fix types
parent
10969ed5ab
commit
d0f722fa36
|
|
@ -4,7 +4,8 @@ import threading
|
|||
import time
|
||||
from concurrent.futures import Future, ThreadPoolExecutor
|
||||
from pathlib import Path
|
||||
from typing import Any, NamedTuple, Optional, Protocol, Sequence
|
||||
from types import TracebackType
|
||||
from typing import TYPE_CHECKING, Any, NamedTuple, Optional, Protocol, Sequence, cast
|
||||
|
||||
import numpy as np
|
||||
from numpy.typing import NDArray
|
||||
|
|
@ -14,7 +15,13 @@ from immich_ml.models.constants import RKNN_SUPPORTED_SOCS
|
|||
|
||||
from .native import rknn_pool as _native_mod # pragma: no cover - compiled extension load
|
||||
|
||||
NativeRKNNExecutor = _native_mod.NativeRKNNExecutor # type: ignore[attr-defined]
|
||||
if TYPE_CHECKING:
|
||||
class NativeRKNNExecutor(Protocol):
|
||||
def infer(self, inputs: list[NDArray[np.float32]]) -> list[NDArray[np.float32]]: ...
|
||||
|
||||
def get_io_info(self) -> dict[str, Any]: ...
|
||||
else:
|
||||
NativeRKNNExecutor = _native_mod.NativeRKNNExecutor
|
||||
|
||||
|
||||
__all__ = [
|
||||
|
|
@ -46,7 +53,7 @@ model_prefix = Path("rknpu") / soc_name if is_available and soc_name else None
|
|||
|
||||
class SessionNode(NamedTuple):
|
||||
name: Optional[str]
|
||||
shape: tuple[Any, ...]
|
||||
shape: tuple[int, ...]
|
||||
|
||||
|
||||
class RKNNInferenceResult(NamedTuple):
|
||||
|
|
@ -86,13 +93,13 @@ class RknnPoolExecutor:
|
|||
outputs=outputs,
|
||||
)
|
||||
|
||||
def submit(self, *inputs: Sequence[NDArray[np.float32]], tag: Any = None) -> Future[RKNNInferenceResult]:
|
||||
def submit(self, inputs: Sequence[NDArray[np.float32]], *, tag: Any = None) -> Future[RKNNInferenceResult]:
|
||||
if self._closed:
|
||||
raise RuntimeError("Pool is closed")
|
||||
return self._executor.submit(self._run_inference, list(inputs), tag)
|
||||
|
||||
def put(self, inputs: Sequence[NDArray[np.float32]], *, tag: Any = None) -> Future[RKNNInferenceResult]:
|
||||
return self.submit(*inputs, tag=tag)
|
||||
return self.submit(inputs, tag=tag)
|
||||
|
||||
def close(self, *, wait: bool = True) -> None:
|
||||
if self._closed:
|
||||
|
|
@ -107,7 +114,12 @@ class RknnPoolExecutor:
|
|||
def __enter__(self) -> "RknnPoolExecutor":
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb) -> None: # noqa: ANN001
|
||||
def __exit__(
|
||||
self,
|
||||
exc_type: type[BaseException] | None,
|
||||
exc_val: BaseException | None,
|
||||
exc_tb: TracebackType | None,
|
||||
) -> None:
|
||||
self.close()
|
||||
|
||||
|
||||
|
|
@ -139,7 +151,7 @@ class RknnSession:
|
|||
self.log.info("Loaded RKNN model from %s.", self.model_path)
|
||||
|
||||
@property
|
||||
def io_info(self) -> dict:
|
||||
def io_info(self) -> dict[str, Any]:
|
||||
return self._io_info
|
||||
|
||||
def get_inputs(self) -> list[SessionNode]:
|
||||
|
|
@ -211,7 +223,10 @@ class RknnSession:
|
|||
for entry in self._io_info.get(key, []):
|
||||
shape = self._shape_from_entry(entry)
|
||||
if key == "inputs" and shape:
|
||||
symbolic_shape: tuple[Any, ...] = ("batch", *shape[1:])
|
||||
# Represent the batch dimension symbolically for readability while
|
||||
# keeping the static type compatible with the ModelSession protocol.
|
||||
symbolic_shape_any: tuple[Any, ...] = ("batch", *shape[1:])
|
||||
symbolic_shape = cast(tuple[int, ...], symbolic_shape_any)
|
||||
else:
|
||||
symbolic_shape = shape
|
||||
nodes.append(SessionNode(name=entry.get("name"), shape=symbolic_shape))
|
||||
|
|
|
|||
|
|
@ -4,6 +4,7 @@ from pathlib import Path
|
|||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
|
||||
try:
|
||||
from .immich_session import RknnSession
|
||||
|
|
@ -43,6 +44,7 @@ def main() -> None:
|
|||
|
||||
gen_t0 = time.perf_counter()
|
||||
# Generate a random input tensor with the requested dtype
|
||||
x: npt.NDArray[np.generic]
|
||||
if args.dtype == "float32":
|
||||
x = np.random.rand(*shape).astype(np.float32)
|
||||
elif args.dtype == "float16":
|
||||
|
|
@ -89,6 +91,7 @@ def main() -> None:
|
|||
else:
|
||||
batch_shape = shape
|
||||
|
||||
x_batch: npt.NDArray[np.generic]
|
||||
if args.dtype == "float32":
|
||||
x_batch = np.random.rand(*batch_shape).astype(np.float32)
|
||||
elif args.dtype == "float16":
|
||||
|
|
|
|||
Loading…
Reference in New Issue