1 + left,
.left = @enumFromInt(new_offset + 1),
.right = @enumFromInt(new_offset + 1 + left),
} };
return left + right + 1;
@ -626,7 +646,7 @@ pub fn SplitTree(comptime V: type) type {
) usize {
assert(current != target);
return switch (self.nodes[current]) {
return switch (self.nodes[current.idx()]) {
// Leaf is simple, always takes one node.
.leaf => acc + 1,
@ -727,7 +747,7 @@ pub fn SplitTree(comptime V: type) type {
layout: Split.Layout,
acc: usize,
) usize {
return switch (self.nodes[from]) {
return switch (self.nodes[from.idx()]) {
.leaf => acc + 1,
.split => |s| if (s.layout == layout)
self.weight(s.left, layout, acc) +
@ -776,7 +796,7 @@ pub fn SplitTree(comptime V: type) type {
const parent_handle = switch (self.findParentSplit(
layout,
from,
0,
.root,
)) {
.deadend, .backtrack => return result,
.result => |v| v,
@ -794,11 +814,11 @@ pub fn SplitTree(comptime V: type) type {
// own but I'm trying to avoid that word: its the ratio of
// our spatial width/height to the total.
const scale = switch (layout) {
.horizontal => sp.slots[parent_handle].width / sp.slots[0].width,
.vertical => sp.slots[parent_handle].height / sp.slots[0].height,
.horizontal => sp.slots[parent_handle.idx()].width / sp.slots[0].width,
.vertical => sp.slots[parent_handle.idx()].height / sp.slots[0].height,
};
const current = result.nodes[parent_handle].split.ratio;
const current = result.nodes[parent_handle.idx()].split.ratio;
break :full_ratio current * scale;
};
@ -817,7 +837,7 @@ pub fn SplitTree(comptime V: type) type {
current: Node.Handle,
) Backtrack {
if (from == current) return .backtrack;
return switch (self.nodes[current]) {
return switch (self.nodes[current.idx()]) {
.leaf => .deadend,
.split => |s| switch (self.findParentSplit(
layout,
@ -900,7 +920,7 @@ pub fn SplitTree(comptime V: type) type {
if (self.nodes.len == 0) return .empty;
// Get our total dimensions.
const dim = self.dimensions(0);
const dim = self.dimensions(.root);
// Create our slots which will match our nodes exactly.
const slots = try alloc.alloc(Spatial.Slot, self.nodes.len);
@ -911,7 +931,7 @@ pub fn SplitTree(comptime V: type) type {
.width = @floatFromInt(dim.width),
.height = @floatFromInt(dim.height),
};
self.fillSpatialSlots(slots, 0);
self.fillSpatialSlots(slots, .root);
// Normalize the dimensions to 1x1 grid.
for (slots) |*slot| {
@ -927,10 +947,10 @@ pub fn SplitTree(comptime V: type) type {
fn fillSpatialSlots(
self: *const Self,
slots: []Spatial.Slot,
current: Node.Handle,
current_: Node.Handle,
) void {
const current = current_.idx();
assert(slots[current].width >= 0 and slots[current].height >= 0);
switch (self.nodes[current]) {
// Leaf node, current slot is already filled by caller.
.leaf => {},
@ -938,13 +958,13 @@ pub fn SplitTree(comptime V: type) type {
.split => |s| {
switch (s.layout) {
.horizontal => {
slots[s.left] = .{
slots[s.left.idx()] = .{
.x = slots[current].x,
.y = slots[current].y,
.width = slots[current].width * s.ratio,
.height = slots[current].height,
};
slots[s.right] = .{
slots[s.right.idx()] = .{
.x = slots[current].x + slots[current].width * s.ratio,
.y = slots[current].y,
.width = slots[current].width * (1 - s.ratio),
@ -953,13 +973,13 @@ pub fn SplitTree(comptime V: type) type {
},
.vertical => {
slots[s.left] = .{
slots[s.left.idx()] = .{
.x = slots[current].x,
.y = slots[current].y,
.width = slots[current].width,
.height = slots[current].height * s.ratio,
};
slots[s.right] = .{
slots[s.right.idx()] = .{
.x = slots[current].x,
.y = slots[current].y + slots[current].height * s.ratio,
.width = slots[current].width,
@ -982,7 +1002,7 @@ pub fn SplitTree(comptime V: type) type {
width: u16,
height: u16,
} {
return switch (self.nodes[current]) {
return switch (self.nodes[current.idx()]) {
.leaf => .{ .width = 1, .height = 1 },
.split => |s| split: {
const left = self.dimensions(s.left);
@ -1027,10 +1047,10 @@ pub fn SplitTree(comptime V: type) type {
self.formatDiagram(writer) catch
try writer.writeAll("failed to draw split tree diagram");
} else if (std.mem.eql(u8, fmt, "text")) {
try self.formatText(writer, 0, 0);
try self.formatText(writer, .root, 0);
} else if (fmt.len == 0) {
self.formatDiagram(writer) catch {};
try self.formatText(writer, 0, 0);
try self.formatText(writer, .root, 0);
} else {
return error.InvalidFormat;
}
@ -1048,7 +1068,7 @@ pub fn SplitTree(comptime V: type) type {
try writer.writeAll("(zoomed) ");
};
switch (self.nodes[current]) {
switch (self.nodes[current.idx()]) {
.leaf => |v| if (@hasDecl(View, "splitTreeLabel"))
try writer.print("leaf: {s}\n", .{v.splitTreeLabel()})
else
@ -1355,7 +1375,7 @@ test "SplitTree: split horizontal" {
defer t2.deinit();
var t3 = try t1.split(
alloc,
0, // at root
.root, // at root
.right, // split right
0.5,
&t2, // insert t2
@ -1459,7 +1479,7 @@ test "SplitTree: split horizontal" {
} else return error.NotFound,
).?;
const entry = t5.nodes[handle].leaf;
const entry = t5.nodes[handle.idx()].leaf;
try testing.expectEqualStrings(
entry.label,
&.{current - 1},
@ -1489,7 +1509,7 @@ test "SplitTree: split horizontal" {
} else return error.NotFound,
).?;
const entry = t5.nodes[handle].leaf;
const entry = t5.nodes[handle.idx()].leaf;
try testing.expectEqualStrings(
entry.label,
&.{current + 1},
@ -1520,7 +1540,7 @@ test "SplitTree: split vertical" {
var t3 = try t1.split(
alloc,
0, // at root
.root, // at root
.down, // split down
0.5,
&t2, // insert t2
@ -1554,7 +1574,7 @@ test "SplitTree: split horizontal with zero ratio" {
// A | B horizontal
var splitAB = try t1.split(
alloc,
0, // at root
.root, // at root
.right, // split right
0,
&t2, // insert t2
@ -1588,7 +1608,7 @@ test "SplitTree: split vertical with zero ratio" {
// A | B horizontal
var splitAB = try t1.split(
alloc,
0, // at root
.root, // at root
.down, // split right
0,
&t2, // insert t2
@ -1622,7 +1642,7 @@ test "SplitTree: split horizontal with full width" {
// A | B horizontal
var splitAB = try t1.split(
alloc,
0, // at root
.root, // at root
.right, // split right
1,
&t2, // insert t2
@ -1656,7 +1676,7 @@ test "SplitTree: split vertical with full width" {
// A | B horizontal
var splitAB = try t1.split(
alloc,
0, // at root
.root, // at root
.down, // split right
1,
&t2, // insert t2
@ -1688,7 +1708,7 @@ test "SplitTree: remove leaf" {
defer t2.deinit();
var t3 = try t1.split(
alloc,
0, // at root
.root, // at root
.right, // split right
0.5,
&t2, // insert t2
@ -1734,7 +1754,7 @@ test "SplitTree: split twice, remove intermediary" {
// A | B horizontal.
var split1 = try t1.split(
alloc,
0, // at root
.root, // at root
.right, // split right
0.5,
&t2, // insert t2
@ -1744,7 +1764,7 @@ test "SplitTree: split twice, remove intermediary" {
// Insert C below that.
var split2 = try split1.split(
alloc,
0, // at root
.root, // at root
.down, // split down
0.5,
&t3, // insert t3
@ -1795,7 +1815,7 @@ test "SplitTree: split twice, remove intermediary" {
// never crash. We don't test the result is correct, this just verifies
// we don't hit any assertion failures.
for (0..split2.nodes.len) |i| {
var t = try split2.remove(alloc, @intCast(i));
var t = try split2.remove(alloc, @enumFromInt(i));
t.deinit();
}
}
@ -1820,7 +1840,7 @@ test "SplitTree: spatial goto" {
// A | B horizontal
var splitAB = try t1.split(
alloc,
0, // at root
.root, // at root
.right, // split right
0.5,
&t2, // insert t2
@ -1896,7 +1916,7 @@ test "SplitTree: spatial goto" {
},
.{ .spatial = .right },
)).?;
const view = split.nodes[target].leaf;
const view = split.nodes[target.idx()].leaf;
try testing.expectEqualStrings(view.label, "D");
}
@ -1914,7 +1934,7 @@ test "SplitTree: spatial goto" {
},
.{ .spatial = .left },
)).?;
const view = split.nodes[target].leaf;
const view = split.nodes[target.idx()].leaf;
try testing.expectEqualStrings("A", view.label);
}
@ -1951,7 +1971,7 @@ test "SplitTree: resize" {
// A | B horizontal
var split = try t1.split(
alloc,
0, // at root
.root, // at root
.right, // split right
0.5,
&t2, // insert t2
@ -2028,7 +2048,7 @@ test "SplitTree: zoom" {
// A | B horizontal
var split = try t1.split(
alloc,
0, // at root
.root, // at root
.right, // split right
0.5,
&t2, // insert t2
@ -2094,7 +2114,7 @@ test "SplitTree: split resets zoom" {
// A | B horizontal
var split = try t1.split(
alloc,
0, // at root
.root, // at root
.right, // split right
0.5,
&t2, // insert t2
@ -2127,7 +2147,7 @@ test "SplitTree: remove and zoom" {
// A | B horizontal
var split = try t1.split(
alloc,
0, // at root
.root, // at root
.right, // split right
0.5,
&t2, // insert t2