brd: split I/O at page boundaries

A lot of complexity in brd stems from the fact that it tries to handle
I/O spanning two backing pages.  Instead limit the size of a single
bvec iteration so that it never crosses a page boundary and remove all
the now unneeded code.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: Yu Kuai <yukuai3@huawei.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Link: https://lore.kernel.org/r/20250428141014.2360063-5-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
pull/1250/head
Christoph Hellwig 2025-04-28 07:09:50 -07:00 committed by Jens Axboe
parent 95a375a3be
commit 3185444f05
1 changed files with 34 additions and 82 deletions

View File

@ -99,27 +99,6 @@ static void brd_free_pages(struct brd_device *brd)
xa_destroy(&brd->brd_pages);
}
/*
* copy_to_brd_setup must be called before copy_to_brd. It may sleep.
*/
static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n,
gfp_t gfp)
{
unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
size_t copy;
int ret;
copy = min_t(size_t, n, PAGE_SIZE - offset);
ret = brd_insert_page(brd, sector, gfp);
if (ret)
return ret;
if (copy < n) {
sector += copy >> SECTOR_SHIFT;
ret = brd_insert_page(brd, sector, gfp);
}
return ret;
}
/*
* Copy n bytes from src to the brd starting at sector. Does not sleep.
*/
@ -129,27 +108,13 @@ static void copy_to_brd(struct brd_device *brd, const void *src,
struct page *page;
void *dst;
unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
size_t copy;
copy = min_t(size_t, n, PAGE_SIZE - offset);
page = brd_lookup_page(brd, sector);
BUG_ON(!page);
dst = kmap_atomic(page);
memcpy(dst + offset, src, copy);
memcpy(dst + offset, src, n);
kunmap_atomic(dst);
if (copy < n) {
src += copy;
sector += copy >> SECTOR_SHIFT;
copy = n - copy;
page = brd_lookup_page(brd, sector);
BUG_ON(!page);
dst = kmap_atomic(page);
memcpy(dst, src, copy);
kunmap_atomic(dst);
}
}
/*
@ -161,62 +126,60 @@ static void copy_from_brd(void *dst, struct brd_device *brd,
struct page *page;
void *src;
unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
size_t copy;
copy = min_t(size_t, n, PAGE_SIZE - offset);
page = brd_lookup_page(brd, sector);
if (page) {
src = kmap_atomic(page);
memcpy(dst, src + offset, copy);
memcpy(dst, src + offset, n);
kunmap_atomic(src);
} else
memset(dst, 0, copy);
if (copy < n) {
dst += copy;
sector += copy >> SECTOR_SHIFT;
copy = n - copy;
page = brd_lookup_page(brd, sector);
if (page) {
src = kmap_atomic(page);
memcpy(dst, src, copy);
kunmap_atomic(src);
} else
memset(dst, 0, copy);
}
memset(dst, 0, n);
}
/*
* Process a single bvec of a bio.
* Process a single segment. The segment is capped to not cross page boundaries
* in both the bio and the brd backing memory.
*/
static int brd_rw_bvec(struct brd_device *brd, struct bio_vec *bv,
blk_opf_t opf, sector_t sector)
static bool brd_rw_bvec(struct brd_device *brd, struct bio *bio)
{
struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
sector_t sector = bio->bi_iter.bi_sector;
u32 offset = (sector & (PAGE_SECTORS - 1)) << SECTOR_SHIFT;
blk_opf_t opf = bio->bi_opf;
void *mem;
bv.bv_len = min_t(u32, bv.bv_len, PAGE_SIZE - offset);
if (op_is_write(opf)) {
int err;
/*
* Must use NOIO because we don't want to recurse back into the
* block or filesystem layers from page reclaim.
*/
gfp_t gfp = opf & REQ_NOWAIT ? GFP_NOWAIT : GFP_NOIO;
int err;
err = copy_to_brd_setup(brd, sector, bv->bv_len, gfp);
if (err)
return err;
err = brd_insert_page(brd, sector,
(opf & REQ_NOWAIT) ? GFP_NOWAIT : GFP_NOIO);
if (err) {
if (err == -ENOMEM && (opf & REQ_NOWAIT))
bio_wouldblock_error(bio);
else
bio_io_error(bio);
return false;
}
}
mem = bvec_kmap_local(bv);
mem = bvec_kmap_local(&bv);
if (!op_is_write(opf)) {
copy_from_brd(mem, brd, sector, bv->bv_len);
flush_dcache_page(bv->bv_page);
copy_from_brd(mem, brd, sector, bv.bv_len);
flush_dcache_page(bv.bv_page);
} else {
flush_dcache_page(bv->bv_page);
copy_to_brd(brd, mem, sector, bv->bv_len);
flush_dcache_page(bv.bv_page);
copy_to_brd(brd, mem, sector, bv.bv_len);
}
kunmap_local(mem);
return 0;
bio_advance_iter_single(bio, &bio->bi_iter, bv.bv_len);
return true;
}
static void brd_do_discard(struct brd_device *brd, sector_t sector, u32 size)
@ -241,8 +204,6 @@ static void brd_do_discard(struct brd_device *brd, sector_t sector, u32 size)
static void brd_submit_bio(struct bio *bio)
{
struct brd_device *brd = bio->bi_bdev->bd_disk->private_data;
struct bio_vec bvec;
struct bvec_iter iter;
if (unlikely(op_is_discard(bio->bi_opf))) {
brd_do_discard(brd, bio->bi_iter.bi_sector,
@ -251,19 +212,10 @@ static void brd_submit_bio(struct bio *bio)
return;
}
bio_for_each_segment(bvec, bio, iter) {
int err;
err = brd_rw_bvec(brd, &bvec, bio->bi_opf, iter.bi_sector);
if (err) {
if (err == -ENOMEM && bio->bi_opf & REQ_NOWAIT) {
bio_wouldblock_error(bio);
return;
}
bio_io_error(bio);
do {
if (!brd_rw_bvec(brd, bio))
return;
}
}
} while (bio->bi_iter.bi_size);
bio_endio(bio);
}