mirror-immich/machine-learning/immich_ml/sessions/rknn/immich_session.py

267 lines
9.4 KiB
Python

from __future__ import annotations
import threading
import time
from concurrent.futures import Future, ThreadPoolExecutor
from pathlib import Path
from types import TracebackType
from typing import TYPE_CHECKING, Any, NamedTuple, Optional, Protocol, Sequence, cast
import numpy as np
from numpy.typing import NDArray
from immich_ml.config import log, settings
from immich_ml.models.constants import RKNN_SUPPORTED_SOCS
from .native import rknn_pool as _native_mod # pragma: no cover - compiled extension load
if TYPE_CHECKING:
class NativeRKNNExecutor(Protocol):
def infer(self, inputs: list[NDArray[np.float32]]) -> list[NDArray[np.float32]]: ...
def get_io_info(self) -> dict[str, Any]: ...
else:
NativeRKNNExecutor = _native_mod.NativeRKNNExecutor
__all__ = [
"RknnSession",
"RknnPoolExecutor",
"run_inference",
"is_available",
"soc_name",
"model_prefix",
]
def get_soc(device_tree_path: Path | str) -> str | None:
try:
with Path(device_tree_path).open() as f:
device_compatible_str = f.read().lower()
for soc in RKNN_SUPPORTED_SOCS:
if soc in device_compatible_str:
return soc
except OSError as exc:
log.debug("Could not read device tree %s: %s", device_tree_path, exc)
return None
soc_name = get_soc("/proc/device-tree/compatible")
is_available = soc_name is not None and settings.rknn
model_prefix = Path("rknpu") / soc_name if is_available and soc_name else None
class SessionNode(NamedTuple):
name: Optional[str]
shape: tuple[int, ...]
class RKNNInferenceResult(NamedTuple):
tag: Any
start_time: float
end_time: float
duration_s: float
outputs: list[NDArray[np.float32]]
class InferenceExecutor(Protocol):
def infer(self, inputs: list[NDArray[np.float32]]) -> list[NDArray[np.float32]]: ...
def run_inference(executor: InferenceExecutor, inputs: list[NDArray[np.float32]]) -> list[NDArray[np.float32]]:
return executor.infer(inputs)
class RknnPoolExecutor:
def __init__(self, model_path: str | Path, tpes: int) -> None:
if tpes < 1:
raise ValueError("tpes must be >= 1")
model_path_str = Path(model_path).as_posix()
self._native = NativeRKNNExecutor(model_path_str, num_workers=tpes)
self._executor = ThreadPoolExecutor(max_workers=tpes, thread_name_prefix="rknn-worker")
self._closed = False
def _run_inference(self, inputs: list[NDArray[np.float32]], tag: Any) -> RKNNInferenceResult:
start = time.perf_counter()
outputs = self._native.infer(inputs)
end = time.perf_counter()
return RKNNInferenceResult(
tag=tag,
start_time=start,
end_time=end,
duration_s=end - start,
outputs=outputs,
)
def submit(self, inputs: Sequence[NDArray[np.float32]], *, tag: Any = None) -> Future[RKNNInferenceResult]:
if self._closed:
raise RuntimeError("Pool is closed")
return self._executor.submit(self._run_inference, list(inputs), tag)
def put(self, inputs: Sequence[NDArray[np.float32]], *, tag: Any = None) -> Future[RKNNInferenceResult]:
return self.submit(inputs, tag=tag)
def close(self, *, wait: bool = True) -> None:
if self._closed:
return
self._closed = True
self._executor.shutdown(wait=wait)
@property
def executor(self) -> NativeRKNNExecutor:
return self._native
def __enter__(self) -> "RknnPoolExecutor":
return self
def __exit__(
self,
exc_type: type[BaseException] | None,
exc_val: BaseException | None,
exc_tb: TracebackType | None,
) -> None:
self.close()
class RknnSession:
def __init__(
self,
model_path: Path | str,
*,
num_workers: Optional[int] = None,
logger: Any = None,
) -> None:
if not is_available:
raise RuntimeError("RKNN is not available on this device")
self.model_path = Path(model_path)
self.log = logger or log
default_workers = getattr(settings, "rknn_threads", 1)
self.tpe = num_workers or default_workers
if self.tpe < 1:
raise ValueError("num_workers must be >= 1")
self.log.info(
"Loading RKNN model from %s with %s worker(s).",
self.model_path,
self.tpe,
)
self.rknnpool = RknnPoolExecutor(self.model_path, self.tpe)
self._io_info = self._normalize_io_info(self.rknnpool.executor.get_io_info())
self._input_nodes = self._build_nodes("inputs")
self._output_nodes = self._build_nodes("outputs")
self.log.info("Loaded RKNN model from %s.", self.model_path)
@property
def io_info(self) -> dict[str, Any]:
return self._io_info
def get_inputs(self) -> list[SessionNode]:
return self._input_nodes
def get_outputs(self) -> list[SessionNode]:
return self._output_nodes
def run(
self,
_output_names: Sequence[str] | None,
input_feed: dict[str, NDArray[np.float32]] | dict[str, NDArray[np.int32]],
_run_options: Any = None,
) -> list[NDArray[np.float32]]:
return self.run_async(_output_names, input_feed, _run_options).result().outputs
def run_async(
self,
_output_names: Sequence[str] | None,
input_feed: dict[str, NDArray[np.float32]] | dict[str, NDArray[np.int32]],
_run_options: Any = None,
) -> Future[RKNNInferenceResult]:
inputs_list = list(input_feed.values())
if not inputs_list:
raise ValueError("input_feed must not be empty")
batch_sizes = {int(x.shape[0]) for x in inputs_list}
if len(batch_sizes) != 1:
raise ValueError(f"All inputs must have the same batch size, got {sorted(batch_sizes)}")
batch_size = batch_sizes.pop()
if batch_size <= 1:
return self.rknnpool.put(inputs_list)
# Split each input tensor into per-sample slices of shape (1, ...)
per_sample_inputs = [[inp[i : i + 1] for inp in inputs_list] for i in range(batch_size)]
sub_futures = [self.rknnpool.put(sample) for sample in per_sample_inputs]
parent_future: Future[RKNNInferenceResult] = Future()
def _aggregate() -> None:
try:
results = [f.result() for f in sub_futures]
num_outputs = len(results[0].outputs)
stacked_outputs = [np.concatenate([r.outputs[j] for r in results], axis=0) for j in range(num_outputs)]
start_time = min(r.start_time for r in results)
end_time = max(r.end_time for r in results)
parent_future.set_result(
RKNNInferenceResult(
tag=None,
start_time=start_time,
end_time=end_time,
duration_s=end_time - start_time,
outputs=stacked_outputs,
),
)
except Exception as exc: # noqa: BLE001
if not parent_future.done():
parent_future.set_exception(exc)
threading.Thread(target=_aggregate, daemon=True).start()
return parent_future
def close(self) -> None:
self.rknnpool.close()
def _build_nodes(self, key: str) -> list[SessionNode]:
nodes: list[SessionNode] = []
for entry in self._io_info.get(key, []):
shape = self._shape_from_entry(entry)
if key == "inputs" and shape:
# Represent the batch dimension symbolically for readability while
# keeping the static type compatible with the ModelSession protocol.
symbolic_shape_any: tuple[Any, ...] = ("batch", *shape[1:])
symbolic_shape = cast(tuple[int, ...], symbolic_shape_any)
else:
symbolic_shape = shape
nodes.append(SessionNode(name=entry.get("name"), shape=symbolic_shape))
return nodes
@staticmethod
def _shape_from_entry(entry: dict[str, Any]) -> tuple[int, ...]:
if dims := entry.get("dims"):
return tuple(int(dim) for dim in dims)
dyn = entry.get("dynamic", {})
ranges = dyn.get("ranges", [])
if ranges:
return tuple(int(dim) for dim in ranges[-1])
raise ValueError(f"Cannot determine shape from entry: {entry}")
def _normalize_io_info(self, info: dict[str, Any]) -> dict[str, Any]:
return {
**info,
"inputs": [self._normalize_tensor_desc(t) for t in info.get("inputs", [])],
"outputs": [self._normalize_tensor_desc(t) for t in info.get("outputs", [])],
}
@staticmethod
def _normalize_tensor_desc(tensor: dict[str, Any]) -> dict[str, Any]:
dims = list(RknnSession._shape_from_entry(tensor))
desc = {**tensor, "dims": dims, "n_dims": len(dims)}
# Force NCHW format if the runtime reports NHWC tensors
if tensor.get("fmt") == 1 and len(dims) == 4:
n, h, w, c = dims
desc["dims"] = [n, c, h, w]
desc["fmt"] = 0
dyn = desc.get("dynamic", {})
if "ranges" in dyn:
dyn["ranges"] = [
[shape[0], shape[3], shape[1], shape[2]] if len(shape) == 4 else shape for shape in dyn["ranges"]
]
return desc