mirror-immich/machine-learning/immich_ml/models/facial_recognition/recognition.py

146 lines
6.7 KiB
Python

from pathlib import Path
from typing import Any
import cv2
import numpy as np
import onnx
import onnxruntime as ort
from insightface.model_zoo import ArcFaceONNX
from insightface.utils.face_align import norm_crop
from numpy.typing import NDArray
from onnx.tools.update_model_dims import update_inputs_outputs_dims
from PIL import Image
from immich_ml.config import log, settings
from immich_ml.models.base import InferenceModel
from immich_ml.models.transforms import decode_cv2, serialize_np_array
from immich_ml.schemas import (
FaceDetectionOutput,
FacialRecognitionOutput,
ModelFormat,
ModelSession,
ModelTask,
ModelType,
)
class FaceRecognizer(InferenceModel):
depends = [(ModelType.DETECTION, ModelTask.FACIAL_RECOGNITION)]
identity = (ModelType.RECOGNITION, ModelTask.FACIAL_RECOGNITION)
def __init__(self, model_name: str, **model_kwargs: Any) -> None:
# 对齐裁剪兜底:当关键点过于贴边或超出图像边界时,先对整张图做 padding 再裁剪。
# 该逻辑主要用于“超大脸/贴边脸”,避免 cv2.warpAffine 采样到大量黑边导致 embedding 质量变差。
self.crop_margin_ratio = float(model_kwargs.pop("cropMarginRatio", 0.5))
self.max_crop_pad_ratio = float(model_kwargs.pop("maxCropPadRatio", 0.5))
super().__init__(model_name, **model_kwargs)
max_batch_size = settings.max_batch_size.facial_recognition if settings.max_batch_size else None
self.batch_size = max_batch_size if max_batch_size else self._batch_size_default
def _load(self) -> ModelSession:
session = self._make_session(self.model_path)
if (not self.batch_size or self.batch_size > 1) and str(session.get_inputs()[0].shape[0]) != "batch":
self._add_batch_axis(self.model_path)
session = self._make_session(self.model_path)
self.model = ArcFaceONNX(
self.model_path_for_format(ModelFormat.ONNX).as_posix(),
session=session,
)
return session
def configure(self, **kwargs: Any) -> None:
if (margin_ratio := kwargs.pop("cropMarginRatio", None)) is not None:
self.crop_margin_ratio = float(margin_ratio)
if (max_pad_ratio := kwargs.pop("maxCropPadRatio", None)) is not None:
self.max_crop_pad_ratio = float(max_pad_ratio)
def _predict(
self, inputs: NDArray[np.uint8] | bytes | Image.Image, faces: FaceDetectionOutput
) -> FacialRecognitionOutput:
if faces["boxes"].shape[0] == 0:
return []
inputs = decode_cv2(inputs)
cropped_faces = self._crop(inputs, faces)
embeddings = self._predict_batch(cropped_faces)
return self.postprocess(faces, embeddings)
def _predict_batch(self, cropped_faces: list[NDArray[np.uint8]]) -> NDArray[np.float32]:
if not self.batch_size or len(cropped_faces) <= self.batch_size:
embeddings = np.asarray(self.model.get_feat(cropped_faces), dtype=np.float32)
return embeddings
batch_embeddings: list[NDArray[np.float32]] = []
for i in range(0, len(cropped_faces), self.batch_size):
batch = cropped_faces[i : i + self.batch_size]
batch_embeddings.append(np.asarray(self.model.get_feat(batch), dtype=np.float32))
return np.concatenate(batch_embeddings, axis=0)
def postprocess(self, faces: FaceDetectionOutput, embeddings: NDArray[np.float32]) -> FacialRecognitionOutput:
return [
{
"boundingBox": {"x1": x1, "y1": y1, "x2": x2, "y2": y2},
"embedding": serialize_np_array(embedding),
"score": score,
}
for (x1, y1, x2, y2), embedding, score in zip(faces["boxes"], embeddings, faces["scores"])
]
def _crop(self, image: NDArray[np.uint8], faces: FaceDetectionOutput) -> list[NDArray[np.uint8]]:
landmarks = faces["landmarks"].astype(np.float32, copy=False)
pad = self._compute_crop_pad(image, landmarks, self.crop_margin_ratio, self.max_crop_pad_ratio)
if pad > 0:
# 使用反射边界,避免纯黑 padding 影响对齐后的人脸纹理。
padded = cv2.copyMakeBorder(image, pad, pad, pad, pad, borderType=cv2.BORDER_REFLECT_101)
padded = np.asarray(padded, dtype=np.uint8)
landmarks = landmarks + np.array([pad, pad], dtype=np.float32)
return [norm_crop(padded, landmark) for landmark in landmarks]
return [norm_crop(image, landmark) for landmark in landmarks]
@staticmethod
def _compute_crop_pad(
image: NDArray[np.uint8],
landmarks: NDArray[np.float32],
margin_ratio: float,
max_pad_ratio: float,
) -> int:
"""根据关键点和期望边距计算需要的 padding 像素数。"""
h, w = image.shape[:2]
if landmarks.size == 0:
return 0
# 逐脸计算“关键点包围盒 + 边距”是否会超出图像边界,并取最大需要的 padding。
max_needed = 0.0
for lmk in landmarks:
min_x = float(np.min(lmk[:, 0]))
min_y = float(np.min(lmk[:, 1]))
max_x = float(np.max(lmk[:, 0]))
max_y = float(np.max(lmk[:, 1]))
face_size = max(max_x - min_x, max_y - min_y, 1.0)
margin = face_size * max(margin_ratio, 0.0)
left_needed = max(0.0, (margin - min_x))
top_needed = max(0.0, (margin - min_y))
right_needed = max(0.0, (max_x + margin) - float(w - 1))
bottom_needed = max(0.0, (max_y + margin) - float(h - 1))
max_needed = max(max_needed, left_needed, top_needed, right_needed, bottom_needed)
# 限制 padding 上限,避免异常关键点导致内存暴涨。
max_allowed = max(h, w) * max(max_pad_ratio, 0.0)
pad = int(round(min(max_needed, max_allowed)))
return max(pad, 0)
def _add_batch_axis(self, model_path: Path) -> None:
log.debug(f"Adding batch axis to model {model_path}")
proto = onnx.load(model_path)
static_input_dims = [shape.dim_value for shape in proto.graph.input[0].type.tensor_type.shape.dim[1:]]
static_output_dims = [shape.dim_value for shape in proto.graph.output[0].type.tensor_type.shape.dim[1:]]
input_dims = {proto.graph.input[0].name: ["batch"] + static_input_dims}
output_dims = {proto.graph.output[0].name: ["batch"] + static_output_dims}
updated_proto = update_inputs_outputs_dims(proto, input_dims, output_dims)
onnx.save(updated_proto, model_path)
@property
def _batch_size_default(self) -> int | None:
providers = ort.get_available_providers()
return None if self.model_format == ModelFormat.ONNX and "OpenVINOExecutionProvider" not in providers else 1