bpf: disable and remove registers chain based liveness

Remove register chain based liveness tracking:
- struct bpf_reg_state->{parent,live} fields are no longer needed;
- REG_LIVE_WRITTEN marks are superseded by bpf_mark_stack_write()
  calls;
- mark_reg_read() calls are superseded by bpf_mark_stack_read();
- log.c:print_liveness() is superseded by logging in liveness.c;
- propagate_liveness() is superseded by bpf_update_live_stack();
- no need to establish register chains in is_state_visited() anymore;
- fix a bunch of tests expecting "_w" suffixes in verifier log
  messages.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20250918-callchain-sensitive-liveness-v3-9-c3cd27bacc60@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
pull/1354/merge
Eduard Zingerman 2025-09-18 19:18:42 -07:00 committed by Alexei Starovoitov
parent ccf25a67c7
commit 107e169799
19 changed files with 226 additions and 806 deletions

View File

@ -347,270 +347,6 @@ However, only the value of register ``r1`` is important to successfully finish
verification. The goal of the liveness tracking algorithm is to spot this fact
and figure out that both states are actually equivalent.
Data structures
~~~~~~~~~~~~~~~
Liveness is tracked using the following data structures::
enum bpf_reg_liveness {
REG_LIVE_NONE = 0,
REG_LIVE_READ32 = 0x1,
REG_LIVE_READ64 = 0x2,
REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
REG_LIVE_WRITTEN = 0x4,
REG_LIVE_DONE = 0x8,
};
struct bpf_reg_state {
...
struct bpf_reg_state *parent;
...
enum bpf_reg_liveness live;
...
};
struct bpf_stack_state {
struct bpf_reg_state spilled_ptr;
...
};
struct bpf_func_state {
struct bpf_reg_state regs[MAX_BPF_REG];
...
struct bpf_stack_state *stack;
}
struct bpf_verifier_state {
struct bpf_func_state *frame[MAX_CALL_FRAMES];
struct bpf_verifier_state *parent;
...
}
* ``REG_LIVE_NONE`` is an initial value assigned to ``->live`` fields upon new
verifier state creation;
* ``REG_LIVE_WRITTEN`` means that the value of the register (or stack slot) is
defined by some instruction verified between this verifier state's parent and
verifier state itself;
* ``REG_LIVE_READ{32,64}`` means that the value of the register (or stack slot)
is read by a some child state of this verifier state;
* ``REG_LIVE_DONE`` is a marker used by ``clean_verifier_state()`` to avoid
processing same verifier state multiple times and for some sanity checks;
* ``->live`` field values are formed by combining ``enum bpf_reg_liveness``
values using bitwise or.
Register parentage chains
~~~~~~~~~~~~~~~~~~~~~~~~~
In order to propagate information between parent and child states, a *register
parentage chain* is established. Each register or stack slot is linked to a
corresponding register or stack slot in its parent state via a ``->parent``
pointer. This link is established upon state creation in ``is_state_visited()``
and might be modified by ``set_callee_state()`` called from
``__check_func_call()``.
The rules for correspondence between registers / stack slots are as follows:
* For the current stack frame, registers and stack slots of the new state are
linked to the registers and stack slots of the parent state with the same
indices.
* For the outer stack frames, only callee saved registers (r6-r9) and stack
slots are linked to the registers and stack slots of the parent state with the
same indices.
* When function call is processed a new ``struct bpf_func_state`` instance is
allocated, it encapsulates a new set of registers and stack slots. For this
new frame, parent links for r6-r9 and stack slots are set to nil, parent links
for r1-r5 are set to match caller r1-r5 parent links.
This could be illustrated by the following diagram (arrows stand for
``->parent`` pointers)::
... ; Frame #0, some instructions
--- checkpoint #0 ---
1 : r6 = 42 ; Frame #0
--- checkpoint #1 ---
2 : call foo() ; Frame #0
... ; Frame #1, instructions from foo()
--- checkpoint #2 ---
... ; Frame #1, instructions from foo()
--- checkpoint #3 ---
exit ; Frame #1, return from foo()
3 : r1 = r6 ; Frame #0 <- current state
+-------------------------------+-------------------------------+
| Frame #0 | Frame #1 |
Checkpoint +-------------------------------+-------------------------------+
#0 | r0 | r1-r5 | r6-r9 | fp-8 ... |
+-------------------------------+
^ ^ ^ ^
| | | |
Checkpoint +-------------------------------+
#1 | r0 | r1-r5 | r6-r9 | fp-8 ... |
+-------------------------------+
^ ^ ^
|_______|_______|_______________
| | |
nil nil | | | nil nil
| | | | | | |
Checkpoint +-------------------------------+-------------------------------+
#2 | r0 | r1-r5 | r6-r9 | fp-8 ... | r0 | r1-r5 | r6-r9 | fp-8 ... |
+-------------------------------+-------------------------------+
^ ^ ^ ^ ^
nil nil | | | | |
| | | | | | |
Checkpoint +-------------------------------+-------------------------------+
#3 | r0 | r1-r5 | r6-r9 | fp-8 ... | r0 | r1-r5 | r6-r9 | fp-8 ... |
+-------------------------------+-------------------------------+
^ ^
nil nil | |
| | | |
Current +-------------------------------+
state | r0 | r1-r5 | r6-r9 | fp-8 ... |
+-------------------------------+
\
r6 read mark is propagated via these links
all the way up to checkpoint #1.
The checkpoint #1 contains a write mark for r6
because of instruction (1), thus read propagation
does not reach checkpoint #0 (see section below).
Liveness marks tracking
~~~~~~~~~~~~~~~~~~~~~~~
For each processed instruction, the verifier tracks read and written registers
and stack slots. The main idea of the algorithm is that read marks propagate
back along the state parentage chain until they hit a write mark, which 'screens
off' earlier states from the read. The information about reads is propagated by
function ``mark_reg_read()`` which could be summarized as follows::
mark_reg_read(struct bpf_reg_state *state, ...):
parent = state->parent
while parent:
if state->live & REG_LIVE_WRITTEN:
break
if parent->live & REG_LIVE_READ64:
break
parent->live |= REG_LIVE_READ64
state = parent
parent = state->parent
Notes:
* The read marks are applied to the **parent** state while write marks are
applied to the **current** state. The write mark on a register or stack slot
means that it is updated by some instruction in the straight-line code leading
from the parent state to the current state.
* Details about REG_LIVE_READ32 are omitted.
* Function ``propagate_liveness()`` (see section :ref:`read_marks_for_cache_hits`)
might override the first parent link. Please refer to the comments in the
``propagate_liveness()`` and ``mark_reg_read()`` source code for further
details.
Because stack writes could have different sizes ``REG_LIVE_WRITTEN`` marks are
applied conservatively: stack slots are marked as written only if write size
corresponds to the size of the register, e.g. see function ``save_register_state()``.
Consider the following example::
0: (*u64)(r10 - 8) = 0 ; define 8 bytes of fp-8
--- checkpoint #0 ---
1: (*u32)(r10 - 8) = 1 ; redefine lower 4 bytes
2: r1 = (*u32)(r10 - 8) ; read lower 4 bytes defined at (1)
3: r2 = (*u32)(r10 - 4) ; read upper 4 bytes defined at (0)
As stated above, the write at (1) does not count as ``REG_LIVE_WRITTEN``. Should
it be otherwise, the algorithm above wouldn't be able to propagate the read mark
from (3) to checkpoint #0.
Once the ``BPF_EXIT`` instruction is reached ``update_branch_counts()`` is
called to update the ``->branches`` counter for each verifier state in a chain
of parent verifier states. When the ``->branches`` counter reaches zero the
verifier state becomes a valid entry in a set of cached verifier states.
Each entry of the verifier states cache is post-processed by a function
``clean_live_states()``. This function marks all registers and stack slots
without ``REG_LIVE_READ{32,64}`` marks as ``NOT_INIT`` or ``STACK_INVALID``.
Registers/stack slots marked in this way are ignored in function ``stacksafe()``
called from ``states_equal()`` when a state cache entry is considered for
equivalence with a current state.
Now it is possible to explain how the example from the beginning of the section
works::
0: call bpf_get_prandom_u32()
1: r1 = 0
2: if r0 == 0 goto +1
3: r0 = 1
--- checkpoint[0] ---
4: r0 = r1
5: exit
* At instruction #2 branching point is reached and state ``{ r0 == 0, r1 == 0, pc == 4 }``
is pushed to states processing queue (pc stands for program counter).
* At instruction #4:
* ``checkpoint[0]`` states cache entry is created: ``{ r0 == 1, r1 == 0, pc == 4 }``;
* ``checkpoint[0].r0`` is marked as written;
* ``checkpoint[0].r1`` is marked as read;
* At instruction #5 exit is reached and ``checkpoint[0]`` can now be processed
by ``clean_live_states()``. After this processing ``checkpoint[0].r1`` has a
read mark and all other registers and stack slots are marked as ``NOT_INIT``
or ``STACK_INVALID``
* The state ``{ r0 == 0, r1 == 0, pc == 4 }`` is popped from the states queue
and is compared against a cached state ``{ r1 == 0, pc == 4 }``, the states
are considered equivalent.
.. _read_marks_for_cache_hits:
Read marks propagation for cache hits
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Another point is the handling of read marks when a previously verified state is
found in the states cache. Upon cache hit verifier must behave in the same way
as if the current state was verified to the program exit. This means that all
read marks, present on registers and stack slots of the cached state, must be
propagated over the parentage chain of the current state. Example below shows
why this is important. Function ``propagate_liveness()`` handles this case.
Consider the following state parentage chain (S is a starting state, A-E are
derived states, -> arrows show which state is derived from which)::
r1 read
<------------- A[r1] == 0
C[r1] == 0
S ---> A ---> B ---> exit E[r1] == 1
|
` ---> C ---> D
|
` ---> E ^
|___ suppose all these
^ states are at insn #Y
|
suppose all these
states are at insn #X
* Chain of states ``S -> A -> B -> exit`` is verified first.
* While ``B -> exit`` is verified, register ``r1`` is read and this read mark is
propagated up to state ``A``.
* When chain of states ``C -> D`` is verified the state ``D`` turns out to be
equivalent to state ``B``.
* The read mark for ``r1`` has to be propagated to state ``C``, otherwise state
``C`` might get mistakenly marked as equivalent to state ``E`` even though
values for register ``r1`` differ between ``C`` and ``E``.
Understanding eBPF verifier messages
====================================

View File

@ -26,27 +26,6 @@
/* Patch buffer size */
#define INSN_BUF_SIZE 32
/* Liveness marks, used for registers and spilled-regs (in stack slots).
* Read marks propagate upwards until they find a write mark; they record that
* "one of this state's descendants read this reg" (and therefore the reg is
* relevant for states_equal() checks).
* Write marks collect downwards and do not propagate; they record that "the
* straight-line code that reached this state (from its parent) wrote this reg"
* (and therefore that reads propagated from this state or its descendants
* should not propagate to its parent).
* A state with a write mark can receive read marks; it just won't propagate
* them to its parent, since the write mark is a property, not of the state,
* but of the link between it and its parent. See mark_reg_read() and
* mark_stack_slot_read() in kernel/bpf/verifier.c.
*/
enum bpf_reg_liveness {
REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
};
#define ITER_PREFIX "bpf_iter_"
enum bpf_iter_state {
@ -211,8 +190,6 @@ struct bpf_reg_state {
* allowed and has the same effect as bpf_sk_release(sk).
*/
u32 ref_obj_id;
/* parentage chain for liveness checking */
struct bpf_reg_state *parent;
/* Inside the callee two registers can be both PTR_TO_STACK like
* R1=fp-8 and R2=fp-8, but one of them points to this function stack
* while another to the caller's stack. To differentiate them 'frameno'
@ -225,7 +202,6 @@ struct bpf_reg_state {
* patching which only happens after main verification finished.
*/
s32 subreg_def;
enum bpf_reg_liveness live;
/* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
bool precise;
};
@ -852,7 +828,6 @@ struct bpf_verifier_env {
/* array of pointers to bpf_scc_info indexed by SCC id */
struct bpf_scc_info **scc_info;
u32 scc_cnt;
bool internal_error;
};
static inline struct bpf_func_info_aux *subprog_aux(struct bpf_verifier_env *env, int subprog)

View File

@ -542,17 +542,6 @@ static char slot_type_char[] = {
[STACK_IRQ_FLAG] = 'f'
};
static void print_liveness(struct bpf_verifier_env *env,
enum bpf_reg_liveness live)
{
if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN))
verbose(env, "_");
if (live & REG_LIVE_READ)
verbose(env, "r");
if (live & REG_LIVE_WRITTEN)
verbose(env, "w");
}
#define UNUM_MAX_DECIMAL U16_MAX
#define SNUM_MAX_DECIMAL S16_MAX
#define SNUM_MIN_DECIMAL S16_MIN
@ -770,7 +759,6 @@ void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_verifie
if (!print_all && !reg_scratched(env, i))
continue;
verbose(env, " R%d", i);
print_liveness(env, reg->live);
verbose(env, "=");
print_reg_state(env, state, reg);
}
@ -803,9 +791,7 @@ void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_verifie
break;
types_buf[j] = '\0';
verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
print_liveness(env, reg->live);
verbose(env, "=%s", types_buf);
verbose(env, " fp%d=%s", (-i - 1) * BPF_REG_SIZE, types_buf);
print_reg_state(env, state, reg);
break;
case STACK_DYNPTR:
@ -814,7 +800,6 @@ void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_verifie
reg = &state->stack[i].spilled_ptr;
verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
print_liveness(env, reg->live);
verbose(env, "=dynptr_%s(", dynptr_type_str(reg->dynptr.type));
if (reg->id)
verbose_a("id=%d", reg->id);
@ -829,9 +814,8 @@ void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_verifie
if (!reg->ref_obj_id)
continue;
verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
print_liveness(env, reg->live);
verbose(env, "=iter_%s(ref_id=%d,state=%s,depth=%u)",
verbose(env, " fp%d=iter_%s(ref_id=%d,state=%s,depth=%u)",
(-i - 1) * BPF_REG_SIZE,
iter_type_str(reg->iter.btf, reg->iter.btf_id),
reg->ref_obj_id, iter_state_str(reg->iter.state),
reg->iter.depth);
@ -839,9 +823,7 @@ void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_verifie
case STACK_MISC:
case STACK_ZERO:
default:
verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
print_liveness(env, reg->live);
verbose(env, "=%s", types_buf);
verbose(env, " fp%d=%s", (-i - 1) * BPF_REG_SIZE, types_buf);
break;
}
}

View File

@ -787,8 +787,6 @@ static int mark_stack_slots_dynptr(struct bpf_verifier_env *env, struct bpf_reg_
state->stack[spi - 1].spilled_ptr.ref_obj_id = id;
}
state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi));
return 0;
@ -806,29 +804,6 @@ static void invalidate_dynptr(struct bpf_verifier_env *env, struct bpf_func_stat
__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
/* Why do we need to set REG_LIVE_WRITTEN for STACK_INVALID slot?
*
* While we don't allow reading STACK_INVALID, it is still possible to
* do <8 byte writes marking some but not all slots as STACK_MISC. Then,
* helpers or insns can do partial read of that part without failing,
* but check_stack_range_initialized, check_stack_read_var_off, and
* check_stack_read_fixed_off will do mark_reg_read for all 8-bytes of
* the slot conservatively. Hence we need to prevent those liveness
* marking walks.
*
* This was not a problem before because STACK_INVALID is only set by
* default (where the default reg state has its reg->parent as NULL), or
* in clean_live_states after REG_LIVE_DONE (at which point
* mark_reg_read won't walk reg->parent chain), but not randomly during
* verifier state exploration (like we did above). Hence, for our case
* parentage chain will still be live (i.e. reg->parent may be
* non-NULL), while earlier reg->parent was NULL, so we need
* REG_LIVE_WRITTEN to screen off read marker propagation when it is
* done later on reads or by mark_dynptr_read as well to unnecessary
* mark registers in verifier state.
*/
state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi));
}
@ -938,9 +913,6 @@ static int destroy_if_dynptr_stack_slot(struct bpf_verifier_env *env,
__mark_reg_not_init(env, &state->stack[spi].spilled_ptr);
__mark_reg_not_init(env, &state->stack[spi - 1].spilled_ptr);
/* Same reason as unmark_stack_slots_dynptr above */
state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
state->stack[spi - 1].spilled_ptr.live |= REG_LIVE_WRITTEN;
bpf_mark_stack_write(env, state->frameno, BIT(spi - 1) | BIT(spi));
return 0;
@ -1059,7 +1031,6 @@ static int mark_stack_slots_iter(struct bpf_verifier_env *env,
else
st->type |= PTR_UNTRUSTED;
}
st->live |= REG_LIVE_WRITTEN;
st->ref_obj_id = i == 0 ? id : 0;
st->iter.btf = btf;
st->iter.btf_id = btf_id;
@ -1095,9 +1066,6 @@ static int unmark_stack_slots_iter(struct bpf_verifier_env *env,
__mark_reg_not_init(env, st);
/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
st->live |= REG_LIVE_WRITTEN;
for (j = 0; j < BPF_REG_SIZE; j++)
slot->slot_type[j] = STACK_INVALID;
@ -1194,7 +1162,6 @@ static int mark_stack_slot_irq_flag(struct bpf_verifier_env *env,
bpf_mark_stack_write(env, reg->frameno, BIT(spi));
__mark_reg_known_zero(st);
st->type = PTR_TO_STACK; /* we don't have dedicated reg type */
st->live |= REG_LIVE_WRITTEN;
st->ref_obj_id = id;
st->irq.kfunc_class = kfunc_class;
@ -1248,8 +1215,6 @@ static int unmark_stack_slot_irq_flag(struct bpf_verifier_env *env, struct bpf_r
__mark_reg_not_init(env, st);
/* see unmark_stack_slots_dynptr() for why we need to set REG_LIVE_WRITTEN */
st->live |= REG_LIVE_WRITTEN;
bpf_mark_stack_write(env, reg->frameno, BIT(spi));
for (i = 0; i < BPF_REG_SIZE; i++)
@ -2901,8 +2866,6 @@ static void init_reg_state(struct bpf_verifier_env *env,
for (i = 0; i < MAX_BPF_REG; i++) {
mark_reg_not_init(env, regs, i);
regs[i].live = REG_LIVE_NONE;
regs[i].parent = NULL;
regs[i].subreg_def = DEF_NOT_SUBREG;
}
@ -3583,64 +3546,12 @@ next:
return 0;
}
/* Parentage chain of this register (or stack slot) should take care of all
* issues like callee-saved registers, stack slot allocation time, etc.
*/
static int mark_reg_read(struct bpf_verifier_env *env,
const struct bpf_reg_state *state,
struct bpf_reg_state *parent, u8 flag)
{
bool writes = parent == state->parent; /* Observe write marks */
int cnt = 0;
while (parent) {
/* if read wasn't screened by an earlier write ... */
if (writes && state->live & REG_LIVE_WRITTEN)
break;
/* The first condition is more likely to be true than the
* second, checked it first.
*/
if ((parent->live & REG_LIVE_READ) == flag ||
parent->live & REG_LIVE_READ64)
/* The parentage chain never changes and
* this parent was already marked as LIVE_READ.
* There is no need to keep walking the chain again and
* keep re-marking all parents as LIVE_READ.
* This case happens when the same register is read
* multiple times without writes into it in-between.
* Also, if parent has the stronger REG_LIVE_READ64 set,
* then no need to set the weak REG_LIVE_READ32.
*/
break;
/* ... then we depend on parent's value */
parent->live |= flag;
/* REG_LIVE_READ64 overrides REG_LIVE_READ32. */
if (flag == REG_LIVE_READ64)
parent->live &= ~REG_LIVE_READ32;
state = parent;
parent = state->parent;
writes = true;
cnt++;
}
if (env->longest_mark_read_walk < cnt)
env->longest_mark_read_walk = cnt;
return 0;
}
static int mark_stack_slot_obj_read(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
int spi, int nr_slots)
{
struct bpf_func_state *state = func(env, reg);
int err, i;
for (i = 0; i < nr_slots; i++) {
struct bpf_reg_state *st = &state->stack[spi - i].spilled_ptr;
err = mark_reg_read(env, st, st->parent, REG_LIVE_READ64);
if (err)
return err;
err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi - i));
if (err)
return err;
@ -3852,15 +3763,13 @@ static int __check_reg_arg(struct bpf_verifier_env *env, struct bpf_reg_state *r
if (rw64)
mark_insn_zext(env, reg);
return mark_reg_read(env, reg, reg->parent,
rw64 ? REG_LIVE_READ64 : REG_LIVE_READ32);
return 0;
} else {
/* check whether register used as dest operand can be written to */
if (regno == BPF_REG_FP) {
verbose(env, "frame pointer is read only\n");
return -EACCES;
}
reg->live |= REG_LIVE_WRITTEN;
reg->subreg_def = rw64 ? DEF_NOT_SUBREG : env->insn_idx + 1;
if (t == DST_OP)
mark_reg_unknown(env, regs, regno);
@ -5065,12 +4974,7 @@ static void assign_scalar_id_before_mov(struct bpf_verifier_env *env,
/* Copy src state preserving dst->parent and dst->live fields */
static void copy_register_state(struct bpf_reg_state *dst, const struct bpf_reg_state *src)
{
struct bpf_reg_state *parent = dst->parent;
enum bpf_reg_liveness live = dst->live;
*dst = *src;
dst->parent = parent;
dst->live = live;
}
static void save_register_state(struct bpf_verifier_env *env,
@ -5081,8 +4985,6 @@ static void save_register_state(struct bpf_verifier_env *env,
int i;
copy_register_state(&state->stack[spi].spilled_ptr, reg);
if (size == BPF_REG_SIZE)
state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
for (i = BPF_REG_SIZE; i > BPF_REG_SIZE - size; i--)
state->stack[spi].slot_type[i - 1] = STACK_SPILL;
@ -5231,17 +5133,6 @@ static int check_stack_write_fixed_off(struct bpf_verifier_env *env,
for (i = 0; i < BPF_REG_SIZE; i++)
scrub_spilled_slot(&state->stack[spi].slot_type[i]);
/* only mark the slot as written if all 8 bytes were written
* otherwise read propagation may incorrectly stop too soon
* when stack slots are partially written.
* This heuristic means that read propagation will be
* conservative, since it will add reg_live_read marks
* to stack slots all the way to first state when programs
* writes+reads less than 8 bytes
*/
if (size == BPF_REG_SIZE)
state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
/* when we zero initialize stack slots mark them as such */
if ((reg && register_is_null(reg)) ||
(!reg && is_bpf_st_mem(insn) && insn->imm == 0)) {
@ -5434,7 +5325,6 @@ static void mark_reg_stack_read(struct bpf_verifier_env *env,
/* have read misc data from the stack */
mark_reg_unknown(env, state->regs, dst_regno);
}
state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
}
/* Read the stack at 'off' and put the results into the register indicated by
@ -5481,7 +5371,6 @@ static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
return -EACCES;
}
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
if (dst_regno < 0)
return 0;
@ -5535,7 +5424,6 @@ static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
insn_flags = 0; /* not restoring original register state */
}
}
state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
} else if (dst_regno >= 0) {
/* restore register state from stack */
copy_register_state(&state->regs[dst_regno], reg);
@ -5543,7 +5431,6 @@ static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
* has its liveness marks cleared by is_state_visited()
* which resets stack/reg liveness for state transitions
*/
state->regs[dst_regno].live |= REG_LIVE_WRITTEN;
} else if (__is_pointer_value(env->allow_ptr_leaks, reg)) {
/* If dst_regno==-1, the caller is asking us whether
* it is acceptable to use this value as a SCALAR_VALUE
@ -5555,7 +5442,6 @@ static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
off);
return -EACCES;
}
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
} else {
for (i = 0; i < size; i++) {
type = stype[(slot - i) % BPF_REG_SIZE];
@ -5569,7 +5455,6 @@ static int check_stack_read_fixed_off(struct bpf_verifier_env *env,
off, i, size);
return -EACCES;
}
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
if (dst_regno >= 0)
mark_reg_stack_read(env, reg_state, off, off + size, dst_regno);
insn_flags = 0; /* we are not restoring spilled register */
@ -8197,13 +8082,10 @@ mark:
/* reading any byte out of 8-byte 'spill_slot' will cause
* the whole slot to be marked as 'read'
*/
mark_reg_read(env, &state->stack[spi].spilled_ptr,
state->stack[spi].spilled_ptr.parent,
REG_LIVE_READ64);
err = bpf_mark_stack_read(env, reg->frameno, env->insn_idx, BIT(spi));
if (err)
return err;
/* We do not set REG_LIVE_WRITTEN for stack slot, as we can not
/* We do not call bpf_mark_stack_write(), as we can not
* be sure that whether stack slot is written to or not. Hence,
* we must still conservatively propagate reads upwards even if
* helper may write to the entire memory range.
@ -11041,8 +10923,7 @@ static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
}
/* we are going to rely on register's precise value */
err = mark_reg_read(env, r0, r0->parent, REG_LIVE_READ64);
err = err ?: mark_chain_precision(env, BPF_REG_0);
err = mark_chain_precision(env, BPF_REG_0);
if (err)
return err;
@ -11946,17 +11827,11 @@ static void __mark_btf_func_reg_size(struct bpf_verifier_env *env, struct bpf_re
if (regno == BPF_REG_0) {
/* Function return value */
reg->live |= REG_LIVE_WRITTEN;
reg->subreg_def = reg_size == sizeof(u64) ?
DEF_NOT_SUBREG : env->insn_idx + 1;
} else {
} else if (reg_size == sizeof(u64)) {
/* Function argument */
if (reg_size == sizeof(u64)) {
mark_insn_zext(env, reg);
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ64);
} else {
mark_reg_read(env, reg, reg->parent, REG_LIVE_READ32);
}
mark_insn_zext(env, reg);
}
}
@ -15710,7 +15585,6 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
*/
assign_scalar_id_before_mov(env, src_reg);
copy_register_state(dst_reg, src_reg);
dst_reg->live |= REG_LIVE_WRITTEN;
dst_reg->subreg_def = DEF_NOT_SUBREG;
} else {
/* case: R1 = (s8, s16 s32)R2 */
@ -15729,7 +15603,6 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
if (!no_sext)
dst_reg->id = 0;
coerce_reg_to_size_sx(dst_reg, insn->off >> 3);
dst_reg->live |= REG_LIVE_WRITTEN;
dst_reg->subreg_def = DEF_NOT_SUBREG;
} else {
mark_reg_unknown(env, regs, insn->dst_reg);
@ -15755,7 +15628,6 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
*/
if (!is_src_reg_u32)
dst_reg->id = 0;
dst_reg->live |= REG_LIVE_WRITTEN;
dst_reg->subreg_def = env->insn_idx + 1;
} else {
/* case: W1 = (s8, s16)W2 */
@ -15766,7 +15638,6 @@ static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
copy_register_state(dst_reg, src_reg);
if (!no_sext)
dst_reg->id = 0;
dst_reg->live |= REG_LIVE_WRITTEN;
dst_reg->subreg_def = env->insn_idx + 1;
coerce_subreg_to_size_sx(dst_reg, insn->off >> 3);
}
@ -18576,11 +18447,6 @@ static void clean_func_state(struct bpf_verifier_env *env,
for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
if (!bpf_stack_slot_alive(env, st->frameno, i)) {
if (st->stack[i].spilled_ptr.live & REG_LIVE_READ) {
verifier_bug(env, "incorrect live marks #1 for insn %d frameno %d spi %d\n",
env->insn_idx, st->frameno, i);
env->internal_error = true;
}
__mark_reg_not_init(env, &st->stack[i].spilled_ptr);
for (j = 0; j < BPF_REG_SIZE; j++)
st->stack[i].slot_type[j] = STACK_INVALID;
@ -18609,25 +18475,23 @@ static void clean_verifier_state(struct bpf_verifier_env *env,
* but a lot of states will get revised from liveness point of view when
* the verifier explores other branches.
* Example:
* 1: r0 = 1
* 1: *(u64)(r10 - 8) = 1
* 2: if r1 == 100 goto pc+1
* 3: r0 = 2
* 4: exit
* when the verifier reaches exit insn the register r0 in the state list of
* insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
* of insn 2 and goes exploring further. At the insn 4 it will walk the
* parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
* 3: *(u64)(r10 - 8) = 2
* 4: r0 = *(u64)(r10 - 8)
* 5: exit
* when the verifier reaches exit insn the stack slot -8 in the state list of
* insn 2 is not yet marked alive. Then the verifier pops the other_branch
* of insn 2 and goes exploring further. After the insn 4 read, liveness
* analysis would propagate read mark for -8 at insn 2.
*
* Since the verifier pushes the branch states as it sees them while exploring
* the program the condition of walking the branch instruction for the second
* time means that all states below this branch were already explored and
* their final liveness marks are already propagated.
* Hence when the verifier completes the search of state list in is_state_visited()
* we can call this clean_live_states() function to mark all liveness states
* as st->cleaned to indicate that 'parent' pointers of 'struct bpf_reg_state'
* will not be used.
* This function also clears the registers and stack for states that !READ
* to simplify state merging.
* we can call this clean_live_states() function to clear dead the registers and stack
* slots to simplify state merging.
*
* Important note here that walking the same branch instruction in the callee
* doesn't meant that the states are DONE. The verifier has to compare
@ -18802,7 +18666,6 @@ static struct bpf_reg_state unbound_reg;
static __init int unbound_reg_init(void)
{
__mark_reg_unknown_imprecise(&unbound_reg);
unbound_reg.live |= REG_LIVE_READ;
return 0;
}
late_initcall(unbound_reg_init);
@ -19097,91 +18960,6 @@ static bool states_equal(struct bpf_verifier_env *env,
return true;
}
/* Return 0 if no propagation happened. Return negative error code if error
* happened. Otherwise, return the propagated bit.
*/
static int propagate_liveness_reg(struct bpf_verifier_env *env,
struct bpf_reg_state *reg,
struct bpf_reg_state *parent_reg)
{
u8 parent_flag = parent_reg->live & REG_LIVE_READ;
u8 flag = reg->live & REG_LIVE_READ;
int err;
/* When comes here, read flags of PARENT_REG or REG could be any of
* REG_LIVE_READ64, REG_LIVE_READ32, REG_LIVE_NONE. There is no need
* of propagation if PARENT_REG has strongest REG_LIVE_READ64.
*/
if (parent_flag == REG_LIVE_READ64 ||
/* Or if there is no read flag from REG. */
!flag ||
/* Or if the read flag from REG is the same as PARENT_REG. */
parent_flag == flag)
return 0;
err = mark_reg_read(env, reg, parent_reg, flag);
if (err)
return err;
return flag;
}
/* A write screens off any subsequent reads; but write marks come from the
* straight-line code between a state and its parent. When we arrive at an
* equivalent state (jump target or such) we didn't arrive by the straight-line
* code, so read marks in the state must propagate to the parent regardless
* of the state's write marks. That's what 'parent == state->parent' comparison
* in mark_reg_read() is for.
*/
static int propagate_liveness(struct bpf_verifier_env *env,
const struct bpf_verifier_state *vstate,
struct bpf_verifier_state *vparent,
bool *changed)
{
struct bpf_reg_state *state_reg, *parent_reg;
struct bpf_func_state *state, *parent;
int i, frame, err = 0;
bool tmp = false;
changed = changed ?: &tmp;
if (vparent->curframe != vstate->curframe) {
WARN(1, "propagate_live: parent frame %d current frame %d\n",
vparent->curframe, vstate->curframe);
return -EFAULT;
}
/* Propagate read liveness of registers... */
BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
for (frame = 0; frame <= vstate->curframe; frame++) {
parent = vparent->frame[frame];
state = vstate->frame[frame];
parent_reg = parent->regs;
state_reg = state->regs;
/* We don't need to worry about FP liveness, it's read-only */
for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
err = propagate_liveness_reg(env, &state_reg[i],
&parent_reg[i]);
if (err < 0)
return err;
*changed |= err > 0;
if (err == REG_LIVE_READ64)
mark_insn_zext(env, &parent_reg[i]);
}
/* Propagate stack slots. */
for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
i < parent->allocated_stack / BPF_REG_SIZE; i++) {
parent_reg = &parent->stack[i].spilled_ptr;
state_reg = &state->stack[i].spilled_ptr;
err = propagate_liveness_reg(env, state_reg,
parent_reg);
*changed |= err > 0;
if (err < 0)
return err;
}
}
return 0;
}
/* find precise scalars in the previous equivalent state and
* propagate them into the current state
*/
@ -19201,8 +18979,7 @@ static int propagate_precision(struct bpf_verifier_env *env,
first = true;
for (i = 0; i < BPF_REG_FP; i++, state_reg++) {
if (state_reg->type != SCALAR_VALUE ||
!state_reg->precise ||
!(state_reg->live & REG_LIVE_READ))
!state_reg->precise)
continue;
if (env->log.level & BPF_LOG_LEVEL2) {
if (first)
@ -19219,8 +18996,7 @@ static int propagate_precision(struct bpf_verifier_env *env,
continue;
state_reg = &state->stack[i].spilled_ptr;
if (state_reg->type != SCALAR_VALUE ||
!state_reg->precise ||
!(state_reg->live & REG_LIVE_READ))
!state_reg->precise)
continue;
if (env->log.level & BPF_LOG_LEVEL2) {
if (first)
@ -19270,9 +19046,6 @@ static int propagate_backedges(struct bpf_verifier_env *env, struct bpf_scc_visi
changed = false;
for (backedge = visit->backedges; backedge; backedge = backedge->next) {
st = &backedge->state;
err = propagate_liveness(env, st->equal_state, st, &changed);
if (err)
return err;
err = propagate_precision(env, st->equal_state, st, &changed);
if (err)
return err;
@ -19296,7 +19069,7 @@ static bool states_maybe_looping(struct bpf_verifier_state *old,
fcur = cur->frame[fr];
for (i = 0; i < MAX_BPF_REG; i++)
if (memcmp(&fold->regs[i], &fcur->regs[i],
offsetof(struct bpf_reg_state, parent)))
offsetof(struct bpf_reg_state, frameno)))
return false;
return true;
}
@ -19394,7 +19167,7 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
struct bpf_verifier_state_list *sl;
struct bpf_verifier_state *cur = env->cur_state, *new;
bool force_new_state, add_new_state, loop;
int i, j, n, err, states_cnt = 0;
int n, err, states_cnt = 0;
struct list_head *pos, *tmp, *head;
force_new_state = env->test_state_freq || is_force_checkpoint(env, insn_idx) ||
@ -19551,28 +19324,16 @@ skip_inf_loop_check:
loop = incomplete_read_marks(env, &sl->state);
if (states_equal(env, &sl->state, cur, loop ? RANGE_WITHIN : NOT_EXACT)) {
hit:
if (env->internal_error)
return -EFAULT;
sl->hit_cnt++;
/* reached equivalent register/stack state,
* prune the search.
* Registers read by the continuation are read by us.
* If we have any write marks in env->cur_state, they
* will prevent corresponding reads in the continuation
* from reaching our parent (an explored_state). Our
* own state will get the read marks recorded, but
* they'll be immediately forgotten as we're pruning
* this state and will pop a new one.
*/
err = propagate_liveness(env, &sl->state, cur, NULL);
/* if previous state reached the exit with precision and
* current state is equivalent to it (except precision marks)
* the precision needs to be propagated back in
* the current state.
*/
err = 0;
if (is_jmp_point(env, env->insn_idx))
err = err ? : push_jmp_history(env, cur, 0, 0);
err = push_jmp_history(env, cur, 0, 0);
err = err ? : propagate_precision(env, &sl->state, cur, NULL);
if (err)
return err;
@ -19667,8 +19428,6 @@ hit:
return 1;
}
miss:
if (env->internal_error)
return -EFAULT;
/* when new state is not going to be added do not increase miss count.
* Otherwise several loop iterations will remove the state
* recorded earlier. The goal of these heuristics is to have
@ -19754,38 +19513,6 @@ miss:
cur->dfs_depth = new->dfs_depth + 1;
clear_jmp_history(cur);
list_add(&new_sl->node, head);
/* connect new state to parentage chain. Current frame needs all
* registers connected. Only r6 - r9 of the callers are alive (pushed
* to the stack implicitly by JITs) so in callers' frames connect just
* r6 - r9 as an optimization. Callers will have r1 - r5 connected to
* the state of the call instruction (with WRITTEN set), and r0 comes
* from callee with its full parentage chain, anyway.
*/
/* clear write marks in current state: the writes we did are not writes
* our child did, so they don't screen off its reads from us.
* (There are no read marks in current state, because reads always mark
* their parent and current state never has children yet. Only
* explored_states can get read marks.)
*/
for (j = 0; j <= cur->curframe; j++) {
for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
for (i = 0; i < BPF_REG_FP; i++)
cur->frame[j]->regs[i].live = REG_LIVE_NONE;
}
/* all stack frames are accessible from callee, clear them all */
for (j = 0; j <= cur->curframe; j++) {
struct bpf_func_state *frame = cur->frame[j];
struct bpf_func_state *newframe = new->frame[j];
for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
frame->stack[i].spilled_ptr.parent =
&newframe->stack[i].spilled_ptr;
}
}
return 0;
}

View File

@ -42,11 +42,11 @@ static struct bpf_align_test tests[] = {
.matches = {
{0, "R1", "ctx()"},
{0, "R10", "fp0"},
{0, "R3_w", "2"},
{1, "R3_w", "4"},
{2, "R3_w", "8"},
{3, "R3_w", "16"},
{4, "R3_w", "32"},
{0, "R3", "2"},
{1, "R3", "4"},
{2, "R3", "8"},
{3, "R3", "16"},
{4, "R3", "32"},
},
},
{
@ -70,17 +70,17 @@ static struct bpf_align_test tests[] = {
.matches = {
{0, "R1", "ctx()"},
{0, "R10", "fp0"},
{0, "R3_w", "1"},
{1, "R3_w", "2"},
{2, "R3_w", "4"},
{3, "R3_w", "8"},
{4, "R3_w", "16"},
{5, "R3_w", "1"},
{6, "R4_w", "32"},
{7, "R4_w", "16"},
{8, "R4_w", "8"},
{9, "R4_w", "4"},
{10, "R4_w", "2"},
{0, "R3", "1"},
{1, "R3", "2"},
{2, "R3", "4"},
{3, "R3", "8"},
{4, "R3", "16"},
{5, "R3", "1"},
{6, "R4", "32"},
{7, "R4", "16"},
{8, "R4", "8"},
{9, "R4", "4"},
{10, "R4", "2"},
},
},
{
@ -99,12 +99,12 @@ static struct bpf_align_test tests[] = {
.matches = {
{0, "R1", "ctx()"},
{0, "R10", "fp0"},
{0, "R3_w", "4"},
{1, "R3_w", "8"},
{2, "R3_w", "10"},
{3, "R4_w", "8"},
{4, "R4_w", "12"},
{5, "R4_w", "14"},
{0, "R3", "4"},
{1, "R3", "8"},
{2, "R3", "10"},
{3, "R4", "8"},
{4, "R4", "12"},
{5, "R4", "14"},
},
},
{
@ -121,10 +121,10 @@ static struct bpf_align_test tests[] = {
.matches = {
{0, "R1", "ctx()"},
{0, "R10", "fp0"},
{0, "R3_w", "7"},
{1, "R3_w", "7"},
{2, "R3_w", "14"},
{3, "R3_w", "56"},
{0, "R3", "7"},
{1, "R3", "7"},
{2, "R3", "14"},
{3, "R3", "56"},
},
},
@ -162,19 +162,19 @@ static struct bpf_align_test tests[] = {
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.matches = {
{6, "R0_w", "pkt(off=8,r=8)"},
{6, "R3_w", "var_off=(0x0; 0xff)"},
{7, "R3_w", "var_off=(0x0; 0x1fe)"},
{8, "R3_w", "var_off=(0x0; 0x3fc)"},
{9, "R3_w", "var_off=(0x0; 0x7f8)"},
{10, "R3_w", "var_off=(0x0; 0xff0)"},
{12, "R3_w", "pkt_end()"},
{17, "R4_w", "var_off=(0x0; 0xff)"},
{18, "R4_w", "var_off=(0x0; 0x1fe0)"},
{19, "R4_w", "var_off=(0x0; 0xff0)"},
{20, "R4_w", "var_off=(0x0; 0x7f8)"},
{21, "R4_w", "var_off=(0x0; 0x3fc)"},
{22, "R4_w", "var_off=(0x0; 0x1fe)"},
{6, "R0", "pkt(off=8,r=8)"},
{6, "R3", "var_off=(0x0; 0xff)"},
{7, "R3", "var_off=(0x0; 0x1fe)"},
{8, "R3", "var_off=(0x0; 0x3fc)"},
{9, "R3", "var_off=(0x0; 0x7f8)"},
{10, "R3", "var_off=(0x0; 0xff0)"},
{12, "R3", "pkt_end()"},
{17, "R4", "var_off=(0x0; 0xff)"},
{18, "R4", "var_off=(0x0; 0x1fe0)"},
{19, "R4", "var_off=(0x0; 0xff0)"},
{20, "R4", "var_off=(0x0; 0x7f8)"},
{21, "R4", "var_off=(0x0; 0x3fc)"},
{22, "R4", "var_off=(0x0; 0x1fe)"},
},
},
{
@ -195,16 +195,16 @@ static struct bpf_align_test tests[] = {
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.matches = {
{6, "R3_w", "var_off=(0x0; 0xff)"},
{7, "R4_w", "var_off=(0x0; 0xff)"},
{8, "R4_w", "var_off=(0x0; 0xff)"},
{9, "R4_w", "var_off=(0x0; 0xff)"},
{10, "R4_w", "var_off=(0x0; 0x1fe)"},
{11, "R4_w", "var_off=(0x0; 0xff)"},
{12, "R4_w", "var_off=(0x0; 0x3fc)"},
{13, "R4_w", "var_off=(0x0; 0xff)"},
{14, "R4_w", "var_off=(0x0; 0x7f8)"},
{15, "R4_w", "var_off=(0x0; 0xff0)"},
{6, "R3", "var_off=(0x0; 0xff)"},
{7, "R4", "var_off=(0x0; 0xff)"},
{8, "R4", "var_off=(0x0; 0xff)"},
{9, "R4", "var_off=(0x0; 0xff)"},
{10, "R4", "var_off=(0x0; 0x1fe)"},
{11, "R4", "var_off=(0x0; 0xff)"},
{12, "R4", "var_off=(0x0; 0x3fc)"},
{13, "R4", "var_off=(0x0; 0xff)"},
{14, "R4", "var_off=(0x0; 0x7f8)"},
{15, "R4", "var_off=(0x0; 0xff0)"},
},
},
{
@ -235,14 +235,14 @@ static struct bpf_align_test tests[] = {
},
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.matches = {
{2, "R5_w", "pkt(r=0)"},
{4, "R5_w", "pkt(off=14,r=0)"},
{5, "R4_w", "pkt(off=14,r=0)"},
{2, "R5", "pkt(r=0)"},
{4, "R5", "pkt(off=14,r=0)"},
{5, "R4", "pkt(off=14,r=0)"},
{9, "R2", "pkt(r=18)"},
{10, "R5", "pkt(off=14,r=18)"},
{10, "R4_w", "var_off=(0x0; 0xff)"},
{13, "R4_w", "var_off=(0x0; 0xffff)"},
{14, "R4_w", "var_off=(0x0; 0xffff)"},
{10, "R4", "var_off=(0x0; 0xff)"},
{13, "R4", "var_off=(0x0; 0xffff)"},
{14, "R4", "var_off=(0x0; 0xffff)"},
},
},
{
@ -299,12 +299,12 @@ static struct bpf_align_test tests[] = {
/* Calculated offset in R6 has unknown value, but known
* alignment of 4.
*/
{6, "R2_w", "pkt(r=8)"},
{7, "R6_w", "var_off=(0x0; 0x3fc)"},
{6, "R2", "pkt(r=8)"},
{7, "R6", "var_off=(0x0; 0x3fc)"},
/* Offset is added to packet pointer R5, resulting in
* known fixed offset, and variable offset from R6.
*/
{11, "R5_w", "pkt(id=1,off=14,"},
{11, "R5", "pkt(id=1,off=14,"},
/* At the time the word size load is performed from R5,
* it's total offset is NET_IP_ALIGN + reg->off (0) +
* reg->aux_off (14) which is 16. Then the variable
@ -320,12 +320,12 @@ static struct bpf_align_test tests[] = {
* instruction to validate R5 state. We also check
* that R4 is what it should be in such case.
*/
{18, "R4_w", "var_off=(0x0; 0x3fc)"},
{18, "R5_w", "var_off=(0x0; 0x3fc)"},
{18, "R4", "var_off=(0x0; 0x3fc)"},
{18, "R5", "var_off=(0x0; 0x3fc)"},
/* Constant offset is added to R5, resulting in
* reg->off of 14.
*/
{19, "R5_w", "pkt(id=2,off=14,"},
{19, "R5", "pkt(id=2,off=14,"},
/* At the time the word size load is performed from R5,
* its total fixed offset is NET_IP_ALIGN + reg->off
* (14) which is 16. Then the variable offset is 4-byte
@ -337,21 +337,21 @@ static struct bpf_align_test tests[] = {
/* Constant offset is added to R5 packet pointer,
* resulting in reg->off value of 14.
*/
{26, "R5_w", "pkt(off=14,r=8)"},
{26, "R5", "pkt(off=14,r=8)"},
/* Variable offset is added to R5, resulting in a
* variable offset of (4n). See comment for insn #18
* for R4 = R5 trick.
*/
{28, "R4_w", "var_off=(0x0; 0x3fc)"},
{28, "R5_w", "var_off=(0x0; 0x3fc)"},
{28, "R4", "var_off=(0x0; 0x3fc)"},
{28, "R5", "var_off=(0x0; 0x3fc)"},
/* Constant is added to R5 again, setting reg->off to 18. */
{29, "R5_w", "pkt(id=3,off=18,"},
{29, "R5", "pkt(id=3,off=18,"},
/* And once more we add a variable; resulting var_off
* is still (4n), fixed offset is not changed.
* Also, we create a new reg->id.
*/
{31, "R4_w", "var_off=(0x0; 0x7fc)"},
{31, "R5_w", "var_off=(0x0; 0x7fc)"},
{31, "R4", "var_off=(0x0; 0x7fc)"},
{31, "R5", "var_off=(0x0; 0x7fc)"},
/* At the time the word size load is performed from R5,
* its total fixed offset is NET_IP_ALIGN + reg->off (18)
* which is 20. Then the variable offset is (4n), so
@ -397,12 +397,12 @@ static struct bpf_align_test tests[] = {
/* Calculated offset in R6 has unknown value, but known
* alignment of 4.
*/
{6, "R2_w", "pkt(r=8)"},
{7, "R6_w", "var_off=(0x0; 0x3fc)"},
{6, "R2", "pkt(r=8)"},
{7, "R6", "var_off=(0x0; 0x3fc)"},
/* Adding 14 makes R6 be (4n+2) */
{8, "R6_w", "var_off=(0x2; 0x7fc)"},
{8, "R6", "var_off=(0x2; 0x7fc)"},
/* Packet pointer has (4n+2) offset */
{11, "R5_w", "var_off=(0x2; 0x7fc)"},
{11, "R5", "var_off=(0x2; 0x7fc)"},
{12, "R4", "var_off=(0x2; 0x7fc)"},
/* At the time the word size load is performed from R5,
* its total fixed offset is NET_IP_ALIGN + reg->off (0)
@ -414,11 +414,11 @@ static struct bpf_align_test tests[] = {
/* Newly read value in R6 was shifted left by 2, so has
* known alignment of 4.
*/
{17, "R6_w", "var_off=(0x0; 0x3fc)"},
{17, "R6", "var_off=(0x0; 0x3fc)"},
/* Added (4n) to packet pointer's (4n+2) var_off, giving
* another (4n+2).
*/
{19, "R5_w", "var_off=(0x2; 0xffc)"},
{19, "R5", "var_off=(0x2; 0xffc)"},
{20, "R4", "var_off=(0x2; 0xffc)"},
/* At the time the word size load is performed from R5,
* its total fixed offset is NET_IP_ALIGN + reg->off (0)
@ -459,18 +459,18 @@ static struct bpf_align_test tests[] = {
.prog_type = BPF_PROG_TYPE_SCHED_CLS,
.result = REJECT,
.matches = {
{3, "R5_w", "pkt_end()"},
{3, "R5", "pkt_end()"},
/* (ptr - ptr) << 2 == unknown, (4n) */
{5, "R5_w", "var_off=(0x0; 0xfffffffffffffffc)"},
{5, "R5", "var_off=(0x0; 0xfffffffffffffffc)"},
/* (4n) + 14 == (4n+2). We blow our bounds, because
* the add could overflow.
*/
{6, "R5_w", "var_off=(0x2; 0xfffffffffffffffc)"},
{6, "R5", "var_off=(0x2; 0xfffffffffffffffc)"},
/* Checked s>=0 */
{9, "R5", "var_off=(0x2; 0x7ffffffffffffffc)"},
/* packet pointer + nonnegative (4n+2) */
{11, "R6_w", "var_off=(0x2; 0x7ffffffffffffffc)"},
{12, "R4_w", "var_off=(0x2; 0x7ffffffffffffffc)"},
{11, "R6", "var_off=(0x2; 0x7ffffffffffffffc)"},
{12, "R4", "var_off=(0x2; 0x7ffffffffffffffc)"},
/* NET_IP_ALIGN + (4n+2) == (4n), alignment is fine.
* We checked the bounds, but it might have been able
* to overflow if the packet pointer started in the
@ -478,7 +478,7 @@ static struct bpf_align_test tests[] = {
* So we did not get a 'range' on R6, and the access
* attempt will fail.
*/
{15, "R6_w", "var_off=(0x2; 0x7ffffffffffffffc)"},
{15, "R6", "var_off=(0x2; 0x7ffffffffffffffc)"},
}
},
{
@ -513,12 +513,12 @@ static struct bpf_align_test tests[] = {
/* Calculated offset in R6 has unknown value, but known
* alignment of 4.
*/
{6, "R2_w", "pkt(r=8)"},
{8, "R6_w", "var_off=(0x0; 0x3fc)"},
{6, "R2", "pkt(r=8)"},
{8, "R6", "var_off=(0x0; 0x3fc)"},
/* Adding 14 makes R6 be (4n+2) */
{9, "R6_w", "var_off=(0x2; 0x7fc)"},
{9, "R6", "var_off=(0x2; 0x7fc)"},
/* New unknown value in R7 is (4n) */
{10, "R7_w", "var_off=(0x0; 0x3fc)"},
{10, "R7", "var_off=(0x0; 0x3fc)"},
/* Subtracting it from R6 blows our unsigned bounds */
{11, "R6", "var_off=(0x2; 0xfffffffffffffffc)"},
/* Checked s>= 0 */
@ -566,16 +566,16 @@ static struct bpf_align_test tests[] = {
/* Calculated offset in R6 has unknown value, but known
* alignment of 4.
*/
{6, "R2_w", "pkt(r=8)"},
{9, "R6_w", "var_off=(0x0; 0x3c)"},
{6, "R2", "pkt(r=8)"},
{9, "R6", "var_off=(0x0; 0x3c)"},
/* Adding 14 makes R6 be (4n+2) */
{10, "R6_w", "var_off=(0x2; 0x7c)"},
{10, "R6", "var_off=(0x2; 0x7c)"},
/* Subtracting from packet pointer overflows ubounds */
{13, "R5_w", "var_off=(0xffffffffffffff82; 0x7c)"},
{13, "R5", "var_off=(0xffffffffffffff82; 0x7c)"},
/* New unknown value in R7 is (4n), >= 76 */
{14, "R7_w", "var_off=(0x0; 0x7fc)"},
{14, "R7", "var_off=(0x0; 0x7fc)"},
/* Adding it to packet pointer gives nice bounds again */
{16, "R5_w", "var_off=(0x2; 0x7fc)"},
{16, "R5", "var_off=(0x2; 0x7fc)"},
/* At the time the word size load is performed from R5,
* its total fixed offset is NET_IP_ALIGN + reg->off (0)
* which is 2. Then the variable offset is (4n+2), so

View File

@ -13,22 +13,22 @@ static struct {
const char *err_msg;
} spin_lock_fail_tests[] = {
{ "lock_id_kptr_preserve",
"5: (bf) r1 = r0 ; R0_w=ptr_foo(id=2,ref_obj_id=2) "
"R1_w=ptr_foo(id=2,ref_obj_id=2) refs=2\n6: (85) call bpf_this_cpu_ptr#154\n"
"5: (bf) r1 = r0 ; R0=ptr_foo(id=2,ref_obj_id=2) "
"R1=ptr_foo(id=2,ref_obj_id=2) refs=2\n6: (85) call bpf_this_cpu_ptr#154\n"
"R1 type=ptr_ expected=percpu_ptr_" },
{ "lock_id_global_zero",
"; R1_w=map_value(map=.data.A,ks=4,vs=4)\n2: (85) call bpf_this_cpu_ptr#154\n"
"; R1=map_value(map=.data.A,ks=4,vs=4)\n2: (85) call bpf_this_cpu_ptr#154\n"
"R1 type=map_value expected=percpu_ptr_" },
{ "lock_id_mapval_preserve",
"[0-9]\\+: (bf) r1 = r0 ;"
" R0_w=map_value(id=1,map=array_map,ks=4,vs=8)"
" R1_w=map_value(id=1,map=array_map,ks=4,vs=8)\n"
" R0=map_value(id=1,map=array_map,ks=4,vs=8)"
" R1=map_value(id=1,map=array_map,ks=4,vs=8)\n"
"[0-9]\\+: (85) call bpf_this_cpu_ptr#154\n"
"R1 type=map_value expected=percpu_ptr_" },
{ "lock_id_innermapval_preserve",
"[0-9]\\+: (bf) r1 = r0 ;"
" R0=map_value(id=2,ks=4,vs=8)"
" R1_w=map_value(id=2,ks=4,vs=8)\n"
" R1=map_value(id=2,ks=4,vs=8)\n"
"[0-9]\\+: (85) call bpf_this_cpu_ptr#154\n"
"R1 type=map_value expected=percpu_ptr_" },
{ "lock_id_mismatch_kptr_kptr", "bpf_spin_unlock of different lock" },

View File

@ -75,26 +75,26 @@ static void test_set_global_vars_succeeds(void)
" -vl2 > %s", fix->veristat, fix->tmpfile);
read(fix->fd, fix->output, fix->sz);
__CHECK_STR("_w=0xf000000000000001 ", "var_s64 = 0xf000000000000001");
__CHECK_STR("_w=0xfedcba9876543210 ", "var_u64 = 0xfedcba9876543210");
__CHECK_STR("_w=0x80000000 ", "var_s32 = -0x80000000");
__CHECK_STR("_w=0x76543210 ", "var_u32 = 0x76543210");
__CHECK_STR("_w=0x8000 ", "var_s16 = -32768");
__CHECK_STR("_w=0xecec ", "var_u16 = 60652");
__CHECK_STR("_w=128 ", "var_s8 = -128");
__CHECK_STR("_w=255 ", "var_u8 = 255");
__CHECK_STR("_w=11 ", "var_ea = EA2");
__CHECK_STR("_w=12 ", "var_eb = EB2");
__CHECK_STR("_w=13 ", "var_ec = EC2");
__CHECK_STR("_w=1 ", "var_b = 1");
__CHECK_STR("_w=170 ", "struct1[2].struct2[1][2].u.var_u8[2]=170");
__CHECK_STR("_w=0xaaaa ", "union1.var_u16 = 0xaaaa");
__CHECK_STR("_w=171 ", "arr[3]= 171");
__CHECK_STR("_w=172 ", "arr[EA2] =172");
__CHECK_STR("_w=10 ", "enum_arr[EC2]=EA3");
__CHECK_STR("_w=173 ", "matrix[31][7][11]=173");
__CHECK_STR("_w=174 ", "struct1[2].struct2[1][2].u.mat[5][3]=174");
__CHECK_STR("_w=175 ", "struct11[7][5].struct2[0][1].u.mat[3][0]=175");
__CHECK_STR("=0xf000000000000001 ", "var_s64 = 0xf000000000000001");
__CHECK_STR("=0xfedcba9876543210 ", "var_u64 = 0xfedcba9876543210");
__CHECK_STR("=0x80000000 ", "var_s32 = -0x80000000");
__CHECK_STR("=0x76543210 ", "var_u32 = 0x76543210");
__CHECK_STR("=0x8000 ", "var_s16 = -32768");
__CHECK_STR("=0xecec ", "var_u16 = 60652");
__CHECK_STR("=128 ", "var_s8 = -128");
__CHECK_STR("=255 ", "var_u8 = 255");
__CHECK_STR("=11 ", "var_ea = EA2");
__CHECK_STR("=12 ", "var_eb = EB2");
__CHECK_STR("=13 ", "var_ec = EC2");
__CHECK_STR("=1 ", "var_b = 1");
__CHECK_STR("=170 ", "struct1[2].struct2[1][2].u.var_u8[2]=170");
__CHECK_STR("=0xaaaa ", "union1.var_u16 = 0xaaaa");
__CHECK_STR("=171 ", "arr[3]= 171");
__CHECK_STR("=172 ", "arr[EA2] =172");
__CHECK_STR("=10 ", "enum_arr[EC2]=EA3");
__CHECK_STR("=173 ", "matrix[31][7][11]=173");
__CHECK_STR("=174 ", "struct1[2].struct2[1][2].u.mat[5][3]=174");
__CHECK_STR("=175 ", "struct11[7][5].struct2[0][1].u.mat[3][0]=175");
out:
teardown_fixture(fix);
@ -117,8 +117,8 @@ static void test_set_global_vars_from_file_succeeds(void)
SYS(out, "%s set_global_vars.bpf.o -G \"@%s\" -vl2 > %s",
fix->veristat, input_file, fix->tmpfile);
read(fix->fd, fix->output, fix->sz);
__CHECK_STR("_w=0x8000 ", "var_s16 = -32768");
__CHECK_STR("_w=0xecec ", "var_u16 = 60652");
__CHECK_STR("=0x8000 ", "var_s16 = -32768");
__CHECK_STR("=0xecec ", "var_u16 = 60652");
out:
close(fd);

View File

@ -18,43 +18,43 @@
return *(u64 *)num; \
}
__msg(": R0_w=0xffffffff80000000")
__msg(": R0=0xffffffff80000000")
check_assert(s64, ==, eq_int_min, INT_MIN);
__msg(": R0_w=0x7fffffff")
__msg(": R0=0x7fffffff")
check_assert(s64, ==, eq_int_max, INT_MAX);
__msg(": R0_w=0")
__msg(": R0=0")
check_assert(s64, ==, eq_zero, 0);
__msg(": R0_w=0x8000000000000000 R1_w=0x8000000000000000")
__msg(": R0=0x8000000000000000 R1=0x8000000000000000")
check_assert(s64, ==, eq_llong_min, LLONG_MIN);
__msg(": R0_w=0x7fffffffffffffff R1_w=0x7fffffffffffffff")
__msg(": R0=0x7fffffffffffffff R1=0x7fffffffffffffff")
check_assert(s64, ==, eq_llong_max, LLONG_MAX);
__msg(": R0_w=scalar(id=1,smax=0x7ffffffe)")
__msg(": R0=scalar(id=1,smax=0x7ffffffe)")
check_assert(s64, <, lt_pos, INT_MAX);
__msg(": R0_w=scalar(id=1,smax=-1,umin=0x8000000000000000,var_off=(0x8000000000000000; 0x7fffffffffffffff))")
__msg(": R0=scalar(id=1,smax=-1,umin=0x8000000000000000,var_off=(0x8000000000000000; 0x7fffffffffffffff))")
check_assert(s64, <, lt_zero, 0);
__msg(": R0_w=scalar(id=1,smax=0xffffffff7fffffff")
__msg(": R0=scalar(id=1,smax=0xffffffff7fffffff")
check_assert(s64, <, lt_neg, INT_MIN);
__msg(": R0_w=scalar(id=1,smax=0x7fffffff)")
__msg(": R0=scalar(id=1,smax=0x7fffffff)")
check_assert(s64, <=, le_pos, INT_MAX);
__msg(": R0_w=scalar(id=1,smax=0)")
__msg(": R0=scalar(id=1,smax=0)")
check_assert(s64, <=, le_zero, 0);
__msg(": R0_w=scalar(id=1,smax=0xffffffff80000000")
__msg(": R0=scalar(id=1,smax=0xffffffff80000000")
check_assert(s64, <=, le_neg, INT_MIN);
__msg(": R0_w=scalar(id=1,smin=umin=0x80000000,umax=0x7fffffffffffffff,var_off=(0x0; 0x7fffffffffffffff))")
__msg(": R0=scalar(id=1,smin=umin=0x80000000,umax=0x7fffffffffffffff,var_off=(0x0; 0x7fffffffffffffff))")
check_assert(s64, >, gt_pos, INT_MAX);
__msg(": R0_w=scalar(id=1,smin=umin=1,umax=0x7fffffffffffffff,var_off=(0x0; 0x7fffffffffffffff))")
__msg(": R0=scalar(id=1,smin=umin=1,umax=0x7fffffffffffffff,var_off=(0x0; 0x7fffffffffffffff))")
check_assert(s64, >, gt_zero, 0);
__msg(": R0_w=scalar(id=1,smin=0xffffffff80000001")
__msg(": R0=scalar(id=1,smin=0xffffffff80000001")
check_assert(s64, >, gt_neg, INT_MIN);
__msg(": R0_w=scalar(id=1,smin=umin=0x7fffffff,umax=0x7fffffffffffffff,var_off=(0x0; 0x7fffffffffffffff))")
__msg(": R0=scalar(id=1,smin=umin=0x7fffffff,umax=0x7fffffffffffffff,var_off=(0x0; 0x7fffffffffffffff))")
check_assert(s64, >=, ge_pos, INT_MAX);
__msg(": R0_w=scalar(id=1,smin=0,umax=0x7fffffffffffffff,var_off=(0x0; 0x7fffffffffffffff))")
__msg(": R0=scalar(id=1,smin=0,umax=0x7fffffffffffffff,var_off=(0x0; 0x7fffffffffffffff))")
check_assert(s64, >=, ge_zero, 0);
__msg(": R0_w=scalar(id=1,smin=0xffffffff80000000")
__msg(": R0=scalar(id=1,smin=0xffffffff80000000")
check_assert(s64, >=, ge_neg, INT_MIN);
SEC("?tc")

View File

@ -30,7 +30,7 @@ int force_clang_to_emit_btf_for_externs(void *ctx)
SEC("?raw_tp")
__success __log_level(2)
__msg("fp-8_w=iter_num(ref_id=1,state=active,depth=0)")
__msg("fp-8=iter_num(ref_id=1,state=active,depth=0)")
int create_and_destroy(void *ctx)
{
struct bpf_iter_num iter;
@ -196,7 +196,7 @@ int leak_iter_from_subprog_fail(void *ctx)
SEC("?raw_tp")
__success __log_level(2)
__msg("fp-8_w=iter_num(ref_id=1,state=active,depth=0)")
__msg("fp-8=iter_num(ref_id=1,state=active,depth=0)")
int valid_stack_reuse(void *ctx)
{
struct bpf_iter_num iter;

View File

@ -20,7 +20,7 @@ __s64 res_empty;
SEC("raw_tp/sys_enter")
__success __log_level(2)
__msg("fp-16_w=iter_testmod_seq(ref_id=1,state=active,depth=0)")
__msg("fp-16=iter_testmod_seq(ref_id=1,state=active,depth=0)")
__msg("fp-16=iter_testmod_seq(ref_id=1,state=drained,depth=0)")
__msg("call bpf_iter_testmod_seq_destroy")
int testmod_seq_empty(const void *ctx)
@ -38,7 +38,7 @@ __s64 res_full;
SEC("raw_tp/sys_enter")
__success __log_level(2)
__msg("fp-16_w=iter_testmod_seq(ref_id=1,state=active,depth=0)")
__msg("fp-16=iter_testmod_seq(ref_id=1,state=active,depth=0)")
__msg("fp-16=iter_testmod_seq(ref_id=1,state=drained,depth=0)")
__msg("call bpf_iter_testmod_seq_destroy")
int testmod_seq_full(const void *ctx)
@ -58,7 +58,7 @@ static volatile int zero = 0;
SEC("raw_tp/sys_enter")
__success __log_level(2)
__msg("fp-16_w=iter_testmod_seq(ref_id=1,state=active,depth=0)")
__msg("fp-16=iter_testmod_seq(ref_id=1,state=active,depth=0)")
__msg("fp-16=iter_testmod_seq(ref_id=1,state=drained,depth=0)")
__msg("call bpf_iter_testmod_seq_destroy")
int testmod_seq_truncated(const void *ctx)

View File

@ -8,8 +8,8 @@
SEC("tp_btf/sys_enter")
__success
__log_level(2)
__msg("r8 = *(u64 *)(r7 +0) ; R7_w=ptr_nameidata(off={{[0-9]+}}) R8_w=rdonly_untrusted_mem(sz=0)")
__msg("r9 = *(u8 *)(r8 +0) ; R8_w=rdonly_untrusted_mem(sz=0) R9_w=scalar")
__msg("r8 = *(u64 *)(r7 +0) ; R7=ptr_nameidata(off={{[0-9]+}}) R8=rdonly_untrusted_mem(sz=0)")
__msg("r9 = *(u8 *)(r8 +0) ; R8=rdonly_untrusted_mem(sz=0) R9=scalar")
int btf_id_to_ptr_mem(void *ctx)
{
struct task_struct *task;

View File

@ -926,7 +926,7 @@ l1_%=: r0 = 0; \
SEC("socket")
__description("bounds check for non const xor src dst")
__success __log_level(2)
__msg("5: (af) r0 ^= r6 ; R0_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=431,var_off=(0x0; 0x1af))")
__msg("5: (af) r0 ^= r6 ; R0=scalar(smin=smin32=0,smax=umax=smax32=umax32=431,var_off=(0x0; 0x1af))")
__naked void non_const_xor_src_dst(void)
{
asm volatile (" \
@ -947,7 +947,7 @@ __naked void non_const_xor_src_dst(void)
SEC("socket")
__description("bounds check for non const or src dst")
__success __log_level(2)
__msg("5: (4f) r0 |= r6 ; R0_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=431,var_off=(0x0; 0x1af))")
__msg("5: (4f) r0 |= r6 ; R0=scalar(smin=smin32=0,smax=umax=smax32=umax32=431,var_off=(0x0; 0x1af))")
__naked void non_const_or_src_dst(void)
{
asm volatile (" \
@ -968,7 +968,7 @@ __naked void non_const_or_src_dst(void)
SEC("socket")
__description("bounds check for non const mul regs")
__success __log_level(2)
__msg("5: (2f) r0 *= r6 ; R0_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=3825,var_off=(0x0; 0xfff))")
__msg("5: (2f) r0 *= r6 ; R0=scalar(smin=smin32=0,smax=umax=smax32=umax32=3825,var_off=(0x0; 0xfff))")
__naked void non_const_mul_regs(void)
{
asm volatile (" \
@ -1241,7 +1241,7 @@ l0_%=: r0 = 0; \
SEC("tc")
__description("multiply mixed sign bounds. test 1")
__success __log_level(2)
__msg("r6 *= r7 {{.*}}; R6_w=scalar(smin=umin=0x1bc16d5cd4927ee1,smax=umax=0x1bc16d674ec80000,smax32=0x7ffffeff,umax32=0xfffffeff,var_off=(0x1bc16d4000000000; 0x3ffffffeff))")
__msg("r6 *= r7 {{.*}}; R6=scalar(smin=umin=0x1bc16d5cd4927ee1,smax=umax=0x1bc16d674ec80000,smax32=0x7ffffeff,umax32=0xfffffeff,var_off=(0x1bc16d4000000000; 0x3ffffffeff))")
__naked void mult_mixed0_sign(void)
{
asm volatile (
@ -1264,7 +1264,7 @@ __naked void mult_mixed0_sign(void)
SEC("tc")
__description("multiply mixed sign bounds. test 2")
__success __log_level(2)
__msg("r6 *= r7 {{.*}}; R6_w=scalar(smin=smin32=-100,smax=smax32=200)")
__msg("r6 *= r7 {{.*}}; R6=scalar(smin=smin32=-100,smax=smax32=200)")
__naked void mult_mixed1_sign(void)
{
asm volatile (
@ -1287,7 +1287,7 @@ __naked void mult_mixed1_sign(void)
SEC("tc")
__description("multiply negative bounds")
__success __log_level(2)
__msg("r6 *= r7 {{.*}}; R6_w=scalar(smin=umin=smin32=umin32=0x3ff280b0,smax=umax=smax32=umax32=0x3fff0001,var_off=(0x3ff00000; 0xf81ff))")
__msg("r6 *= r7 {{.*}}; R6=scalar(smin=umin=smin32=umin32=0x3ff280b0,smax=umax=smax32=umax32=0x3fff0001,var_off=(0x3ff00000; 0xf81ff))")
__naked void mult_sign_bounds(void)
{
asm volatile (
@ -1311,7 +1311,7 @@ __naked void mult_sign_bounds(void)
SEC("tc")
__description("multiply bounds that don't cross signed boundary")
__success __log_level(2)
__msg("r8 *= r6 {{.*}}; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=11,var_off=(0x0; 0xb)) R8_w=scalar(smin=0,smax=umax=0x7b96bb0a94a3a7cd,var_off=(0x0; 0x7fffffffffffffff))")
__msg("r8 *= r6 {{.*}}; R6=scalar(smin=smin32=0,smax=umax=smax32=umax32=11,var_off=(0x0; 0xb)) R8=scalar(smin=0,smax=umax=0x7b96bb0a94a3a7cd,var_off=(0x0; 0x7fffffffffffffff))")
__naked void mult_no_sign_crossing(void)
{
asm volatile (
@ -1331,7 +1331,7 @@ __naked void mult_no_sign_crossing(void)
SEC("tc")
__description("multiplication overflow, result in unbounded reg. test 1")
__success __log_level(2)
__msg("r6 *= r7 {{.*}}; R6_w=scalar()")
__msg("r6 *= r7 {{.*}}; R6=scalar()")
__naked void mult_unsign_ovf(void)
{
asm volatile (
@ -1353,7 +1353,7 @@ __naked void mult_unsign_ovf(void)
SEC("tc")
__description("multiplication overflow, result in unbounded reg. test 2")
__success __log_level(2)
__msg("r6 *= r7 {{.*}}; R6_w=scalar()")
__msg("r6 *= r7 {{.*}}; R6=scalar()")
__naked void mult_sign_ovf(void)
{
asm volatile (
@ -1376,7 +1376,7 @@ __naked void mult_sign_ovf(void)
SEC("socket")
__description("64-bit addition, all outcomes overflow")
__success __log_level(2)
__msg("5: (0f) r3 += r3 {{.*}} R3_w=scalar(umin=0x4000000000000000,umax=0xfffffffffffffffe)")
__msg("5: (0f) r3 += r3 {{.*}} R3=scalar(umin=0x4000000000000000,umax=0xfffffffffffffffe)")
__retval(0)
__naked void add64_full_overflow(void)
{
@ -1396,7 +1396,7 @@ __naked void add64_full_overflow(void)
SEC("socket")
__description("64-bit addition, partial overflow, result in unbounded reg")
__success __log_level(2)
__msg("4: (0f) r3 += r3 {{.*}} R3_w=scalar()")
__msg("4: (0f) r3 += r3 {{.*}} R3=scalar()")
__retval(0)
__naked void add64_partial_overflow(void)
{
@ -1416,7 +1416,7 @@ __naked void add64_partial_overflow(void)
SEC("socket")
__description("32-bit addition overflow, all outcomes overflow")
__success __log_level(2)
__msg("4: (0c) w3 += w3 {{.*}} R3_w=scalar(smin=umin=umin32=0x40000000,smax=umax=umax32=0xfffffffe,var_off=(0x0; 0xffffffff))")
__msg("4: (0c) w3 += w3 {{.*}} R3=scalar(smin=umin=umin32=0x40000000,smax=umax=umax32=0xfffffffe,var_off=(0x0; 0xffffffff))")
__retval(0)
__naked void add32_full_overflow(void)
{
@ -1436,7 +1436,7 @@ __naked void add32_full_overflow(void)
SEC("socket")
__description("32-bit addition, partial overflow, result in unbounded u32 bounds")
__success __log_level(2)
__msg("4: (0c) w3 += w3 {{.*}} R3_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))")
__msg("4: (0c) w3 += w3 {{.*}} R3=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))")
__retval(0)
__naked void add32_partial_overflow(void)
{
@ -1456,7 +1456,7 @@ __naked void add32_partial_overflow(void)
SEC("socket")
__description("64-bit subtraction, all outcomes underflow")
__success __log_level(2)
__msg("6: (1f) r3 -= r1 {{.*}} R3_w=scalar(umin=1,umax=0x8000000000000000)")
__msg("6: (1f) r3 -= r1 {{.*}} R3=scalar(umin=1,umax=0x8000000000000000)")
__retval(0)
__naked void sub64_full_overflow(void)
{
@ -1477,7 +1477,7 @@ __naked void sub64_full_overflow(void)
SEC("socket")
__description("64-bit subtraction, partial overflow, result in unbounded reg")
__success __log_level(2)
__msg("3: (1f) r3 -= r2 {{.*}} R3_w=scalar()")
__msg("3: (1f) r3 -= r2 {{.*}} R3=scalar()")
__retval(0)
__naked void sub64_partial_overflow(void)
{
@ -1496,7 +1496,7 @@ __naked void sub64_partial_overflow(void)
SEC("socket")
__description("32-bit subtraction overflow, all outcomes underflow")
__success __log_level(2)
__msg("5: (1c) w3 -= w1 {{.*}} R3_w=scalar(smin=umin=umin32=1,smax=umax=umax32=0x80000000,var_off=(0x0; 0xffffffff))")
__msg("5: (1c) w3 -= w1 {{.*}} R3=scalar(smin=umin=umin32=1,smax=umax=umax32=0x80000000,var_off=(0x0; 0xffffffff))")
__retval(0)
__naked void sub32_full_overflow(void)
{
@ -1517,7 +1517,7 @@ __naked void sub32_full_overflow(void)
SEC("socket")
__description("32-bit subtraction, partial overflow, result in unbounded u32 bounds")
__success __log_level(2)
__msg("3: (1c) w3 -= w2 {{.*}} R3_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))")
__msg("3: (1c) w3 -= w2 {{.*}} R3=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))")
__retval(0)
__naked void sub32_partial_overflow(void)
{
@ -1617,7 +1617,7 @@ l0_%=: r0 = 0; \
SEC("socket")
__description("bounds deduction cross sign boundary, positive overlap")
__success __log_level(2) __flag(BPF_F_TEST_REG_INVARIANTS)
__msg("3: (2d) if r0 > r1 {{.*}} R0_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=127,var_off=(0x0; 0x7f))")
__msg("3: (2d) if r0 > r1 {{.*}} R0=scalar(smin=smin32=0,smax=umax=smax32=umax32=127,var_off=(0x0; 0x7f))")
__retval(0)
__naked void bounds_deduct_positive_overlap(void)
{
@ -1650,7 +1650,7 @@ l0_%=: r0 = 0; \
SEC("socket")
__description("bounds deduction cross sign boundary, two overlaps")
__failure __flag(BPF_F_TEST_REG_INVARIANTS)
__msg("3: (2d) if r0 > r1 {{.*}} R0_w=scalar(smin=smin32=-128,smax=smax32=127,umax=0xffffffffffffff80)")
__msg("3: (2d) if r0 > r1 {{.*}} R0=scalar(smin=smin32=-128,smax=smax32=127,umax=0xffffffffffffff80)")
__msg("frame pointer is read only")
__naked void bounds_deduct_two_overlaps(void)
{

View File

@ -215,7 +215,7 @@ __weak int subprog_untrusted(const volatile struct task_struct *restrict task __
SEC("tp_btf/sys_enter")
__success
__log_level(2)
__msg("r1 = {{.*}}; {{.*}}R1_w=trusted_ptr_task_struct()")
__msg("r1 = {{.*}}; {{.*}}R1=trusted_ptr_task_struct()")
__msg("Func#1 ('subprog_untrusted') is global and assumed valid.")
__msg("Validating subprog_untrusted() func#1...")
__msg(": R1=untrusted_ptr_task_struct")
@ -278,7 +278,7 @@ __weak int subprog_enum_untrusted(enum bpf_attach_type *p __arg_untrusted)
SEC("tp_btf/sys_enter")
__success
__log_level(2)
__msg("r1 = {{.*}}; {{.*}}R1_w=trusted_ptr_task_struct()")
__msg("r1 = {{.*}}; {{.*}}R1=trusted_ptr_task_struct()")
__msg("Func#1 ('subprog_void_untrusted') is global and assumed valid.")
__msg("Validating subprog_void_untrusted() func#1...")
__msg(": R1=rdonly_untrusted_mem(sz=0)")

View File

@ -65,7 +65,7 @@ __naked void ldsx_s32(void)
SEC("socket")
__description("LDSX, S8 range checking, privileged")
__log_level(2) __success __retval(1)
__msg("R1_w=scalar(smin=smin32=-128,smax=smax32=127)")
__msg("R1=scalar(smin=smin32=-128,smax=smax32=127)")
__naked void ldsx_s8_range_priv(void)
{
asm volatile (

View File

@ -144,21 +144,21 @@ SEC("?raw_tp")
__success __log_level(2)
/*
* Without the bug fix there will be no history between "last_idx 3 first_idx 3"
* and "parent state regs=" lines. "R0_w=6" parts are here to help anchor
* and "parent state regs=" lines. "R0=6" parts are here to help anchor
* expected log messages to the one specific mark_chain_precision operation.
*
* This is quite fragile: if verifier checkpointing heuristic changes, this
* might need adjusting.
*/
__msg("2: (07) r0 += 1 ; R0_w=6")
__msg("2: (07) r0 += 1 ; R0=6")
__msg("3: (35) if r0 >= 0xa goto pc+1")
__msg("mark_precise: frame0: last_idx 3 first_idx 3 subseq_idx -1")
__msg("mark_precise: frame0: regs=r0 stack= before 2: (07) r0 += 1")
__msg("mark_precise: frame0: regs=r0 stack= before 1: (07) r0 += 1")
__msg("mark_precise: frame0: regs=r0 stack= before 4: (05) goto pc-4")
__msg("mark_precise: frame0: regs=r0 stack= before 3: (35) if r0 >= 0xa goto pc+1")
__msg("mark_precise: frame0: parent state regs= stack=: R0_rw=P4")
__msg("3: R0_w=6")
__msg("mark_precise: frame0: parent state regs= stack=: R0=P4")
__msg("3: R0=6")
__naked int state_loop_first_last_equal(void)
{
asm volatile (
@ -233,8 +233,8 @@ __naked void bpf_cond_op_not_r10(void)
SEC("lsm.s/socket_connect")
__success __log_level(2)
__msg("0: (b7) r0 = 1 ; R0_w=1")
__msg("1: (84) w0 = -w0 ; R0_w=0xffffffff")
__msg("0: (b7) r0 = 1 ; R0=1")
__msg("1: (84) w0 = -w0 ; R0=0xffffffff")
__msg("mark_precise: frame0: last_idx 2 first_idx 0 subseq_idx -1")
__msg("mark_precise: frame0: regs=r0 stack= before 1: (84) w0 = -w0")
__msg("mark_precise: frame0: regs=r0 stack= before 0: (b7) r0 = 1")
@ -268,8 +268,8 @@ __naked int bpf_neg_3(void)
SEC("lsm.s/socket_connect")
__success __log_level(2)
__msg("0: (b7) r0 = 1 ; R0_w=1")
__msg("1: (87) r0 = -r0 ; R0_w=-1")
__msg("0: (b7) r0 = 1 ; R0=1")
__msg("1: (87) r0 = -r0 ; R0=-1")
__msg("mark_precise: frame0: last_idx 2 first_idx 0 subseq_idx -1")
__msg("mark_precise: frame0: regs=r0 stack= before 1: (87) r0 = -r0")
__msg("mark_precise: frame0: regs=r0 stack= before 0: (b7) r0 = 1")

View File

@ -353,7 +353,7 @@ __flag(BPF_F_TEST_STATE_FREQ)
* collect_linked_regs() can't tie more than 6 registers for a single insn.
*/
__msg("8: (25) if r0 > 0x7 goto pc+0 ; R0=scalar(id=1")
__msg("9: (bf) r6 = r6 ; R6_w=scalar(id=2")
__msg("9: (bf) r6 = r6 ; R6=scalar(id=2")
/* check that r{0-5} are marked precise after 'if' */
__msg("frame0: regs=r0 stack= before 8: (25) if r0 > 0x7 goto pc+0")
__msg("frame0: parent state regs=r0,r1,r2,r3,r4,r5 stack=:")
@ -779,12 +779,12 @@ __success
__retval(0)
/* Check that verifier believes r1/r0 are zero at exit */
__log_level(2)
__msg("4: (77) r1 >>= 32 ; R1_w=0")
__msg("5: (bf) r0 = r1 ; R0_w=0 R1_w=0")
__msg("4: (77) r1 >>= 32 ; R1=0")
__msg("5: (bf) r0 = r1 ; R0=0 R1=0")
__msg("6: (95) exit")
__msg("from 3 to 4")
__msg("4: (77) r1 >>= 32 ; R1_w=0")
__msg("5: (bf) r0 = r1 ; R0_w=0 R1_w=0")
__msg("4: (77) r1 >>= 32 ; R1=0")
__msg("5: (bf) r0 = r1 ; R0=0 R1=0")
__msg("6: (95) exit")
/* Verify that statements to randomize upper half of r1 had not been
* generated.

View File

@ -506,17 +506,17 @@ SEC("raw_tp")
__log_level(2)
__success
/* fp-8 is spilled IMPRECISE value zero (represented by a zero value fake reg) */
__msg("2: (7a) *(u64 *)(r10 -8) = 0 ; R10=fp0 fp-8_w=0")
__msg("2: (7a) *(u64 *)(r10 -8) = 0 ; R10=fp0 fp-8=0")
/* but fp-16 is spilled IMPRECISE zero const reg */
__msg("4: (7b) *(u64 *)(r10 -16) = r0 ; R0_w=0 R10=fp0 fp-16_w=0")
__msg("4: (7b) *(u64 *)(r10 -16) = r0 ; R0=0 R10=fp0 fp-16=0")
/* validate that assigning R2 from STACK_SPILL with zero value doesn't mark register
* precise immediately; if necessary, it will be marked precise later
*/
__msg("6: (71) r2 = *(u8 *)(r10 -1) ; R2_w=0 R10=fp0 fp-8_w=0")
__msg("6: (71) r2 = *(u8 *)(r10 -1) ; R2=0 R10=fp0 fp-8=0")
/* similarly, when R2 is assigned from spilled register, it is initially
* imprecise, but will be marked precise later once it is used in precise context
*/
__msg("10: (71) r2 = *(u8 *)(r10 -9) ; R2_w=0 R10=fp0 fp-16_w=0")
__msg("10: (71) r2 = *(u8 *)(r10 -9) ; R2=0 R10=fp0 fp-16=0")
__msg("11: (0f) r1 += r2")
__msg("mark_precise: frame0: last_idx 11 first_idx 0 subseq_idx -1")
__msg("mark_precise: frame0: regs=r2 stack= before 10: (71) r2 = *(u8 *)(r10 -9)")
@ -598,7 +598,7 @@ __log_level(2)
__success
/* fp-4 is STACK_ZERO */
__msg("2: (62) *(u32 *)(r10 -4) = 0 ; R10=fp0 fp-8=0000????")
__msg("4: (71) r2 = *(u8 *)(r10 -1) ; R2_w=0 R10=fp0 fp-8=0000????")
__msg("4: (71) r2 = *(u8 *)(r10 -1) ; R2=0 R10=fp0 fp-8=0000????")
__msg("5: (0f) r1 += r2")
__msg("mark_precise: frame0: last_idx 5 first_idx 0 subseq_idx -1")
__msg("mark_precise: frame0: regs=r2 stack= before 4: (71) r2 = *(u8 *)(r10 -1)")
@ -640,25 +640,25 @@ SEC("raw_tp")
__log_level(2) __flag(BPF_F_TEST_STATE_FREQ)
__success
/* make sure fp-8 is IMPRECISE fake register spill */
__msg("3: (7a) *(u64 *)(r10 -8) = 1 ; R10=fp0 fp-8_w=1")
__msg("3: (7a) *(u64 *)(r10 -8) = 1 ; R10=fp0 fp-8=1")
/* and fp-16 is spilled IMPRECISE const reg */
__msg("5: (7b) *(u64 *)(r10 -16) = r0 ; R0_w=1 R10=fp0 fp-16_w=1")
__msg("5: (7b) *(u64 *)(r10 -16) = r0 ; R0=1 R10=fp0 fp-16=1")
/* validate load from fp-8, which was initialized using BPF_ST_MEM */
__msg("8: (79) r2 = *(u64 *)(r10 -8) ; R2_w=1 R10=fp0 fp-8=1")
__msg("8: (79) r2 = *(u64 *)(r10 -8) ; R2=1 R10=fp0 fp-8=1")
__msg("9: (0f) r1 += r2")
__msg("mark_precise: frame0: last_idx 9 first_idx 7 subseq_idx -1")
__msg("mark_precise: frame0: regs=r2 stack= before 8: (79) r2 = *(u64 *)(r10 -8)")
__msg("mark_precise: frame0: regs= stack=-8 before 7: (bf) r1 = r6")
/* note, fp-8 is precise, fp-16 is not yet precise, we'll get there */
__msg("mark_precise: frame0: parent state regs= stack=-8: R0_w=1 R1=ctx() R6_r=map_value(map=.data.two_byte_,ks=4,vs=2) R10=fp0 fp-8_rw=P1 fp-16_w=1")
__msg("mark_precise: frame0: parent state regs= stack=-8: R0=1 R1=ctx() R6=map_value(map=.data.two_byte_,ks=4,vs=2) R10=fp0 fp-8=P1 fp-16=1")
__msg("mark_precise: frame0: last_idx 6 first_idx 3 subseq_idx 7")
__msg("mark_precise: frame0: regs= stack=-8 before 6: (05) goto pc+0")
__msg("mark_precise: frame0: regs= stack=-8 before 5: (7b) *(u64 *)(r10 -16) = r0")
__msg("mark_precise: frame0: regs= stack=-8 before 4: (b7) r0 = 1")
__msg("mark_precise: frame0: regs= stack=-8 before 3: (7a) *(u64 *)(r10 -8) = 1")
__msg("10: R1_w=map_value(map=.data.two_byte_,ks=4,vs=2,off=1) R2_w=1")
__msg("10: R1=map_value(map=.data.two_byte_,ks=4,vs=2,off=1) R2=1")
/* validate load from fp-16, which was initialized using BPF_STX_MEM */
__msg("12: (79) r2 = *(u64 *)(r10 -16) ; R2_w=1 R10=fp0 fp-16=1")
__msg("12: (79) r2 = *(u64 *)(r10 -16) ; R2=1 R10=fp0 fp-16=1")
__msg("13: (0f) r1 += r2")
__msg("mark_precise: frame0: last_idx 13 first_idx 7 subseq_idx -1")
__msg("mark_precise: frame0: regs=r2 stack= before 12: (79) r2 = *(u64 *)(r10 -16)")
@ -668,12 +668,12 @@ __msg("mark_precise: frame0: regs= stack=-16 before 9: (0f) r1 += r2")
__msg("mark_precise: frame0: regs= stack=-16 before 8: (79) r2 = *(u64 *)(r10 -8)")
__msg("mark_precise: frame0: regs= stack=-16 before 7: (bf) r1 = r6")
/* now both fp-8 and fp-16 are precise, very good */
__msg("mark_precise: frame0: parent state regs= stack=-16: R0_w=1 R1=ctx() R6_r=map_value(map=.data.two_byte_,ks=4,vs=2) R10=fp0 fp-8_rw=P1 fp-16_rw=P1")
__msg("mark_precise: frame0: parent state regs= stack=-16: R0=1 R1=ctx() R6=map_value(map=.data.two_byte_,ks=4,vs=2) R10=fp0 fp-8=P1 fp-16=P1")
__msg("mark_precise: frame0: last_idx 6 first_idx 3 subseq_idx 7")
__msg("mark_precise: frame0: regs= stack=-16 before 6: (05) goto pc+0")
__msg("mark_precise: frame0: regs= stack=-16 before 5: (7b) *(u64 *)(r10 -16) = r0")
__msg("mark_precise: frame0: regs=r0 stack= before 4: (b7) r0 = 1")
__msg("14: R1_w=map_value(map=.data.two_byte_,ks=4,vs=2,off=1) R2_w=1")
__msg("14: R1=map_value(map=.data.two_byte_,ks=4,vs=2,off=1) R2=1")
__naked void stack_load_preserves_const_precision(void)
{
asm volatile (
@ -719,22 +719,22 @@ __success
/* make sure fp-8 is 32-bit FAKE subregister spill */
__msg("3: (62) *(u32 *)(r10 -8) = 1 ; R10=fp0 fp-8=????1")
/* but fp-16 is spilled IMPRECISE zero const reg */
__msg("5: (63) *(u32 *)(r10 -16) = r0 ; R0_w=1 R10=fp0 fp-16=????1")
__msg("5: (63) *(u32 *)(r10 -16) = r0 ; R0=1 R10=fp0 fp-16=????1")
/* validate load from fp-8, which was initialized using BPF_ST_MEM */
__msg("8: (61) r2 = *(u32 *)(r10 -8) ; R2_w=1 R10=fp0 fp-8=????1")
__msg("8: (61) r2 = *(u32 *)(r10 -8) ; R2=1 R10=fp0 fp-8=????1")
__msg("9: (0f) r1 += r2")
__msg("mark_precise: frame0: last_idx 9 first_idx 7 subseq_idx -1")
__msg("mark_precise: frame0: regs=r2 stack= before 8: (61) r2 = *(u32 *)(r10 -8)")
__msg("mark_precise: frame0: regs= stack=-8 before 7: (bf) r1 = r6")
__msg("mark_precise: frame0: parent state regs= stack=-8: R0_w=1 R1=ctx() R6_r=map_value(map=.data.two_byte_,ks=4,vs=2) R10=fp0 fp-8_r=????P1 fp-16=????1")
__msg("mark_precise: frame0: parent state regs= stack=-8: R0=1 R1=ctx() R6=map_value(map=.data.two_byte_,ks=4,vs=2) R10=fp0 fp-8=????P1 fp-16=????1")
__msg("mark_precise: frame0: last_idx 6 first_idx 3 subseq_idx 7")
__msg("mark_precise: frame0: regs= stack=-8 before 6: (05) goto pc+0")
__msg("mark_precise: frame0: regs= stack=-8 before 5: (63) *(u32 *)(r10 -16) = r0")
__msg("mark_precise: frame0: regs= stack=-8 before 4: (b7) r0 = 1")
__msg("mark_precise: frame0: regs= stack=-8 before 3: (62) *(u32 *)(r10 -8) = 1")
__msg("10: R1_w=map_value(map=.data.two_byte_,ks=4,vs=2,off=1) R2_w=1")
__msg("10: R1=map_value(map=.data.two_byte_,ks=4,vs=2,off=1) R2=1")
/* validate load from fp-16, which was initialized using BPF_STX_MEM */
__msg("12: (61) r2 = *(u32 *)(r10 -16) ; R2_w=1 R10=fp0 fp-16=????1")
__msg("12: (61) r2 = *(u32 *)(r10 -16) ; R2=1 R10=fp0 fp-16=????1")
__msg("13: (0f) r1 += r2")
__msg("mark_precise: frame0: last_idx 13 first_idx 7 subseq_idx -1")
__msg("mark_precise: frame0: regs=r2 stack= before 12: (61) r2 = *(u32 *)(r10 -16)")
@ -743,12 +743,12 @@ __msg("mark_precise: frame0: regs= stack=-16 before 10: (73) *(u8 *)(r1 +0) = r2
__msg("mark_precise: frame0: regs= stack=-16 before 9: (0f) r1 += r2")
__msg("mark_precise: frame0: regs= stack=-16 before 8: (61) r2 = *(u32 *)(r10 -8)")
__msg("mark_precise: frame0: regs= stack=-16 before 7: (bf) r1 = r6")
__msg("mark_precise: frame0: parent state regs= stack=-16: R0_w=1 R1=ctx() R6_r=map_value(map=.data.two_byte_,ks=4,vs=2) R10=fp0 fp-8_r=????P1 fp-16_r=????P1")
__msg("mark_precise: frame0: parent state regs= stack=-16: R0=1 R1=ctx() R6=map_value(map=.data.two_byte_,ks=4,vs=2) R10=fp0 fp-8=????P1 fp-16=????P1")
__msg("mark_precise: frame0: last_idx 6 first_idx 3 subseq_idx 7")
__msg("mark_precise: frame0: regs= stack=-16 before 6: (05) goto pc+0")
__msg("mark_precise: frame0: regs= stack=-16 before 5: (63) *(u32 *)(r10 -16) = r0")
__msg("mark_precise: frame0: regs=r0 stack= before 4: (b7) r0 = 1")
__msg("14: R1_w=map_value(map=.data.two_byte_,ks=4,vs=2,off=1) R2_w=1")
__msg("14: R1=map_value(map=.data.two_byte_,ks=4,vs=2,off=1) R2=1")
__naked void stack_load_preserves_const_precision_subreg(void)
{
asm volatile (

View File

@ -105,7 +105,7 @@ __msg("mark_precise: frame0: regs=r0 stack= before 4: (27) r0 *= 4")
__msg("mark_precise: frame0: regs=r0 stack= before 3: (57) r0 &= 3")
__msg("mark_precise: frame0: regs=r0 stack= before 10: (95) exit")
__msg("mark_precise: frame1: regs=r0 stack= before 9: (bf) r0 = (s8)r10")
__msg("7: R0_w=scalar")
__msg("7: R0=scalar")
__naked int fp_precise_subprog_result(void)
{
asm volatile (
@ -141,7 +141,7 @@ __msg("mark_precise: frame1: regs=r0 stack= before 10: (bf) r0 = (s8)r1")
* anyways, at which point we'll break precision chain
*/
__msg("mark_precise: frame1: regs=r1 stack= before 9: (bf) r1 = r10")
__msg("7: R0_w=scalar")
__msg("7: R0=scalar")
__naked int sneaky_fp_precise_subprog_result(void)
{
asm volatile (
@ -681,7 +681,7 @@ __msg("mark_precise: frame0: last_idx 10 first_idx 7 subseq_idx -1")
__msg("mark_precise: frame0: regs=r7 stack= before 9: (bf) r1 = r8")
__msg("mark_precise: frame0: regs=r7 stack= before 8: (27) r7 *= 4")
__msg("mark_precise: frame0: regs=r7 stack= before 7: (79) r7 = *(u64 *)(r10 -8)")
__msg("mark_precise: frame0: parent state regs= stack=-8: R0_w=2 R6_w=1 R8_rw=map_value(map=.data.vals,ks=4,vs=16) R10=fp0 fp-8_rw=P1")
__msg("mark_precise: frame0: parent state regs= stack=-8: R0=2 R6=1 R8=map_value(map=.data.vals,ks=4,vs=16) R10=fp0 fp-8=P1")
__msg("mark_precise: frame0: last_idx 18 first_idx 0 subseq_idx 7")
__msg("mark_precise: frame0: regs= stack=-8 before 18: (95) exit")
__msg("mark_precise: frame1: regs= stack= before 17: (0f) r0 += r2")

View File

@ -93,7 +93,7 @@
.expected_attach_type = BPF_SK_LOOKUP,
.result = VERBOSE_ACCEPT,
.runs = -1,
.errstr = "0: (7a) *(u64 *)(r10 -8) = -44 ; R10=fp0 fp-8_w=-44\
.errstr = "0: (7a) *(u64 *)(r10 -8) = -44 ; R10=fp0 fp-8=-44\
2: (c5) if r0 s< 0x0 goto pc+2\
R0_w=-44",
R0=-44",
},