s390/pci: Migrate s390 IRQ logic to IRQ domain API

s390 is one of the last architectures using the legacy API for setup and
teardown of PCI MSI IRQs. Migrate the s390 IRQ allocation and teardown
to the MSI parent domain API. For details, see:

https://lore.kernel.org/lkml/20221111120501.026511281@linutronix.de

In detail, create an MSI parent domain for each PCI domain. When a PCI
device sets up MSI or MSI-X IRQs, the library creates a per-device IRQ
domain for this device, which is used by the device for allocating and
freeing IRQs.

The per-device domain delegates this allocation and freeing to the
parent-domain. In the end, the corresponding callbacks of the parent
domain are responsible for allocating and freeing the IRQs.

The allocation is split into two parts:
- zpci_msi_prepare() is called once for each device and allocates the
  required resources. On s390, each PCI function has its own airq
  vector and a summary bit, which must be configured once per function.
  This is done in prepare().
- zpci_msi_alloc() can be called multiple times for allocating one or
  more MSI/MSI-X IRQs. This creates a mapping between the virtual IRQ
  number in the kernel and the hardware IRQ number.

Freeing is split into two counterparts:
- zpci_msi_free() reverts the effects of zpci_msi_alloc() and
- zpci_msi_teardown() reverts the effects of zpci_msi_prepare(). This is
  called once when all IRQs are freed before a device is removed.

Since the parent domain in the end allocates the IRQs, the hwirq
encoding must be unambiguous for all IRQs of all devices. This is
achieved by encoding the hwirq using the devfn and the MSI index.

Reviewed-by: Niklas Schnelle <schnelle@linux.ibm.com>
Reviewed-by: Farhan Ali <alifm@linux.ibm.com>
Signed-off-by: Tobias Schumacher <ts@linux.ibm.com>
Reviewed-by: Gerd Bayer <gbayer@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
pull/1354/merge
Tobias Schumacher 2025-12-04 06:05:02 +01:00 committed by Heiko Carstens
parent 455a65260f
commit f770950a47
5 changed files with 277 additions and 145 deletions

View File

@ -255,6 +255,7 @@ config S390
select HOTPLUG_SMT select HOTPLUG_SMT
select IOMMU_HELPER if PCI select IOMMU_HELPER if PCI
select IOMMU_SUPPORT if PCI select IOMMU_SUPPORT if PCI
select IRQ_MSI_LIB if PCI
select KASAN_VMALLOC if KASAN select KASAN_VMALLOC if KASAN
select LOCK_MM_AND_FIND_VMA select LOCK_MM_AND_FIND_VMA
select MMU_GATHER_MERGE_VMAS select MMU_GATHER_MERGE_VMAS

View File

@ -5,6 +5,7 @@
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/mutex.h> #include <linux/mutex.h>
#include <linux/iommu.h> #include <linux/iommu.h>
#include <linux/irqdomain.h>
#include <linux/pci_hotplug.h> #include <linux/pci_hotplug.h>
#include <asm/pci_clp.h> #include <asm/pci_clp.h>
#include <asm/pci_debug.h> #include <asm/pci_debug.h>
@ -109,6 +110,7 @@ struct zpci_bus {
struct list_head resources; struct list_head resources;
struct list_head bus_next; struct list_head bus_next;
struct resource bus_resource; struct resource bus_resource;
struct irq_domain *msi_parent_domain;
int topo; /* TID if topo_is_tid, PCHID otherwise */ int topo; /* TID if topo_is_tid, PCHID otherwise */
int domain_nr; int domain_nr;
u8 multifunction : 1; u8 multifunction : 1;
@ -310,6 +312,9 @@ int zpci_dma_exit_device(struct zpci_dev *zdev);
/* IRQ */ /* IRQ */
int __init zpci_irq_init(void); int __init zpci_irq_init(void);
void __init zpci_irq_exit(void); void __init zpci_irq_exit(void);
int zpci_set_irq(struct zpci_dev *zdev);
int zpci_create_parent_msi_domain(struct zpci_bus *zbus);
void zpci_remove_parent_msi_domain(struct zpci_bus *zbus);
/* FMB */ /* FMB */
int zpci_fmb_enable_device(struct zpci_dev *); int zpci_fmb_enable_device(struct zpci_dev *);

View File

@ -708,6 +708,12 @@ int zpci_reenable_device(struct zpci_dev *zdev)
if (rc) if (rc)
return rc; return rc;
if (zdev->msi_nr_irqs > 0) {
rc = zpci_set_irq(zdev);
if (rc)
return rc;
}
rc = zpci_iommu_register_ioat(zdev, &status); rc = zpci_iommu_register_ioat(zdev, &status);
if (rc) if (rc)
zpci_disable_device(zdev); zpci_disable_device(zdev);

View File

@ -14,6 +14,7 @@
#include <linux/err.h> #include <linux/err.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/seq_file.h> #include <linux/seq_file.h>
#include <linux/irqdomain.h>
#include <linux/jump_label.h> #include <linux/jump_label.h>
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/printk.h> #include <linux/printk.h>
@ -198,19 +199,27 @@ static int zpci_bus_create_pci_bus(struct zpci_bus *zbus, struct zpci_dev *fr, s
zbus->multifunction = zpci_bus_is_multifunction_root(fr); zbus->multifunction = zpci_bus_is_multifunction_root(fr);
zbus->max_bus_speed = fr->max_bus_speed; zbus->max_bus_speed = fr->max_bus_speed;
if (zpci_create_parent_msi_domain(zbus))
goto out_free_domain;
/* /*
* Note that the zbus->resources are taken over and zbus->resources * Note that the zbus->resources are taken over and zbus->resources
* is empty after a successful call * is empty after a successful call
*/ */
bus = pci_create_root_bus(NULL, ZPCI_BUS_NR, ops, zbus, &zbus->resources); bus = pci_create_root_bus(NULL, ZPCI_BUS_NR, ops, zbus, &zbus->resources);
if (!bus) { if (!bus)
zpci_free_domain(zbus->domain_nr); goto out_remove_msi_domain;
return -EFAULT;
}
zbus->bus = bus; zbus->bus = bus;
dev_set_msi_domain(&zbus->bus->dev, zbus->msi_parent_domain);
return 0; return 0;
out_remove_msi_domain:
zpci_remove_parent_msi_domain(zbus);
out_free_domain:
zpci_free_domain(zbus->domain_nr);
return -ENOMEM;
} }
static void zpci_bus_release(struct kref *kref) static void zpci_bus_release(struct kref *kref)
@ -231,6 +240,7 @@ static void zpci_bus_release(struct kref *kref)
mutex_lock(&zbus_list_lock); mutex_lock(&zbus_list_lock);
list_del(&zbus->bus_next); list_del(&zbus->bus_next);
mutex_unlock(&zbus_list_lock); mutex_unlock(&zbus_list_lock);
zpci_remove_parent_msi_domain(zbus);
kfree(zbus); kfree(zbus);
} }

View File

@ -6,6 +6,7 @@
#include <linux/kernel_stat.h> #include <linux/kernel_stat.h>
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/msi.h> #include <linux/msi.h>
#include <linux/irqchip/irq-msi-lib.h>
#include <linux/smp.h> #include <linux/smp.h>
#include <asm/isc.h> #include <asm/isc.h>
@ -97,7 +98,7 @@ static int zpci_clear_directed_irq(struct zpci_dev *zdev)
} }
/* Register adapter interruptions */ /* Register adapter interruptions */
static int zpci_set_irq(struct zpci_dev *zdev) int zpci_set_irq(struct zpci_dev *zdev)
{ {
int rc; int rc;
@ -125,27 +126,53 @@ static int zpci_clear_irq(struct zpci_dev *zdev)
static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest, static int zpci_set_irq_affinity(struct irq_data *data, const struct cpumask *dest,
bool force) bool force)
{ {
struct msi_desc *entry = irq_data_get_msi_desc(data); irq_data_update_affinity(data, dest);
struct msi_msg msg = entry->msg;
int cpu_addr = smp_cpu_get_cpu_address(cpumask_first(dest));
msg.address_lo &= 0xff0000ff;
msg.address_lo |= (cpu_addr << 8);
pci_write_msi_msg(data->irq, &msg);
return IRQ_SET_MASK_OK; return IRQ_SET_MASK_OK;
} }
/*
* Encode the hwirq number for the parent domain. The encoding must be unique
* for each IRQ of each device in the parent domain, so it uses the devfn to
* identify the device and the msi_index to identify the IRQ within that device.
*/
static inline u32 zpci_encode_hwirq(u8 devfn, u16 msi_index)
{
return (devfn << 16) | msi_index;
}
static inline u16 zpci_decode_hwirq_msi_index(irq_hw_number_t hwirq)
{
return hwirq & 0xffff;
}
static void zpci_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
{
struct msi_desc *desc = irq_data_get_msi_desc(data);
struct zpci_dev *zdev = to_zpci_dev(desc->dev);
if (irq_delivery == DIRECTED) {
int cpu = cpumask_first(irq_data_get_affinity_mask(data));
msg->address_lo = zdev->msi_addr & 0xff0000ff;
msg->address_lo |= (smp_cpu_get_cpu_address(cpu) << 8);
} else {
msg->address_lo = zdev->msi_addr & 0xffffffff;
}
msg->address_hi = zdev->msi_addr >> 32;
msg->data = zpci_decode_hwirq_msi_index(data->hwirq);
}
static struct irq_chip zpci_irq_chip = { static struct irq_chip zpci_irq_chip = {
.name = "PCI-MSI", .name = "PCI-MSI",
.irq_unmask = pci_msi_unmask_irq, .irq_compose_msi_msg = zpci_compose_msi_msg,
.irq_mask = pci_msi_mask_irq,
}; };
static void zpci_handle_cpu_local_irq(bool rescan) static void zpci_handle_cpu_local_irq(bool rescan)
{ {
struct airq_iv *dibv = zpci_ibv[smp_processor_id()]; struct airq_iv *dibv = zpci_ibv[smp_processor_id()];
union zpci_sic_iib iib = {{0}}; union zpci_sic_iib iib = {{0}};
struct irq_domain *msi_domain;
irq_hw_number_t hwirq;
unsigned long bit; unsigned long bit;
int irqs_on = 0; int irqs_on = 0;
@ -163,7 +190,9 @@ static void zpci_handle_cpu_local_irq(bool rescan)
continue; continue;
} }
inc_irq_stat(IRQIO_MSI); inc_irq_stat(IRQIO_MSI);
generic_handle_irq(airq_iv_get_data(dibv, bit)); hwirq = airq_iv_get_data(dibv, bit);
msi_domain = (struct irq_domain *)airq_iv_get_ptr(dibv, bit);
generic_handle_domain_irq(msi_domain, hwirq);
} }
} }
@ -228,6 +257,8 @@ static void zpci_floating_irq_handler(struct airq_struct *airq,
struct tpi_info *tpi_info) struct tpi_info *tpi_info)
{ {
union zpci_sic_iib iib = {{0}}; union zpci_sic_iib iib = {{0}};
struct irq_domain *msi_domain;
irq_hw_number_t hwirq;
unsigned long si, ai; unsigned long si, ai;
struct airq_iv *aibv; struct airq_iv *aibv;
int irqs_on = 0; int irqs_on = 0;
@ -255,7 +286,9 @@ static void zpci_floating_irq_handler(struct airq_struct *airq,
break; break;
inc_irq_stat(IRQIO_MSI); inc_irq_stat(IRQIO_MSI);
airq_iv_lock(aibv, ai); airq_iv_lock(aibv, ai);
generic_handle_irq(airq_iv_get_data(aibv, ai)); hwirq = airq_iv_get_data(aibv, ai);
msi_domain = (struct irq_domain *)airq_iv_get_ptr(aibv, ai);
generic_handle_domain_irq(msi_domain, hwirq);
airq_iv_unlock(aibv, ai); airq_iv_unlock(aibv, ai);
} }
} }
@ -277,7 +310,9 @@ static int __alloc_airq(struct zpci_dev *zdev, int msi_vecs,
zdev->aisb = *bit; zdev->aisb = *bit;
/* Create adapter interrupt vector */ /* Create adapter interrupt vector */
zdev->aibv = airq_iv_create(msi_vecs, AIRQ_IV_DATA | AIRQ_IV_BITLOCK, NULL); zdev->aibv = airq_iv_create(msi_vecs,
AIRQ_IV_PTR | AIRQ_IV_DATA | AIRQ_IV_BITLOCK,
NULL);
if (!zdev->aibv) if (!zdev->aibv)
return -ENOMEM; return -ENOMEM;
@ -289,133 +324,6 @@ static int __alloc_airq(struct zpci_dev *zdev, int msi_vecs,
return 0; return 0;
} }
int arch_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
{
unsigned int hwirq, msi_vecs, irqs_per_msi, i, cpu;
struct zpci_dev *zdev = to_zpci(pdev);
struct msi_desc *msi;
struct msi_msg msg;
unsigned long bit;
int cpu_addr;
int rc, irq;
zdev->aisb = -1UL;
zdev->msi_first_bit = -1U;
msi_vecs = min_t(unsigned int, nvec, zdev->max_msi);
if (msi_vecs < nvec) {
pr_info("%s requested %d irqs, allocate system limit of %d",
pci_name(pdev), nvec, zdev->max_msi);
}
rc = __alloc_airq(zdev, msi_vecs, &bit);
if (rc < 0)
return rc;
/*
* Request MSI interrupts:
* When using MSI, nvec_used interrupt sources and their irq
* descriptors are controlled through one msi descriptor.
* Thus the outer loop over msi descriptors shall run only once,
* while two inner loops iterate over the interrupt vectors.
* When using MSI-X, each interrupt vector/irq descriptor
* is bound to exactly one msi descriptor (nvec_used is one).
* So the inner loops are executed once, while the outer iterates
* over the MSI-X descriptors.
*/
hwirq = bit;
msi_for_each_desc(msi, &pdev->dev, MSI_DESC_NOTASSOCIATED) {
if (hwirq - bit >= msi_vecs)
break;
irqs_per_msi = min_t(unsigned int, msi_vecs, msi->nvec_used);
irq = __irq_alloc_descs(-1, 0, irqs_per_msi, 0, THIS_MODULE,
(irq_delivery == DIRECTED) ?
msi->affinity : NULL);
if (irq < 0)
return -ENOMEM;
for (i = 0; i < irqs_per_msi; i++) {
rc = irq_set_msi_desc_off(irq, i, msi);
if (rc)
return rc;
irq_set_chip_and_handler(irq + i, &zpci_irq_chip,
handle_percpu_irq);
}
msg.data = hwirq - bit;
if (irq_delivery == DIRECTED) {
if (msi->affinity)
cpu = cpumask_first(&msi->affinity->mask);
else
cpu = 0;
cpu_addr = smp_cpu_get_cpu_address(cpu);
msg.address_lo = zdev->msi_addr & 0xff0000ff;
msg.address_lo |= (cpu_addr << 8);
for_each_possible_cpu(cpu) {
for (i = 0; i < irqs_per_msi; i++)
airq_iv_set_data(zpci_ibv[cpu],
hwirq + i, irq + i);
}
} else {
msg.address_lo = zdev->msi_addr & 0xffffffff;
for (i = 0; i < irqs_per_msi; i++)
airq_iv_set_data(zdev->aibv, hwirq + i, irq + i);
}
msg.address_hi = zdev->msi_addr >> 32;
pci_write_msi_msg(irq, &msg);
hwirq += irqs_per_msi;
}
zdev->msi_first_bit = bit;
zdev->msi_nr_irqs = hwirq - bit;
rc = zpci_set_irq(zdev);
if (rc)
return rc;
return (zdev->msi_nr_irqs == nvec) ? 0 : zdev->msi_nr_irqs;
}
void arch_teardown_msi_irqs(struct pci_dev *pdev)
{
struct zpci_dev *zdev = to_zpci(pdev);
struct msi_desc *msi;
unsigned int i;
int rc;
/* Disable interrupts */
rc = zpci_clear_irq(zdev);
if (rc)
return;
/* Release MSI interrupts */
msi_for_each_desc(msi, &pdev->dev, MSI_DESC_ASSOCIATED) {
for (i = 0; i < msi->nvec_used; i++) {
irq_set_msi_desc(msi->irq + i, NULL);
irq_free_desc(msi->irq + i);
}
msi->msg.address_lo = 0;
msi->msg.address_hi = 0;
msi->msg.data = 0;
msi->irq = 0;
}
if (zdev->aisb != -1UL) {
zpci_ibv[zdev->aisb] = NULL;
airq_iv_free_bit(zpci_sbv, zdev->aisb);
zdev->aisb = -1UL;
}
if (zdev->aibv) {
airq_iv_release(zdev->aibv);
zdev->aibv = NULL;
}
if ((irq_delivery == DIRECTED) && zdev->msi_first_bit != -1U)
airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->msi_nr_irqs);
}
bool arch_restore_msi_irqs(struct pci_dev *pdev) bool arch_restore_msi_irqs(struct pci_dev *pdev)
{ {
struct zpci_dev *zdev = to_zpci(pdev); struct zpci_dev *zdev = to_zpci(pdev);
@ -429,6 +337,207 @@ static struct airq_struct zpci_airq = {
.isc = PCI_ISC, .isc = PCI_ISC,
}; };
static void zpci_msi_teardown_directed(struct zpci_dev *zdev)
{
airq_iv_free(zpci_ibv[0], zdev->msi_first_bit, zdev->max_msi);
zdev->msi_first_bit = -1U;
zdev->msi_nr_irqs = 0;
}
static void zpci_msi_teardown_floating(struct zpci_dev *zdev)
{
airq_iv_release(zdev->aibv);
zdev->aibv = NULL;
airq_iv_free_bit(zpci_sbv, zdev->aisb);
zdev->aisb = -1UL;
zdev->msi_first_bit = -1U;
zdev->msi_nr_irqs = 0;
}
static void zpci_msi_teardown(struct irq_domain *domain, msi_alloc_info_t *arg)
{
struct zpci_dev *zdev = to_zpci_dev(domain->dev);
zpci_clear_irq(zdev);
if (irq_delivery == DIRECTED)
zpci_msi_teardown_directed(zdev);
else
zpci_msi_teardown_floating(zdev);
}
static int zpci_msi_prepare(struct irq_domain *domain,
struct device *dev, int nvec,
msi_alloc_info_t *info)
{
struct zpci_dev *zdev = to_zpci_dev(dev);
struct pci_dev *pdev = to_pci_dev(dev);
unsigned long bit;
int msi_vecs, rc;
msi_vecs = min_t(unsigned int, nvec, zdev->max_msi);
if (msi_vecs < nvec) {
pr_info("%s requested %d IRQs, allocate system limit of %d\n",
pci_name(pdev), nvec, zdev->max_msi);
}
rc = __alloc_airq(zdev, msi_vecs, &bit);
if (rc) {
pr_err("Allocating adapter IRQs for %s failed\n", pci_name(pdev));
return rc;
}
zdev->msi_first_bit = bit;
zdev->msi_nr_irqs = msi_vecs;
rc = zpci_set_irq(zdev);
if (rc) {
pr_err("Registering adapter IRQs for %s failed\n",
pci_name(pdev));
if (irq_delivery == DIRECTED)
zpci_msi_teardown_directed(zdev);
else
zpci_msi_teardown_floating(zdev);
return rc;
}
return 0;
}
static int zpci_msi_domain_alloc(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs, void *args)
{
struct msi_desc *desc = ((msi_alloc_info_t *)args)->desc;
struct zpci_dev *zdev = to_zpci_dev(desc->dev);
struct zpci_bus *zbus = zdev->zbus;
unsigned int cpu, hwirq;
unsigned long bit;
int i;
bit = zdev->msi_first_bit + desc->msi_index;
hwirq = zpci_encode_hwirq(zdev->devfn, desc->msi_index);
if (desc->msi_index + nr_irqs > zdev->max_msi)
return -EINVAL;
for (i = 0; i < nr_irqs; i++) {
irq_domain_set_info(domain, virq + i, hwirq + i,
&zpci_irq_chip, zdev,
handle_percpu_irq, NULL, NULL);
if (irq_delivery == DIRECTED) {
for_each_possible_cpu(cpu) {
airq_iv_set_ptr(zpci_ibv[cpu], bit + i,
(unsigned long)zbus->msi_parent_domain);
airq_iv_set_data(zpci_ibv[cpu], bit + i, hwirq + i);
}
} else {
airq_iv_set_ptr(zdev->aibv, bit + i,
(unsigned long)zbus->msi_parent_domain);
airq_iv_set_data(zdev->aibv, bit + i, hwirq + i);
}
}
return 0;
}
static void zpci_msi_clear_airq(struct irq_data *d, int i)
{
struct msi_desc *desc = irq_data_get_msi_desc(d);
struct zpci_dev *zdev = to_zpci_dev(desc->dev);
unsigned long bit;
unsigned int cpu;
u16 msi_index;
msi_index = zpci_decode_hwirq_msi_index(d->hwirq);
bit = zdev->msi_first_bit + msi_index;
if (irq_delivery == DIRECTED) {
for_each_possible_cpu(cpu) {
airq_iv_set_ptr(zpci_ibv[cpu], bit + i, 0);
airq_iv_set_data(zpci_ibv[cpu], bit + i, 0);
}
} else {
airq_iv_set_ptr(zdev->aibv, bit + i, 0);
airq_iv_set_data(zdev->aibv, bit + i, 0);
}
}
static void zpci_msi_domain_free(struct irq_domain *domain, unsigned int virq,
unsigned int nr_irqs)
{
struct irq_data *d;
int i;
for (i = 0; i < nr_irqs; i++) {
d = irq_domain_get_irq_data(domain, virq + i);
zpci_msi_clear_airq(d, i);
irq_domain_reset_irq_data(d);
}
}
static const struct irq_domain_ops zpci_msi_domain_ops = {
.alloc = zpci_msi_domain_alloc,
.free = zpci_msi_domain_free,
};
static bool zpci_init_dev_msi_info(struct device *dev, struct irq_domain *domain,
struct irq_domain *real_parent,
struct msi_domain_info *info)
{
if (!msi_lib_init_dev_msi_info(dev, domain, real_parent, info))
return false;
info->ops->msi_prepare = zpci_msi_prepare;
info->ops->msi_teardown = zpci_msi_teardown;
return true;
}
static struct msi_parent_ops zpci_msi_parent_ops = {
.supported_flags = MSI_GENERIC_FLAGS_MASK |
MSI_FLAG_PCI_MSIX |
MSI_FLAG_MULTI_PCI_MSI,
.required_flags = MSI_FLAG_USE_DEF_DOM_OPS |
MSI_FLAG_USE_DEF_CHIP_OPS,
.init_dev_msi_info = zpci_init_dev_msi_info,
};
int zpci_create_parent_msi_domain(struct zpci_bus *zbus)
{
char fwnode_name[18];
snprintf(fwnode_name, sizeof(fwnode_name), "ZPCI_MSI_DOM_%04x", zbus->domain_nr);
struct irq_domain_info info = {
.fwnode = irq_domain_alloc_named_fwnode(fwnode_name),
.ops = &zpci_msi_domain_ops,
};
if (!info.fwnode) {
pr_err("Failed to allocate fwnode for MSI IRQ domain\n");
return -ENOMEM;
}
if (irq_delivery == FLOATING)
zpci_msi_parent_ops.required_flags |= MSI_FLAG_NO_AFFINITY;
zbus->msi_parent_domain = msi_create_parent_irq_domain(&info, &zpci_msi_parent_ops);
if (!zbus->msi_parent_domain) {
irq_domain_free_fwnode(info.fwnode);
pr_err("Failed to create MSI IRQ domain\n");
return -ENOMEM;
}
return 0;
}
void zpci_remove_parent_msi_domain(struct zpci_bus *zbus)
{
struct fwnode_handle *fn;
fn = zbus->msi_parent_domain->fwnode;
irq_domain_remove(zbus->msi_parent_domain);
irq_domain_free_fwnode(fn);
}
static void __init cpu_enable_directed_irq(void *unused) static void __init cpu_enable_directed_irq(void *unused)
{ {
union zpci_sic_iib iib = {{0}}; union zpci_sic_iib iib = {{0}};
@ -465,6 +574,7 @@ static int __init zpci_directed_irq_init(void)
* is only done on the first vector. * is only done on the first vector.
*/ */
zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE, zpci_ibv[cpu] = airq_iv_create(cache_line_size() * BITS_PER_BYTE,
AIRQ_IV_PTR |
AIRQ_IV_DATA | AIRQ_IV_DATA |
AIRQ_IV_CACHELINE | AIRQ_IV_CACHELINE |
(!cpu ? AIRQ_IV_ALLOC : 0), NULL); (!cpu ? AIRQ_IV_ALLOC : 0), NULL);