-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE+soXsSLHKoYyzcli6rmadz2vbToFAmfcq3kACgkQ6rmadz2v
bToxkw/8DHIqjVnzU2O9hbRM1anYo6yM8e34IxCt0ajHTSEVJ93+C161QDWo/6Dk
+RNlaeGekaBUk+QOLb4u+rzZ2eR/pWSm37xuDRAiBCQ+3MgR60gGRaSljpS3IUem
0FvS6C1HObBCEUXMU2rNv/5cJB5/qrQYa9FEEjRvBTLqgQkdS7yaW/KKuZaNb+Ts
KiEeWvPrPSZXStfRGy8Wr4eS2rYhxPAikUR+xde9CM+HtMWwKTCTSp8qXrqA92Dj
Cz9ix01scznuf78QCRDZp09im3lZys8ZQprmPgMxyEscN+CDL7n68wAhmTJq0uo3
3NqIv7zBQ8wMChj0f0HjwZ0Wrj7BJAveY2Q0RterxdzT4vMKdtNkThX46ISaCoX/
XQAAhZHemK6MvBJk+LKkqqMgrD+3FAzvY7O+SCyUBAMs4FK1myRJQihdLXHGfiBU
DMDZE1jsE8qBaeUbz4LIuCy8fx2LhtVwVNwbNIBUZHdyfjxIXnQT/8Cnrgklwy2i
tnYekhAsHDQY+QDkrvJpc4E1vUtiXwSDI5ErcnWdSzctEOyVeUg7OuuGD4riCd1c
emdJmtASM1z9Ajqa1dytDxVaF6wjKlbhQgnKamuex5JLGCK6makk8ZoB+DBfKYHD
VoWummTu8ldf+Dp4ehBh7AbeF2vn4kLqcF1PLRsBO6ytJs4HIt8=
=5O7h
-----END PGP SIGNATURE-----
Merge tag 'bpf_res_spin_lock' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Pull bpf relisient spinlock support from Alexei Starovoitov:
"This patch set introduces Resilient Queued Spin Lock (or rqspinlock
with res_spin_lock() and res_spin_unlock() APIs).
This is a qspinlock variant which recovers the kernel from a stalled
state when the lock acquisition path cannot make forward progress.
This can occur when a lock acquisition attempt enters a deadlock
situation (e.g. AA, or ABBA), or more generally, when the owner of the
lock (which we’re trying to acquire) isn’t making forward progress.
Deadlock detection is the main mechanism used to provide instant
recovery, with the timeout mechanism acting as a final line of
defense. Detection is triggered immediately when beginning the waiting
loop of a lock slow path.
Additionally, BPF programs attached to different parts of the kernel
can introduce new control flow into the kernel, which increases the
likelihood of deadlocks in code not written to handle reentrancy.
There have been multiple syzbot reports surfacing deadlocks in
internal kernel code due to the diverse ways in which BPF programs can
be attached to different parts of the kernel. By switching the BPF
subsystem’s lock usage to rqspinlock, all of these issues are
mitigated at runtime.
This spin lock implementation allows BPF maps to become safer and
remove mechanisms that have fallen short in assuring safety when
nesting programs in arbitrary ways in the same context or across
different contexts.
We run benchmarks that stress locking scalability and perform
comparison against the baseline (qspinlock). For the rqspinlock case,
we replace the default qspinlock with it in the kernel, such that all
spin locks in the kernel use the rqspinlock slow path. As such,
benchmarks that stress kernel spin locks end up exercising rqspinlock.
More details in the cover letter in commit 6ffb9017e9 ("Merge branch
'resilient-queued-spin-lock'")"
* tag 'bpf_res_spin_lock' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (24 commits)
selftests/bpf: Add tests for rqspinlock
bpf: Maintain FIFO property for rqspinlock unlock
bpf: Implement verifier support for rqspinlock
bpf: Introduce rqspinlock kfuncs
bpf: Convert lpm_trie.c to rqspinlock
bpf: Convert percpu_freelist.c to rqspinlock
bpf: Convert hashtab.c to rqspinlock
rqspinlock: Add locktorture support
rqspinlock: Add entry to Makefile, MAINTAINERS
rqspinlock: Add macros for rqspinlock usage
rqspinlock: Add basic support for CONFIG_PARAVIRT
rqspinlock: Add a test-and-set fallback
rqspinlock: Add deadlock detection and recovery
rqspinlock: Protect waiters in trylock fallback from stalls
rqspinlock: Protect waiters in queue from stalls
rqspinlock: Protect pending bit owners from stalls
rqspinlock: Hardcode cond_acquire loops for arm64
rqspinlock: Add support for timeouts
rqspinlock: Drop PV and virtualization support
rqspinlock: Add rqspinlock.h header
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE+soXsSLHKoYyzcli6rmadz2vbToFAmfi6ZAACgkQ6rmadz2v
bTpLOg/+J7xUddPMhlpFAUlifQEadE5hmw6v1tXpM3zyKHzUWJiv/qsx3j8/ckgD
D+d4P8bqIbI9SSuIS4oZ0+D9pr/g7GYztnoYZmPiYJ7v2AijPuof5dsagFQE8E2y
rhfbt9KHTMzzkdkTvaAZaITS/HWAoJ2YVRB6gfLex2ghcXYHcgmtKRZniQrbBiFZ
MIXBN8Rg6HP+pUdIVllSXFcQCb3XIgjPONRAos4hr5tIm+3Ku7Jvkgk2H/9vUcoF
bdXAcg8xygyH7eY+1l3e7nEPQlG0jUZEsL+tq+vpdoLRLqlIpAUYmwUvqcmq4dPS
QGFjiUcpDbXlxsUFpzjXHIFto7fXCfND7HEICQPwAncdflIIfYaATSQUfkEexn0a
wBCFlAChrEzAmg2vFl4EeEr0fdSe/3jswrgKx0m6ctKieMjgloBUeeH4fXOpfkhS
9tvhuduVFuronlebM8ew4w9T/mBgbyxkE5KkvP4hNeB3ni3N0K6Mary5/u2HyN1e
lqTlnZxRA4p6lrvxce/mDrR4VSwlKLcSeQVjxAL1afD5KRkuZJnUv7bUhS361vkG
IjNrQX30EisDAz+X7tMn3ndBf9vVatwFT4+c3yaxlQRor1WofhDfT88HPiyB4QqQ
Kdx2EHgbQxJp4vkzhp4/OXlTfkihsMEn8egzZuphdPEQ9Y+Jdwg=
=aN/V
-----END PGP SIGNATURE-----
Merge tag 'bpf-next-6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Pull bpf updates from Alexei Starovoitov:
"For this merge window we're splitting BPF pull request into three for
higher visibility: main changes, res_spin_lock, try_alloc_pages.
These are the main BPF changes:
- Add DFA-based live registers analysis to improve verification of
programs with loops (Eduard Zingerman)
- Introduce load_acquire and store_release BPF instructions and add
x86, arm64 JIT support (Peilin Ye)
- Fix loop detection logic in the verifier (Eduard Zingerman)
- Drop unnecesary lock in bpf_map_inc_not_zero() (Eric Dumazet)
- Add kfunc for populating cpumask bits (Emil Tsalapatis)
- Convert various shell based tests to selftests/bpf/test_progs
format (Bastien Curutchet)
- Allow passing referenced kptrs into struct_ops callbacks (Amery
Hung)
- Add a flag to LSM bpf hook to facilitate bpf program signing
(Blaise Boscaccy)
- Track arena arguments in kfuncs (Ihor Solodrai)
- Add copy_remote_vm_str() helper for reading strings from remote VM
and bpf_copy_from_user_task_str() kfunc (Jordan Rome)
- Add support for timed may_goto instruction (Kumar Kartikeya
Dwivedi)
- Allow bpf_get_netns_cookie() int cgroup_skb programs (Mahe Tardy)
- Reduce bpf_cgrp_storage_busy false positives when accessing cgroup
local storage (Martin KaFai Lau)
- Introduce bpf_dynptr_copy() kfunc (Mykyta Yatsenko)
- Allow retrieving BTF data with BTF token (Mykyta Yatsenko)
- Add BPF kfuncs to set and get xattrs with 'security.bpf.' prefix
(Song Liu)
- Reject attaching programs to noreturn functions (Yafang Shao)
- Introduce pre-order traversal of cgroup bpf programs (Yonghong
Song)"
* tag 'bpf-next-6.15' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (186 commits)
selftests/bpf: Add selftests for load-acquire/store-release when register number is invalid
bpf: Fix out-of-bounds read in check_atomic_load/store()
libbpf: Add namespace for errstr making it libbpf_errstr
bpf: Add struct_ops context information to struct bpf_prog_aux
selftests/bpf: Sanitize pointer prior fclose()
selftests/bpf: Migrate test_xdp_vlan.sh into test_progs
selftests/bpf: test_xdp_vlan: Rename BPF sections
bpf: clarify a misleading verifier error message
selftests/bpf: Add selftest for attaching fexit to __noreturn functions
bpf: Reject attaching fexit/fmod_ret to __noreturn functions
bpf: Only fails the busy counter check in bpf_cgrp_storage_get if it creates storage
bpf: Make perf_event_read_output accessible in all program types.
bpftool: Using the right format specifiers
bpftool: Add -Wformat-signedness flag to detect format errors
selftests/bpf: Test freplace from user namespace
libbpf: Pass BPF token from find_prog_btf_id to BPF_BTF_GET_FD_BY_ID
bpf: Return prog btf_id without capable check
bpf: BPF token support for BPF_BTF_GET_FD_BY_ID
bpf, x86: Fix objtool warning for timed may_goto
bpf: Check map->record at the beginning of check_and_free_fields()
...
syzbot reported the following splat [0].
In check_atomic_load/store(), register validity is not checked before
atomic_ptr_type_ok(). This causes the out-of-bounds read in is_ctx_reg()
called from atomic_ptr_type_ok() when the register number is MAX_BPF_REG
or greater.
Call check_load_mem()/check_store_reg() before atomic_ptr_type_ok()
to avoid the OOB read.
However, some tests introduced by commit ff3afe5da9 ("selftests/bpf: Add
selftests for load-acquire and store-release instructions") assume
calling atomic_ptr_type_ok() before checking register validity.
Therefore the swapping of order unintentionally changes verifier messages
of these tests.
For example in the test load_acquire_from_pkt_pointer(), expected message
is 'BPF_ATOMIC loads from R2 pkt is not allowed' although actual messages
are different.
validate_msgs:FAIL:754 expect_msg
VERIFIER LOG:
=============
Global function load_acquire_from_pkt_pointer() doesn't return scalar. Only those are supported.
0: R1=ctx() R10=fp0
; asm volatile ( @ verifier_load_acquire.c:140
0: (61) r2 = *(u32 *)(r1 +0) ; R1=ctx() R2_w=pkt(r=0)
1: (d3) r0 = load_acquire((u8 *)(r2 +0))
invalid access to packet, off=0 size=1, R2(id=0,off=0,r=0)
R2 offset is outside of the packet
processed 2 insns (limit 1000000) max_states_per_insn 0 total_states 0 peak_states 0 mark_read 0
=============
EXPECTED SUBSTR: 'BPF_ATOMIC loads from R2 pkt is not allowed'
#505/19 verifier_load_acquire/load-acquire from pkt pointer:FAIL
This is because instructions in the test don't pass check_load_mem() and
therefore don't enter the atomic_ptr_type_ok() path.
In this case, we have to modify instructions so that they pass the
check_load_mem() and trigger atomic_ptr_type_ok().
Similarly for store-release tests, we need to modify instructions so that
they pass check_store_reg().
Like load_acquire_from_pkt_pointer(), modify instructions in:
load_acquire_from_sock_pointer()
store_release_to_ctx_pointer()
store_release_to_pkt_pointer()
Also in store_release_to_sock_pointer(), check_store_reg() returns error
early and atomic_ptr_type_ok() is not triggered, since write to sock
pointer is not possible in general.
We might be able to remove the test, but for now let's leave it and just
change the expected message.
[0]
BUG: KASAN: slab-out-of-bounds in is_ctx_reg kernel/bpf/verifier.c:6185 [inline]
BUG: KASAN: slab-out-of-bounds in atomic_ptr_type_ok+0x3d7/0x550 kernel/bpf/verifier.c:6223
Read of size 4 at addr ffff888141b0d690 by task syz-executor143/5842
CPU: 1 UID: 0 PID: 5842 Comm: syz-executor143 Not tainted 6.14.0-rc3-syzkaller-gf28214603dc6 #0
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0x16e/0x5b0 mm/kasan/report.c:521
kasan_report+0x143/0x180 mm/kasan/report.c:634
is_ctx_reg kernel/bpf/verifier.c:6185 [inline]
atomic_ptr_type_ok+0x3d7/0x550 kernel/bpf/verifier.c:6223
check_atomic_store kernel/bpf/verifier.c:7804 [inline]
check_atomic kernel/bpf/verifier.c:7841 [inline]
do_check+0x89dd/0xedd0 kernel/bpf/verifier.c:19334
do_check_common+0x1678/0x2080 kernel/bpf/verifier.c:22600
do_check_main kernel/bpf/verifier.c:22691 [inline]
bpf_check+0x165c8/0x1cca0 kernel/bpf/verifier.c:23821
Reported-by: syzbot+a5964227adc0f904549c@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=a5964227adc0f904549c
Tested-by: syzbot+a5964227adc0f904549c@syzkaller.appspotmail.com
Fixes: e24bbad29a8d ("bpf: Introduce load-acquire and store-release instructions")
Fixes: ff3afe5da9 ("selftests/bpf: Add selftests for load-acquire and store-release instructions")
Signed-off-by: Kohei Enju <enjuk@amazon.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20250322045340.18010-5-enjuk@amazon.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch adds struct_ops context information to struct bpf_prog_aux.
This context information will be used in the kfunc filter.
Currently the added context information includes struct_ops member
offset and a pointer to struct bpf_struct_ops.
Signed-off-by: Juntong Deng <juntong.deng@outlook.com>
Signed-off-by: Amery Hung <ameryhung@gmail.com>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://patch.msgid.link/20250319215358.2287371-2-ameryhung@gmail.com
Since out-of-order unlocks are unsupported for rqspinlock, and irqsave
variants enforce strict FIFO ordering anyway, make the same change for
normal non-irqsave variants, such that FIFO ordering is enforced.
Two new verifier state fields (active_lock_id, active_lock_ptr) are used
to denote the top of the stack, and prev_id and prev_ptr are ascertained
whenever popping the topmost entry through an unlock.
Take special care to make these fields part of the state comparison in
refsafe.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20250316040541.108729-25-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce verifier-side support for rqspinlock kfuncs. The first step is
allowing bpf_res_spin_lock type to be defined in map values and
allocated objects, so BTF-side is updated with a new BPF_RES_SPIN_LOCK
field to recognize and validate.
Any object cannot have both bpf_spin_lock and bpf_res_spin_lock, only
one of them (and at most one of them per-object, like before) must be
present. The bpf_res_spin_lock can also be used to protect objects that
require lock protection for their kfuncs, like BPF rbtree and linked
list.
The verifier plumbing to simulate success and failure cases when calling
the kfuncs is done by pushing a new verifier state to the verifier state
stack which will verify the failure case upon calling the kfunc. The
path where success is indicated creates all lock reference state and IRQ
state (if necessary for irqsave variants). In the case of failure, the
state clears the registers r0-r5, sets the return value, and skips kfunc
processing, proceeding to the next instruction.
When marking the return value for success case, the value is marked as
0, and for the failure case as [-MAX_ERRNO, -1]. Then, in the program,
whenever user checks the return value as 'if (ret)' or 'if (ret < 0)'
the verifier never traverses such branches for success cases, and would
be aware that the lock is not held in such cases.
We push the kfunc state in check_kfunc_call whenever rqspinlock kfuncs
are invoked. We introduce a kfunc_class state to avoid mixing lock
irqrestore kfuncs with IRQ state created by bpf_local_irq_save.
With all this infrastructure, these kfuncs become usable in programs
while satisfying all safety properties required by the kernel.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20250316040541.108729-24-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The current verifier error message states that tail_calls are not
allowed in non-JITed programs with BPF-to-BPF calls. While this is
accurate, it is not the only scenario where this restriction applies.
Some architectures do not support this feature combination even when
programs are JITed. This update improves the error message to better
reflect these limitations.
Suggested-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Andrea Terzolo <andreaterzolo3@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20250318083551.8192-1-andreaterzolo3@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
If we attach fexit/fmod_ret to __noreturn functions, it will cause an
issue that the bpf trampoline image will be left over even if the bpf
link has been destroyed. Take attaching do_exit() with fexit for example.
The fexit works as follows,
bpf_trampoline
+ __bpf_tramp_enter
+ percpu_ref_get(&tr->pcref);
+ call do_exit()
+ __bpf_tramp_exit
+ percpu_ref_put(&tr->pcref);
Since do_exit() never returns, the refcnt of the trampoline image is
never decremented, preventing it from being freed. That can be verified
with as follows,
$ bpftool link show <<<< nothing output
$ grep "bpf_trampoline_[0-9]" /proc/kallsyms
ffffffffc04cb000 t bpf_trampoline_6442526459 [bpf] <<<< leftover
In this patch, all functions annotated with __noreturn are rejected, except
for the following cases:
- Functions that result in a system reboot, such as panic,
machine_real_restart and rust_begin_unwind
- Functions that are never executed by tasks, such as rest_init and
cpu_startup_entry
- Functions implemented in assembly, such as rewind_stack_and_make_dead and
xen_cpu_bringup_again, lack an associated BTF ID.
With this change, attaching fexit probes to functions like do_exit() will
be rejected.
$ ./fexit
libbpf: prog 'fexit': BPF program load failed: -EINVAL
libbpf: prog 'fexit': -- BEGIN PROG LOAD LOG --
Attaching fexit/fmod_ret to __noreturn functions is rejected.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20250318114447.75484-2-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
may_goto instruction does not use any registers,
but in compute_insn_live_regs() it was treated as a regular
conditional jump of kind BPF_K with r0 as source register.
Thus unnecessarily marking r0 as used.
Fixes: 14c8552db6 ("bpf: simple DFA-based live registers analysis")
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20250305085436.2731464-1-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Compute may-live registers before each instruction in the program.
The register is live before the instruction I if it is read by I or
some instruction S following I during program execution and is not
overwritten between I and S.
This information would be used in the next patch as a hint in
func_states_equal().
Use a simple algorithm described in [1] to compute this information:
- define the following:
- I.use : a set of all registers read by instruction I;
- I.def : a set of all registers written by instruction I;
- I.in : a set of all registers that may be alive before I execution;
- I.out : a set of all registers that may be alive after I execution;
- I.successors : a set of instructions S that might immediately
follow I for some program execution;
- associate separate empty sets 'I.in' and 'I.out' with each instruction;
- visit each instruction in a postorder and update corresponding
'I.in' and 'I.out' sets as follows:
I.out = U [S.in for S in I.successors]
I.in = (I.out / I.def) U I.use
(where U stands for set union, / stands for set difference)
- repeat the computation while I.{in,out} changes for any instruction.
On implementation side keep things as simple, as possible:
- check_cfg() already marks instructions EXPLORED in post-order,
modify it to save the index of each EXPLORED instruction in a vector;
- represent I.{in,out,use,def} as bitmasks;
- don't split the program into basic blocks and don't maintain the
work queue, instead:
- do fixed-point computation by visiting each instruction;
- maintain a simple 'changed' flag if I.{in,out} for any instruction
change;
Measurements show that even such simplistic implementation does not
add measurable verification time overhead (for selftests, at-least).
Note on check_cfg() ex_insn_beg/ex_done change:
To avoid out of bounds access to env->cfg.insn_postorder array,
it should be guaranteed that instruction transitions to EXPLORED state
only once. Previously this was not the fact for incorrect programs
with direct calls to exception callbacks.
The 'align' selftest needs adjustment to skip computed insn/live
registers printout. Otherwise it matches lines from the live registers
printout.
[1] https://en.wikipedia.org/wiki/Live-variable_analysis
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20250304195024.2478889-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Refactor mark_fastcall_pattern_for_call() to extract a utility
function get_call_summary(). For a helper or kfunc call this function
fills the following information: {num_params, is_void, fastcall}.
This function would be used in the next patch in order to get number
of parameters of a helper or kfunc call.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20250304195024.2478889-3-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Extract two utility functions:
- One BPF jump instruction uses .imm field to encode jump offset,
while the rest use .off. Encapsulate this detail as jmp_offset()
function.
- Avoid duplicating instruction printing callback definitions by
defining a verbose_insn() function, which disassembles an
instruction into the verifier log while hiding this detail.
These functions will be used in the next patch.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20250304195024.2478889-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce BPF instructions with load-acquire and store-release
semantics, as discussed in [1]. Define 2 new flags:
#define BPF_LOAD_ACQ 0x100
#define BPF_STORE_REL 0x110
A "load-acquire" is a BPF_STX | BPF_ATOMIC instruction with the 'imm'
field set to BPF_LOAD_ACQ (0x100).
Similarly, a "store-release" is a BPF_STX | BPF_ATOMIC instruction with
the 'imm' field set to BPF_STORE_REL (0x110).
Unlike existing atomic read-modify-write operations that only support
BPF_W (32-bit) and BPF_DW (64-bit) size modifiers, load-acquires and
store-releases also support BPF_B (8-bit) and BPF_H (16-bit). As an
exception, however, 64-bit load-acquires/store-releases are not
supported on 32-bit architectures (to fix a build error reported by the
kernel test robot).
An 8- or 16-bit load-acquire zero-extends the value before writing it to
a 32-bit register, just like ARM64 instruction LDARH and friends.
Similar to existing atomic read-modify-write operations, misaligned
load-acquires/store-releases are not allowed (even if
BPF_F_ANY_ALIGNMENT is set).
As an example, consider the following 64-bit load-acquire BPF
instruction (assuming little-endian):
db 10 00 00 00 01 00 00 r0 = load_acquire((u64 *)(r1 + 0x0))
opcode (0xdb): BPF_ATOMIC | BPF_DW | BPF_STX
imm (0x00000100): BPF_LOAD_ACQ
Similarly, a 16-bit BPF store-release:
cb 21 00 00 10 01 00 00 store_release((u16 *)(r1 + 0x0), w2)
opcode (0xcb): BPF_ATOMIC | BPF_H | BPF_STX
imm (0x00000110): BPF_STORE_REL
In arch/{arm64,s390,x86}/net/bpf_jit_comp.c, have
bpf_jit_supports_insn(..., /*in_arena=*/true) return false for the new
instructions, until the corresponding JIT compiler supports them in
arena.
[1] https://lore.kernel.org/all/20240729183246.4110549-1-yepeilin@google.com/
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: kernel test robot <lkp@intel.com>
Signed-off-by: Peilin Ye <yepeilin@google.com>
Link: https://lore.kernel.org/r/a217f46f0e445fbd573a1a024be5c6bf1d5fe716.1741049567.git.yepeilin@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Implement support in the verifier for replacing may_goto implementation
from a counter-based approach to one which samples time on the local CPU
to have a bigger loop bound.
We implement it by maintaining 16-bytes per-stack frame, and using 8
bytes for maintaining the count for amortizing time sampling, and 8
bytes for the starting timestamp. To minimize overhead, we need to avoid
spilling and filling of registers around this sequence, so we push this
cost into the time sampling function 'arch_bpf_timed_may_goto'. This is
a JIT-specific wrapper around bpf_check_timed_may_goto which returns us
the count to store into the stack through BPF_REG_AX. All caller-saved
registers (r0-r5) are guaranteed to remain untouched.
The loop can be broken by returning count as 0, otherwise we dispatch
into the function when the count drops to 0, and the runtime chooses to
refresh it (by returning count as BPF_MAX_TIMED_LOOPS) or returning 0
and aborting the loop on next iteration.
Since the check for 0 is done right after loading the count from the
stack, all subsequent cond_break sequences should immediately break as
well, of the same loop or subsequent loops in the program.
We pass in the stack_depth of the count (and thus the timestamp, by
adding 8 to it) to the arch_bpf_timed_may_goto call so that it can be
passed in to bpf_check_timed_may_goto as an argument after r1 is saved,
by adding the offset to r10/fp. This adjustment will be arch specific,
and the next patch will introduce support for x86.
Note that depending on loop complexity, time spent in the loop can be
more than the current limit (250 ms), but imposing an upper bound on
program runtime is an orthogonal problem which will be addressed when
program cancellations are supported.
The current time afforded by cond_break may not be enough for cases
where BPF programs want to implement locking algorithms inline, and use
cond_break as a promise to the verifier that they will eventually
terminate.
Below are some benchmarking numbers on the time taken per-iteration for
an empty loop that counts the number of iterations until cond_break
fires. For comparison, we compare it against bpf_for/bpf_repeat which is
another way to achieve the same number of spins (BPF_MAX_LOOPS). The
hardware used for benchmarking was a Sapphire Rapids Intel server with
performance governor enabled, mitigations were enabled.
+-----------------------------+--------------+--------------+------------------+
| Loop type | Iterations | Time (ms) | Time/iter (ns) |
+-----------------------------|--------------+--------------+------------------+
| may_goto | 8388608 | 3 | 0.36 |
| timed_may_goto (count=65535)| 589674932 | 250 | 0.42 |
| bpf_for | 8388608 | 10 | 1.19 |
+-----------------------------+--------------+--------------+------------------+
This gives a good approximation at low overhead while staying close to
the current implementation.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20250304003239.2390751-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Extract BPF_LDX and most non-ATOMIC BPF_STX instruction handling logic
in do_check() into helper functions to be used later. While we are
here, make that comment about "reserved fields" more specific.
Suggested-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Peilin Ye <yepeilin@google.com>
Link: https://lore.kernel.org/r/8b39c94eac2bb7389ff12392ca666f939124ec4f.1740978603.git.yepeilin@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, check_atomic() only handles atomic read-modify-write (RMW)
instructions. Since we are planning to introduce other types of atomic
instructions (i.e., atomic load/store), extract the existing RMW
handling logic into its own function named check_atomic_rmw().
Remove the @insn_idx parameter as it is not really necessary. Use
'env->insn_idx' instead, as in other places in verifier.c.
Signed-off-by: Peilin Ye <yepeilin@google.com>
Link: https://lore.kernel.org/r/6323ac8e73a10a1c8ee547c77ed68cf8eb6b90e1.1740978603.git.yepeilin@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The verifier currently does not permit global subprog calls when a lock
is held, preemption is disabled, or when IRQs are disabled. This is
because we don't know whether the global subprog calls sleepable
functions or not.
In case of locks, there's an additional reason: functions called by the
global subprog may hold additional locks etc. The verifier won't know
while verifying the global subprog whether it was called in context
where a spin lock is already held by the program.
Perform summarization of the sleepable nature of a global subprog just
like changes_pkt_data and then allow calls to global subprogs for
non-sleepable ones from atomic context.
While making this change, I noticed that RCU read sections had no
protection against sleepable global subprog calls, include it in the
checks and fix this while we're at it.
Care needs to be taken to not allow global subprog calls when regular
bpf_spin_lock is held. When resilient spin locks is held, we want to
potentially have this check relaxed, but not for now.
Also make sure extensions freplacing global functions cannot do so
in case the target is non-sleepable, but the extension is. The other
combination is ok.
Tests are included in the next patch to handle all special conditions.
Fixes: 9bb00b2895 ("bpf: Add kfunc bpf_rcu_read_lock/unlock()")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20250301151846.1552362-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Due to this recent commit in the x86 tree:
9d7de2aa8b ("Use relative percpu offsets")
percpu addresses went from positive offsets from the GSBASE to negative
kernel virtual addresses. The BPF verifier has an optimization for
x86-64 that loads the address of cpu_number into a register, but was only
doing a 32-bit load which truncates negative addresses.
Change it to a 64-bit load so that the address is properly sign-extended.
Fixes: 9d7de2aa8b ("Use relative percpu offsets")
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Uros Bizjak <ubizjak@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250227195302.1667654-1-brgerst@gmail.com
Currently, add_kfunc_call() is only invoked once before the main
verification loop. Therefore, the verifier could not find the
bpf_kfunc_btf_tab of a new kfunc call which is not seen in user defined
struct_ops operators but introduced in gen_prologue or gen_epilogue
during do_misc_fixup(). Fix this by searching kfuncs in the patching
instruction buffer and add them to prog->aux->kfunc_tab.
Signed-off-by: Amery Hung <amery.hung@bytedance.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20250225233545.285481-1-ameryhung@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reduce the variable passing madness surrounding check_ctx_access().
Currently, check_mem_access() passes many pointers to local variables to
check_ctx_access(). They are used to initialize "struct
bpf_insn_access_aux info" in check_ctx_access() and then passed to
is_valid_access(). Then, check_ctx_access() takes the data our from
info and write them back the pointers to pass them back. This can be
simpilified by moving info up to check_mem_access().
No functional change.
Signed-off-by: Amery Hung <ameryhung@gmail.com>
Link: https://lore.kernel.org/r/20250221175644.1822383-1-ameryhung@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reject struct_ops programs with refcounted kptr arguments (arguments
tagged with __ref suffix) that tail call. Once a refcounted kptr is
passed to a struct_ops program from the kernel, it can be freed or
xchged into maps. As there is no guarantee a callee can get the same
valid refcounted kptr in the ctx, we cannot allow such usage.
Signed-off-by: Amery Hung <ameryhung@gmail.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20250220221532.1079331-1-ameryhung@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Compute env->peak_states as a maximum value of sum of
env->explored_states and env->free_list size.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20250215110411.3236773-11-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When fixes from patches 1 and 3 are applied, Patrick Somaru reported
an increase in memory consumption for sched_ext iterator-based
programs hitting 1M instructions limit. For example, 2Gb VMs ran out
of memory while verifying a program. Similar behaviour could be
reproduced on current bpf-next master.
Here is an example of such program:
/* verification completes if given 16G or RAM,
* final env->free_list size is 369,960 entries.
*/
SEC("raw_tp")
__flag(BPF_F_TEST_STATE_FREQ)
__success
int free_list_bomb(const void *ctx)
{
volatile char buf[48] = {};
unsigned i, j;
j = 0;
bpf_for(i, 0, 10) {
/* this forks verifier state:
* - verification of current path continues and
* creates a checkpoint after 'if';
* - verification of forked path hits the
* checkpoint and marks it as loop_entry.
*/
if (bpf_get_prandom_u32())
asm volatile ("");
/* this marks 'j' as precise, thus any checkpoint
* created on current iteration would not be matched
* on the next iteration.
*/
buf[j++] = 42;
j %= ARRAY_SIZE(buf);
}
asm volatile (""::"r"(buf));
return 0;
}
Memory consumption increased due to more states being marked as loop
entries and eventually added to env->free_list.
This commit introduces logic to free states from env->free_list during
verification. A state in env->free_list can be freed if:
- it has no child states;
- it is not used as a loop_entry.
This commit:
- updates bpf_verifier_state->used_as_loop_entry to be a counter
that tracks how many states use this one as a loop entry;
- adds a function maybe_free_verifier_state(), which:
- frees a state if its ->branches and ->used_as_loop_entry counters
are both zero;
- if the state is freed, state->loop_entry->used_as_loop_entry is
decremented, and an attempt is made to free state->loop_entry.
In the example above, this approach reduces the maximum number of
states in the free list from 369,960 to 16,223.
However, this approach has its limitations. If the buf size in the
example above is modified to 64, state caching overflows: the state
for j=0 is evicted from the cache before it can be used to stop
traversal. As a result, states in the free list accumulate because
their branch counters do not reach zero.
The effect of this patch on the selftests looks as follows:
File Program Max free list (A) Max free list (B) Max free list (DIFF)
-------------------------------- ------------------------------------ ----------------- ----------------- --------------------
arena_list.bpf.o arena_list_add 17 3 -14 (-82.35%)
bpf_iter_task_stack.bpf.o dump_task_stack 39 9 -30 (-76.92%)
iters.bpf.o checkpoint_states_deletion 265 89 -176 (-66.42%)
iters.bpf.o clean_live_states 19 0 -19 (-100.00%)
profiler2.bpf.o tracepoint__syscalls__sys_enter_kill 102 1 -101 (-99.02%)
profiler3.bpf.o tracepoint__syscalls__sys_enter_kill 144 0 -144 (-100.00%)
pyperf600_iter.bpf.o on_event 15 0 -15 (-100.00%)
pyperf600_nounroll.bpf.o on_event 1170 1158 -12 (-1.03%)
setget_sockopt.bpf.o skops_sockopt 18 0 -18 (-100.00%)
strobemeta_nounroll1.bpf.o on_event 147 83 -64 (-43.54%)
strobemeta_nounroll2.bpf.o on_event 312 209 -103 (-33.01%)
strobemeta_subprogs.bpf.o on_event 124 86 -38 (-30.65%)
test_cls_redirect_subprogs.bpf.o cls_redirect 15 0 -15 (-100.00%)
timer.bpf.o test1 30 15 -15 (-50.00%)
Measured using "do-not-submit" patches from here:
https://github.com/eddyz87/bpf/tree/get-loop-entry-hungup
Reported-by: Patrick Somaru <patsomaru@meta.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20250215110411.3236773-10-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The next patch in the set needs the ability to remove individual
states from env->free_list while only holding a pointer to the state.
Which requires env->free_list to be a doubly linked list.
This patch converts env->free_list and struct bpf_verifier_state_list
to use struct list_head for this purpose. The change to
env->explored_states is collateral.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20250215110411.3236773-9-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The patch 9 is simpler if less places modify loop_entry field.
The loop deleted by this patch does not affect correctness, but is a
performance optimization. However, measurements on selftests and
sched_ext programs show that this optimization is unnecessary:
- at most 2 steps are done in get_loop_entry();
- most of the time 0 or 1 steps are done in get_loop_entry().
Measured using "do-not-submit" patches from here:
https://github.com/eddyz87/bpf/tree/get-loop-entry-hungup
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20250215110411.3236773-8-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For a generic loop detection algorithm a graph node can be a loop
header for itself. However, state loop entries are computed for use in
is_state_visited(), where get_loop_entry(state)->branches is checked.
is_state_visited() also checks state->branches, thus the case when
state == state->loop_entry is not interesting for is_state_visited().
This change does not affect correctness, but simplifies
get_loop_entry() a bit and also simplifies change to
update_loop_entry() in patch 9.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20250215110411.3236773-7-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tejun Heo reported an infinite loop in get_loop_entry(),
when verifying a sched_ext program layered_dispatch in [1].
After some investigation I'm sure that root cause is fixed by patches
1,3 in this patch-set.
To err on the safe side, this commit modifies get_loop_entry() to
detect infinite loops and abort verification in such cases.
The number of steps get_loop_entry(S) can make while moving along the
bpf_verifier_state->loop_entry chain is bounded by the DFS depth of
state S. This fact is exploited to implement the check.
To avoid dealing with the potential error code returned from
get_loop_entry() in update_loop_entry(), remove the get_loop_entry()
calls there:
- This change does not affect correctness. Loop entries would still be
updated during the backward DFS move in update_branch_counts().
- This change does not affect performance. Measurements show that
get_loop_entry() performs at most 1 step on selftests and at most 2
steps on sched_ext programs (1 step in 17 cases, 2 steps in 3
cases, measured using "do-not-submit" patches from [2]).
[1] https://github.com/sched-ext/scx/
commit f0b27038ea10 ("XXX - kernel stall")
[2] https://github.com/eddyz87/bpf/tree/get-loop-entry-hungup
Reported-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20250215110411.3236773-6-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Allow a struct_ops program to return a referenced kptr if the struct_ops
operator's return type is a struct pointer. To make sure the returned
pointer continues to be valid in the kernel, several constraints are
required:
1) The type of the pointer must matches the return type
2) The pointer originally comes from the kernel (not locally allocated)
3) The pointer is in its unmodified form
Implementation wise, a referenced kptr first needs to be allowed to _leak_
in check_reference_leak() if it is in the return register. Then, in
check_return_code(), constraints 1-3 are checked. During struct_ops
registration, a check is also added to warn about operators with
non-struct pointer return.
In addition, since the first user, Qdisc_ops::dequeue, allows a NULL
pointer to be returned when there is no skb to be dequeued, we will allow
a scalar value with value equals to NULL to be returned.
In the future when there is a struct_ops user that always expects a valid
pointer to be returned from an operator, we may extend tagging to the
return value. We can tell the verifier to only allow NULL pointer return
if the return value is tagged with MAY_BE_NULL.
Signed-off-by: Amery Hung <amery.hung@bytedance.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20250217190640.1748177-5-ameryhung@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Allows struct_ops programs to acqurie referenced kptrs from arguments
by directly reading the argument.
The verifier will acquire a reference for struct_ops a argument tagged
with "__ref" in the stub function in the beginning of the main program.
The user will be able to access the referenced kptr directly by reading
the context as long as it has not been released by the program.
This new mechanism to acquire referenced kptr (compared to the existing
"kfunc with KF_ACQUIRE") is introduced for ergonomic and semantic reasons.
In the first use case, Qdisc_ops, an skb is passed to .enqueue in the
first argument. This mechanism provides a natural way for users to get a
referenced kptr in the .enqueue struct_ops programs and makes sure that a
qdisc will always enqueue or drop the skb.
Signed-off-by: Amery Hung <amery.hung@bytedance.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20250217190640.1748177-3-ameryhung@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, ctx_arg_info is read-only in the view of the verifier since
it is shared among programs of the same attach type. Make each program
have their own copy of ctx_arg_info so that we can use it to store
program specific information.
In the next patch where we support acquiring a referenced kptr through a
struct_ops argument tagged with "__ref", ctx_arg_info->ref_obj_id will
be used to store the unique reference object id of the argument. This
avoids creating a requirement in the verifier that "__ref" tagged
arguments must be the first set of references acquired [0].
[0] https://lore.kernel.org/bpf/20241220195619.2022866-2-amery.hung@gmail.com/
Signed-off-by: Amery Hung <ameryhung@gmail.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20250217190640.1748177-2-ameryhung@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
may_goto uses an additional 8 bytes on the stack, which causes the
interpreters[] array to go out of bounds when calculating index by
stack_size.
1. If a BPF program is rewritten, re-evaluate the stack size. For non-JIT
cases, reject loading directly.
2. For non-JIT cases, calculating interpreters[idx] may still cause
out-of-bounds array access, and just warn about it.
3. For jit_requested cases, the execution of bpf_func also needs to be
warned. So move the definition of function __bpf_prog_ret0_warn out of
the macro definition CONFIG_BPF_JIT_ALWAYS_ON.
Reported-by: syzbot+d2a2c639d03ac200a4f1@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/bpf/0000000000000f823606139faa5d@google.com/
Fixes: 011832b97b ("bpf: Introduce may_goto instruction")
Signed-off-by: Jiayuan Chen <mrpre@163.com>
Link: https://lore.kernel.org/r/20250214091823.46042-2-mrpre@163.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add the following kfuncs to set and remove xattrs from BPF programs:
bpf_set_dentry_xattr
bpf_remove_dentry_xattr
bpf_set_dentry_xattr_locked
bpf_remove_dentry_xattr_locked
The _locked version of these kfuncs are called from hooks where
dentry->d_inode is already locked. Instead of requiring the user
to know which version of the kfuncs to use, the verifier will pick
the proper kfunc based on the calling hook.
Signed-off-by: Song Liu <song@kernel.org>
Acked-by: Christian Brauner <brauner@kernel.org>
Reviewed-by: Matt Bobrowski <mattbobrowski@google.com>
Link: https://lore.kernel.org/r/20250130213549.3353349-5-song@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The acquire_lock_state function needs to handle possible NULL values
returned by acquire_reference_state, and return -ENOMEM.
Fixes: 769b0f1c82 ("bpf: Refactor {acquire,release}_reference_state")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20250206105435.2159977-24-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Refactor get_constant_map_key() to disambiguate the constant key
value from potential error values. In the case that the key is
negative, it could be confused for an error.
It's not currently an issue, as the verifier seems to track s32 spills
as u32. So even if the program wrongly uses a negative value for an
arraymap key, the verifier just thinks it's an impossibly high value
which gets correctly discarded.
Refactor anyways to make things cleaner and prevent potential future
issues.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Link: https://lore.kernel.org/r/dfe144259ae7cfc98aa63e1b388a14869a10632a.1738689872.git.dxu@dxuuu.xyz
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Previously, we were trying to extract constant map keys for all
bpf_map_lookup_elem(), regardless of map type. This is an issue if the
map has a u64 key and the value is very high, as it can be interpreted
as a negative signed value. This in turn is treated as an error value by
check_func_arg() which causes a valid program to be incorrectly
rejected.
Fix by only extracting constant map keys for relevant maps. This fix
works because nullness elision is only allowed for {PERCPU_}ARRAY maps,
and keys for these are within u32 range. See next commit for an example
via selftest.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Reported-by: Marc Hartmayer <mhartmay@linux.ibm.com>
Reported-by: Ilya Leoshkevich <iii@linux.ibm.com>
Tested-by: Marc Hartmayer <mhartmay@linux.ibm.com>
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Link: https://lore.kernel.org/r/aa868b642b026ff87ba6105ea151bc8693b35932.1738689872.git.dxu@dxuuu.xyz
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE+soXsSLHKoYyzcli6rmadz2vbToFAmeOu1YACgkQ6rmadz2v
bTrrHxAAn6eqEsluWnDlzhI0OGsPjvgS00sf+MOeqiXYeS2eJ8yJuKifp38+nIQZ
lIplsWU2ReUY20eizPqLPnQ7TXZGvLgp08E8yHUoZ0siWanqr9iDRfbZCCNrDMNm
lMqeR1SLapMws2R/UX9JbvPn2ajIJ6Lb4wxenTfdlW6q+0hAGM6Dt0k/jBod+quq
/oo+xwG3L0q4APBovJfiAFN2z6IYN03b+zLiOrpIJtMACGewEXnl3m4mkL8ZM/FV
nZGPIxIUPXCpKTGEkNqxfkrnHN2wZQ4ZSKEJ6lhEEp4jrgCVITaGZ/E7jlx6fZoj
bbd4YMonIPo9Nhim8p1dt8yYBhKKiE5IXIq0GqlMv5+MvAN8ylrlydpsouW1fu66
hZ1W1BxbxmrgyF0Bwo9JPOMhBHwMrmD6iH9LgiMpZf0ASeF+q9cJpoSOU5j5E9XB
LpLIRf5jYTd4wZjhDmrQREReLo+Bng9DlCBu+jjh2+YTz6l6Qed+ETpENcd7lL5i
IHZVbgD2RVPNJoUfdrd763HfYfDTk+50MF5FIMEyfKHz11if0E/LhBMzto22hm6b
2f8ruj/8yvg8s2dxEP3ySQgcnynlwEnGxLenUVv7uEOYKeWri1rq+fvTK5ne1OLK
oHnTlkViwQb74c0r8cFW+nkyfUYTfhhBAql14rl/fMjGDO2KZ10=
=f2CA
-----END PGP SIGNATURE-----
Merge tag 'bpf-next-6.14' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Pull bpf updates from Alexei Starovoitov:
"A smaller than usual release cycle.
The main changes are:
- Prepare selftest to run with GCC-BPF backend (Ihor Solodrai)
In addition to LLVM-BPF runs the BPF CI now runs GCC-BPF in compile
only mode. Half of the tests are failing, since support for
btf_decl_tag is still WIP, but this is a great milestone.
- Convert various samples/bpf to selftests/bpf/test_progs format
(Alexis Lothoré and Bastien Curutchet)
- Teach verifier to recognize that array lookup with constant
in-range index will always succeed (Daniel Xu)
- Cleanup migrate disable scope in BPF maps (Hou Tao)
- Fix bpf_timer destroy path in PREEMPT_RT (Hou Tao)
- Always use bpf_mem_alloc in bpf_local_storage in PREEMPT_RT (Martin
KaFai Lau)
- Refactor verifier lock support (Kumar Kartikeya Dwivedi)
This is a prerequisite for upcoming resilient spin lock.
- Remove excessive 'may_goto +0' instructions in the verifier that
LLVM leaves when unrolls the loops (Yonghong Song)
- Remove unhelpful bpf_probe_write_user() warning message (Marco
Elver)
- Add fd_array_cnt attribute for prog_load command (Anton Protopopov)
This is a prerequisite for upcoming support for static_branch"
* tag 'bpf-next-6.14' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (125 commits)
selftests/bpf: Add some tests related to 'may_goto 0' insns
bpf: Remove 'may_goto 0' instruction in opt_remove_nops()
bpf: Allow 'may_goto 0' instruction in verifier
selftests/bpf: Add test case for the freeing of bpf_timer
bpf: Cancel the running bpf_timer through kworker for PREEMPT_RT
bpf: Free element after unlock in __htab_map_lookup_and_delete_elem()
bpf: Bail out early in __htab_map_lookup_and_delete_elem()
bpf: Free special fields after unlock in htab_lru_map_delete_node()
tools: Sync if_xdp.h uapi tooling header
libbpf: Work around kernel inconsistently stripping '.llvm.' suffix
bpf: selftests: verifier: Add nullness elision tests
bpf: verifier: Support eliding map lookup nullness
bpf: verifier: Refactor helper access type tracking
bpf: tcp: Mark bpf_load_hdr_opt() arg2 as read-write
bpf: verifier: Add missing newline on verbose() call
selftests/bpf: Add distilled BTF test about marking BTF_IS_EMBEDDED
libbpf: Fix incorrect traversal end type ID when marking BTF_IS_EMBEDDED
libbpf: Fix return zero when elf_begin failed
selftests/bpf: Fix btf leak on new btf alloc failure in btf_distill test
veristat: Load struct_ops programs only once
...
Since 'may_goto 0' insns are actually no-op, let us remove them.
Otherwise, verifier will generate code like
/* r10 - 8 stores the implicit loop count */
r11 = *(u64 *)(r10 -8)
if r11 == 0x0 goto pc+2
r11 -= 1
*(u64 *)(r10 -8) = r11
which is the pure overhead.
The following code patterns (from the previous commit) are also
handled:
may_goto 2
may_goto 1
may_goto 0
With this commit, the above three 'may_goto' insns are all
eliminated.
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20250118192029.2124584-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Commit 011832b97b ("bpf: Introduce may_goto instruction") added support
for may_goto insn. The 'may_goto 0' insn is disallowed since the insn is
equivalent to a nop as both branch will go to the next insn.
But it is possible that compiler transformation may generate 'may_goto 0'
insn. Emil Tsalapatis from Meta reported such a case which caused
verification failure. For example, for the following code,
int i, tmp[3];
for (i = 0; i < 3 && can_loop; i++)
tmp[i] = 0;
...
clang 20 may generate code like
may_goto 2;
may_goto 1;
may_goto 0;
r1 = 0; /* tmp[0] = 0; */
r2 = 0; /* tmp[1] = 0; */
r3 = 0; /* tmp[2] = 0; */
Let us permit 'may_goto 0' insn to avoid verification failure for codes
like the above.
Reported-by: Emil Tsalapatis <etsal@meta.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/r/20250118192024.2124059-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This commit allows progs to elide a null check on statically known map
lookup keys. In other words, if the verifier can statically prove that
the lookup will be in-bounds, allow the prog to drop the null check.
This is useful for two reasons:
1. Large numbers of nullness checks (especially when they cannot fail)
unnecessarily pushes prog towards BPF_COMPLEXITY_LIMIT_JMP_SEQ.
2. It forms a tighter contract between programmer and verifier.
For (1), bpftrace is starting to make heavier use of percpu scratch
maps. As a result, for user scripts with large number of unrolled loops,
we are starting to hit jump complexity verification errors. These
percpu lookups cannot fail anyways, as we only use static key values.
Eliding nullness probably results in less work for verifier as well.
For (2), percpu scratch maps are often used as a larger stack, as the
currrent stack is limited to 512 bytes. In these situations, it is
desirable for the programmer to express: "this lookup should never fail,
and if it does, it means I messed up the code". By omitting the null
check, the programmer can "ask" the verifier to double check the logic.
Tests also have to be updated in sync with these changes, as the
verifier is more efficient with this change. Notable, iters.c tests had
to be changed to use a map type that still requires null checks, as it's
exercising verifier tracking logic w.r.t iterators.
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Link: https://lore.kernel.org/r/68f3ea96ff3809a87e502a11a4bd30177fc5823e.1736886479.git.dxu@dxuuu.xyz
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Previously, the verifier was treating all PTR_TO_STACK registers passed
to a helper call as potentially written to by the helper. However, all
calls to check_stack_range_initialized() already have precise access type
information available.
Rather than treat ACCESS_HELPER as a proxy for BPF_WRITE, pass
enum bpf_access_type to check_stack_range_initialized() to more
precisely track helper arguments.
One benefit from this precision is that registers tracked as valid
spills and passed as a read-only helper argument remain tracked after
the call. Rather than being marked STACK_MISC afterwards.
An additional benefit is the verifier logs are also more precise. For
this particular error, users will enjoy a slightly clearer message. See
included selftest updates for examples.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Link: https://lore.kernel.org/r/ff885c0e5859e0cd12077c3148ff0754cad4f7ed.1736886479.git.dxu@dxuuu.xyz
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add the bpf_iter_num_* kfuncs called by bpf_for in special_kfunc_list,
and allow the calls even while holding a spin lock.
Signed-off-by: Emil Tsalapatis (Meta) <emil@etsalapatis.com>
Reviewed-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20250104202528.882482-2-emil@etsalapatis.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch improves (or maintains) the precision of register value tracking
in BPF_MUL across all possible inputs. It also simplifies
scalar32_min_max_mul() and scalar_min_max_mul().
As it stands, BPF_MUL is composed of three functions:
case BPF_MUL:
tnum_mul();
scalar32_min_max_mul();
scalar_min_max_mul();
The current implementation of scalar_min_max_mul() restricts the u64 input
ranges of dst_reg and src_reg to be within [0, U32_MAX]:
/* Both values are positive, so we can work with unsigned and
* copy the result to signed (unless it exceeds S64_MAX).
*/
if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
/* Potential overflow, we know nothing */
__mark_reg64_unbounded(dst_reg);
return;
}
This restriction is done to avoid unsigned overflow, which could otherwise
wrap the result around 0, and leave an unsound output where umin > umax. We
also observe that limiting these u64 input ranges to [0, U32_MAX] leads to
a loss of precision. Consider the case where the u64 bounds of dst_reg are
[0, 2^34] and the u64 bounds of src_reg are [0, 2^2]. While the
multiplication of these two bounds doesn't overflow and is sound [0, 2^36],
the current scalar_min_max_mul() would set the entire register state to
unbounded.
Importantly, we update BPF_MUL to allow signed bound multiplication
(i.e. multiplying negative bounds) as well as allow u64 inputs to take on
values from [0, U64_MAX]. We perform signed multiplication on two bounds
[a,b] and [c,d] by multiplying every combination of the bounds
(i.e. a*c, a*d, b*c, and b*d) and checking for overflow of each product. If
there is an overflow, we mark the signed bounds unbounded [S64_MIN, S64_MAX].
In the case of no overflow, we take the minimum of these products to
be the resulting smin, and the maximum to be the resulting smax.
The key idea here is that if there’s no possibility of overflow, either
when multiplying signed bounds or unsigned bounds, we can safely multiply the
respective bounds; otherwise, we set the bounds that exhibit overflow
(during multiplication) to unbounded.
if (check_mul_overflow(*dst_umax, src_reg->umax_value, dst_umax) ||
(check_mul_overflow(*dst_umin, src_reg->umin_value, dst_umin))) {
/* Overflow possible, we know nothing */
*dst_umin = 0;
*dst_umax = U64_MAX;
}
...
Below, we provide an example BPF program (below) that exhibits the
imprecision in the current BPF_MUL, where the outputs are all unbounded. In
contrast, the updated BPF_MUL produces a bounded register state:
BPF_LD_IMM64(BPF_REG_1, 11),
BPF_LD_IMM64(BPF_REG_2, 4503599627370624),
BPF_ALU64_IMM(BPF_NEG, BPF_REG_2, 0),
BPF_ALU64_IMM(BPF_NEG, BPF_REG_2, 0),
BPF_ALU64_REG(BPF_AND, BPF_REG_1, BPF_REG_2),
BPF_LD_IMM64(BPF_REG_3, 809591906117232263),
BPF_ALU64_REG(BPF_MUL, BPF_REG_3, BPF_REG_1),
BPF_MOV64_IMM(BPF_REG_0, 1),
BPF_EXIT_INSN(),
Verifier log using the old BPF_MUL:
func#0 @0
0: R1=ctx() R10=fp0
0: (18) r1 = 0xb ; R1_w=11
2: (18) r2 = 0x10000000000080 ; R2_w=0x10000000000080
4: (87) r2 = -r2 ; R2_w=scalar()
5: (87) r2 = -r2 ; R2_w=scalar()
6: (5f) r1 &= r2 ; R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=11,var_off=(0x0; 0xb)) R2_w=scalar()
7: (18) r3 = 0xb3c3f8c99262687 ; R3_w=0xb3c3f8c99262687
9: (2f) r3 *= r1 ; R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=11,var_off=(0x0; 0xb)) R3_w=scalar()
...
Verifier using the new updated BPF_MUL (more precise bounds at label 9)
func#0 @0
0: R1=ctx() R10=fp0
0: (18) r1 = 0xb ; R1_w=11
2: (18) r2 = 0x10000000000080 ; R2_w=0x10000000000080
4: (87) r2 = -r2 ; R2_w=scalar()
5: (87) r2 = -r2 ; R2_w=scalar()
6: (5f) r1 &= r2 ; R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=11,var_off=(0x0; 0xb)) R2_w=scalar()
7: (18) r3 = 0xb3c3f8c99262687 ; R3_w=0xb3c3f8c99262687
9: (2f) r3 *= r1 ; R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=11,var_off=(0x0; 0xb)) R3_w=scalar(smin=0,smax=umax=0x7b96bb0a94a3a7cd,var_off=(0x0; 0x7fffffffffffffff))
...
Finally, we proved the soundness of the new scalar_min_max_mul() and
scalar32_min_max_mul() functions. Typically, multiplication operations are
expensive to check with bitvector-based solvers. We were able to prove the
soundness of these functions using Non-Linear Integer Arithmetic (NIA)
theory. Additionally, using Agni [2,3], we obtained the encodings for
scalar32_min_max_mul() and scalar_min_max_mul() in bitvector theory, and
were able to prove their soundness using 8-bit bitvectors (instead of
64-bit bitvectors that the functions actually use).
In conclusion, with this patch,
1. We were able to show that we can improve the overall precision of
BPF_MUL. We proved (using an SMT solver) that this new version of
BPF_MUL is at least as precise as the current version for all inputs
and more precise for some inputs.
2. We are able to prove the soundness of the new scalar_min_max_mul() and
scalar32_min_max_mul(). By leveraging the existing proof of tnum_mul
[1], we can say that the composition of these three functions within
BPF_MUL is sound.
[1] https://ieeexplore.ieee.org/abstract/document/9741267
[2] https://link.springer.com/chapter/10.1007/978-3-031-37709-9_12
[3] https://people.cs.rutgers.edu/~sn349/papers/sas24-preprint.pdf
Co-developed-by: Harishankar Vishwanathan <harishankar.vishwanathan@gmail.com>
Signed-off-by: Harishankar Vishwanathan <harishankar.vishwanathan@gmail.com>
Co-developed-by: Srinivas Narayana <srinivas.narayana@rutgers.edu>
Signed-off-by: Srinivas Narayana <srinivas.narayana@rutgers.edu>
Co-developed-by: Santosh Nagarakatte <santosh.nagarakatte@rutgers.edu>
Signed-off-by: Santosh Nagarakatte <santosh.nagarakatte@rutgers.edu>
Signed-off-by: Matan Shachnai <m.shachnai@gmail.com>
Link: https://lore.kernel.org/r/20241218032337.12214-2-m.shachnai@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
On x86-64 calling bpf_get_smp_processor_id() in a kernel with CONFIG_SMP
disabled can trigger the following bug, as pcpu_hot is unavailable:
[ 8.471774] BUG: unable to handle page fault for address: 00000000936a290c
[ 8.471849] #PF: supervisor read access in kernel mode
[ 8.471881] #PF: error_code(0x0000) - not-present page
Fix by inlining a return 0 in the !CONFIG_SMP case.
Fixes: 1ae6921009 ("bpf: inline bpf_get_smp_processor_id() helper")
Signed-off-by: Andrea Righi <arighi@nvidia.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241217195813.622568-1-arighi@nvidia.com
This patch reverts commit
cb4158ce8e ("bpf: Mark raw_tp arguments with PTR_MAYBE_NULL"). The
patch was well-intended and meant to be as a stop-gap fixing branch
prediction when the pointer may actually be NULL at runtime. Eventually,
it was supposed to be replaced by an automated script or compiler pass
detecting possibly NULL arguments and marking them accordingly.
However, it caused two main issues observed for production programs and
failed to preserve backwards compatibility. First, programs relied on
the verifier not exploring == NULL branch when pointer is not NULL, thus
they started failing with a 'dereference of scalar' error. Next,
allowing raw_tp arguments to be modified surfaced the warning in the
verifier that warns against reg->off when PTR_MAYBE_NULL is set.
More information, context, and discusson on both problems is available
in [0]. Overall, this approach had several shortcomings, and the fixes
would further complicate the verifier's logic, and the entire masking
scheme would have to be removed eventually anyway.
Hence, revert the patch in preparation of a better fix avoiding these
issues to replace this commit.
[0]: https://lore.kernel.org/bpf/20241206161053.809580-1-memxor@gmail.com
Reported-by: Manu Bretelle <chantra@meta.com>
Fixes: cb4158ce8e ("bpf: Mark raw_tp arguments with PTR_MAYBE_NULL")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241213221929.3495062-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
These BTF functions are not available unconditionally,
only reference them when they are available.
Avoid the following build warnings:
BTF .tmp_vmlinux1.btf.o
btf_encoder__tag_kfunc: failed to find kfunc 'bpf_send_signal_task' in BTF
btf_encoder__tag_kfuncs: failed to tag kfunc 'bpf_send_signal_task'
NM .tmp_vmlinux1.syms
KSYMS .tmp_vmlinux1.kallsyms.S
AS .tmp_vmlinux1.kallsyms.o
LD .tmp_vmlinux2
NM .tmp_vmlinux2.syms
KSYMS .tmp_vmlinux2.kallsyms.S
AS .tmp_vmlinux2.kallsyms.o
LD vmlinux
BTFIDS vmlinux
WARN: resolve_btfids: unresolved symbol prog_test_ref_kfunc
WARN: resolve_btfids: unresolved symbol bpf_crypto_ctx
WARN: resolve_btfids: unresolved symbol bpf_send_signal_task
WARN: resolve_btfids: unresolved symbol bpf_modify_return_test_tp
WARN: resolve_btfids: unresolved symbol bpf_dynptr_from_xdp
WARN: resolve_btfids: unresolved symbol bpf_dynptr_from_skb
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241213-bpf-cond-ids-v1-1-881849997219@weissschuh.net
The fd_array attribute of the BPF_PROG_LOAD syscall may contain a set
of file descriptors: maps or btfs. This field was introduced as a
sparse array. Introduce a new attribute, fd_array_cnt, which, if
present, indicates that the fd_array is a continuous array of the
corresponding length.
If fd_array_cnt is non-zero, then every map in the fd_array will be
bound to the program, as if it was used by the program. This
functionality is similar to the BPF_PROG_BIND_MAP syscall, but such
maps can be used by the verifier during the program load.
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241213130934.1087929-5-aspsk@isovalent.com
Introduce a helper to add btfs to the env->used_maps array. Use it
to simplify the check_pseudo_btf_id() function. This new helper will
also be re-used in a consequent patch.
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241213130934.1087929-4-aspsk@isovalent.com
Move some inlined map/prog compatibility checks from the
resolve_pseudo_ldimm64() function to the dedicated
check_map_prog_compatibility() function. Call the latter function
from the add_used_map_from_fd() function directly.
This simplifies code and optimizes logic a bit, as before these
changes the check_map_prog_compatibility() function was executed on
every map usage, which doesn't make sense, as it doesn't include any
per-instruction checks, only map type vs. prog type.
(This patch also simplifies a consequent patch which will call the
add_used_map_from_fd() function from another code path.)
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241213130934.1087929-3-aspsk@isovalent.com
bpf_prog_aux->func field might be NULL if program does not have
subprograms except for main sub-program. The fixed commit does
bpf_prog_aux->func access unconditionally, which might lead to null
pointer dereference.
The bug could be triggered by replacing the following BPF program:
SEC("tc")
int main_changes(struct __sk_buff *sk)
{
bpf_skb_pull_data(sk, 0);
return 0;
}
With the following BPF program:
SEC("freplace")
long changes_pkt_data(struct __sk_buff *sk)
{
return bpf_skb_pull_data(sk, 0);
}
bpf_prog_aux instance itself represents the main sub-program,
use this property to fix the bug.
Fixes: 81f6d0530b ("bpf: check changes_pkt_data property for extension programs")
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Closes: https://lore.kernel.org/r/202412111822.qGw6tOyB-lkp@intel.com/
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20241212070711.427443-1-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When processing calls to global sub-programs, verifier decides whether
to invalidate all packet pointers in current state depending on the
changes_pkt_data property of the global sub-program.
Because of this, an extension program replacing a global sub-program
must be compatible with changes_pkt_data property of the sub-program
being replaced.
This commit:
- adds changes_pkt_data flag to struct bpf_prog_aux:
- this flag is set in check_cfg() for main sub-program;
- in jit_subprogs() for other sub-programs;
- modifies bpf_check_attach_btf_id() to check changes_pkt_data flag;
- moves call to check_attach_btf_id() after the call to check_cfg(),
because it needs changes_pkt_data flag to be set:
bpf_check:
... ...
- check_attach_btf_id resolve_pseudo_ldimm64
resolve_pseudo_ldimm64 --> bpf_prog_is_offloaded
bpf_prog_is_offloaded check_cfg
check_cfg + check_attach_btf_id
... ...
The following fields are set by check_attach_btf_id():
- env->ops
- prog->aux->attach_btf_trace
- prog->aux->attach_func_name
- prog->aux->attach_func_proto
- prog->aux->dst_trampoline
- prog->aux->mod
- prog->aux->saved_dst_attach_type
- prog->aux->saved_dst_prog_type
- prog->expected_attach_type
Neither of these fields are used by resolve_pseudo_ldimm64() or
bpf_prog_offload_verifier_prep() (for netronome and netdevsim
drivers), so the reordering is safe.
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20241210041100.1898468-6-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When processing calls to certain helpers, verifier invalidates all
packet pointers in a current state. For example, consider the
following program:
__attribute__((__noinline__))
long skb_pull_data(struct __sk_buff *sk, __u32 len)
{
return bpf_skb_pull_data(sk, len);
}
SEC("tc")
int test_invalidate_checks(struct __sk_buff *sk)
{
int *p = (void *)(long)sk->data;
if ((void *)(p + 1) > (void *)(long)sk->data_end) return TCX_DROP;
skb_pull_data(sk, 0);
*p = 42;
return TCX_PASS;
}
After a call to bpf_skb_pull_data() the pointer 'p' can't be used
safely. See function filter.c:bpf_helper_changes_pkt_data() for a list
of such helpers.
At the moment verifier invalidates packet pointers when processing
helper function calls, and does not traverse global sub-programs when
processing calls to global sub-programs. This means that calls to
helpers done from global sub-programs do not invalidate pointers in
the caller state. E.g. the program above is unsafe, but is not
rejected by verifier.
This commit fixes the omission by computing field
bpf_subprog_info->changes_pkt_data for each sub-program before main
verification pass.
changes_pkt_data should be set if:
- subprogram calls helper for which bpf_helper_changes_pkt_data
returns true;
- subprogram calls a global function,
for which bpf_subprog_info->changes_pkt_data should be set.
The verifier.c:check_cfg() pass is modified to compute this
information. The commit relies on depth first instruction traversal
done by check_cfg() and absence of recursive function calls:
- check_cfg() would eventually visit every call to subprogram S in a
state when S is fully explored;
- when S is fully explored:
- every direct helper call within S is explored
(and thus changes_pkt_data is set if needed);
- every call to subprogram S1 called by S was visited with S1 fully
explored (and thus S inherits changes_pkt_data from S1).
The downside of such approach is that dead code elimination is not
taken into account: if a helper call inside global function is dead
because of current configuration, verifier would conservatively assume
that the call occurs for the purpose of the changes_pkt_data
computation.
Reported-by: Nick Zavaritsky <mejedi@gmail.com>
Closes: https://lore.kernel.org/bpf/0498CA22-5779-4767-9C0C-A9515CEA711F@gmail.com/
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20241210041100.1898468-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Use BPF helper number instead of function pointer in
bpf_helper_changes_pkt_data(). This would simplify usage of this
function in verifier.c:check_cfg() (in a follow-up patch),
where only helper number is easily available and there is no real need
to lookup helper proto.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20241210041100.1898468-3-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add a utility function, looking for a subprogram containing a given
instruction index, rewrite find_subprog() to use this function.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20241210041100.1898468-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When CAP_PERFMON and CAP_SYS_ADMIN (allow_ptr_leaks) are disabled, the
verifier aims to reject partial overwrite on an 8-byte stack slot that
contains a spilled pointer.
However, in such a scenario, it rejects all partial stack overwrites as
long as the targeted stack slot is a spilled register, because it does
not check if the stack slot is a spilled pointer.
Incomplete checks will result in the rejection of valid programs, which
spill narrower scalar values onto scalar slots, as shown below.
0: R1=ctx() R10=fp0
; asm volatile ( @ repro.bpf.c:679
0: (7a) *(u64 *)(r10 -8) = 1 ; R10=fp0 fp-8_w=1
1: (62) *(u32 *)(r10 -8) = 1
attempt to corrupt spilled pointer on stack
processed 2 insns (limit 1000000) max_states_per_insn 0 total_states 0 peak_states 0 mark_read 0.
Fix this by expanding the check to not consider spilled scalar registers
when rejecting the write into the stack.
Previous discussion on this patch is at link [0].
[0]: https://lore.kernel.org/bpf/20240403202409.2615469-1-tao.lyu@epfl.ch
Fixes: ab125ed3ec ("bpf: fix check for attempt to corrupt spilled pointer")
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Tao Lyu <tao.lyu@epfl.ch>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241204044757.1483141-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Inside mark_stack_slot_misc, we should not upgrade STACK_INVALID to
STACK_MISC when allow_ptr_leaks is false, since invalid contents
shouldn't be read unless the program has the relevant capabilities.
The relaxation only makes sense when env->allow_ptr_leaks is true.
However, such conversion in privileged mode becomes unnecessary, as
invalid slots can be read without being upgraded to STACK_MISC.
Currently, the condition is inverted (i.e. checking for true instead of
false), simply remove it to restore correct behavior.
Fixes: eaf18febd6 ("bpf: preserve STACK_ZERO slots on partial reg spills")
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Reported-by: Tao Lyu <tao.lyu@epfl.ch>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241204044757.1483141-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The verifier log when leaking resources on BPF_EXIT may be a bit
confusing, as it's a problem only when finally existing from the main
prog, not from any of the subprogs. Hence, update the verifier error
string and the corresponding selftests matching on it.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Suggested-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241204030400.208005-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Teach the verifier about IRQ-disabled sections through the introduction
of two new kfuncs, bpf_local_irq_save, to save IRQ state and disable
them, and bpf_local_irq_restore, to restore IRQ state and enable them
back again.
For the purposes of tracking the saved IRQ state, the verifier is taught
about a new special object on the stack of type STACK_IRQ_FLAG. This is
a 8 byte value which saves the IRQ flags which are to be passed back to
the IRQ restore kfunc.
Renumber the enums for REF_TYPE_* to simplify the check in
find_lock_state, filtering out non-lock types as they grow will become
cumbersome and is unecessary.
To track a dynamic number of IRQ-disabled regions and their associated
saved states, a new resource type RES_TYPE_IRQ is introduced, which its
state management functions: acquire_irq_state and release_irq_state,
taking advantage of the refactoring and clean ups made in earlier
commits.
One notable requirement of the kernel's IRQ save and restore API is that
they cannot happen out of order. For this purpose, when releasing reference
we keep track of the prev_id we saw with REF_TYPE_IRQ. Since reference
states are inserted in increasing order of the index, this is used to
remember the ordering of acquisitions of IRQ saved states, so that we
maintain a logical stack in acquisition order of resource identities,
and can enforce LIFO ordering when restoring IRQ state. The top of the
stack is maintained using bpf_verifier_state's active_irq_id.
To maintain the stack property when releasing reference states, we need
to modify release_reference_state to instead shift the remaining array
left using memmove instead of swapping deleted element with last that
might break the ordering. A selftest to test this subtle behavior is
added in late patches.
The logic to detect initialized and unitialized irq flag slots, marking
and unmarking is similar to how it's done for iterators. No additional
checks are needed in refsafe for REF_TYPE_IRQ, apart from the usual
check_id satisfiability check on the ref[i].id. We have to perform the
same check_ids check on state->active_irq_id as well.
To ensure we don't get assigned REF_TYPE_PTR by default after
acquire_reference_state, if someone forgets to assign the type, let's
also renumber the enum ref_state_type. This way any unassigned types
get caught by refsafe's default switch statement, don't assume
REF_TYPE_PTR by default.
The kfuncs themselves are plain wrappers over local_irq_save and
local_irq_restore macros.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241204030400.208005-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
There is possibility of sharing code between mark_dynptr_read and
mark_iter_read for updating liveness information of their stack slots.
Consolidate common logic into mark_stack_slot_obj_read function in
preparation for the next patch which needs the same logic for its own
stack slots.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241204030400.208005-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In preparation for introducing support for more reference types which
have to add and remove reference state, refactor the
acquire_reference_state and release_reference_state functions to share
common logic.
The acquire_reference_state function simply handles growing the acquired
refs and returning the pointer to the new uninitialized element, which
can be filled in by the caller.
The release_reference_state function simply erases a reference state
entry in the acquired_refs array and shrinks it. The callers are
responsible for finding the suitable element by matching on various
fields of the reference state and requesting deletion through this
function. It is not supposed to be called directly.
Existing callers of release_reference_state were using it to find and
remove state for a given ref_obj_id without scrubbing the associated
registers in the verifier state. Introduce release_reference_nomark to
provide this functionality and convert callers. We now use this new
release_reference_nomark function within release_reference as well.
It needs to operate on a verifier state instead of taking verifier env
as mark_ptr_or_null_regs requires operating on verifier state of the
two branches of a NULL condition check, therefore env->cur_state cannot
be used directly.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241204030400.208005-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, state for RCU read locks and preemption is in
bpf_verifier_state, while locks and pointer reference state remains in
bpf_func_state. There is no particular reason to keep the latter in
bpf_func_state. Additionally, it is copied into a new frame's state and
copied back to the caller frame's state everytime the verifier processes
a pseudo call instruction. This is a bit wasteful, given this state is
global for a given verification state / path.
Move all resource and reference related state in bpf_verifier_state
structure in this patch, in preparation for introducing new reference
state types in the future.
Since we switch print_verifier_state and friends to print using vstate,
we now need to explicitly pass in the verifier state from the caller
along with the bpf_func_state, so modify the prototype and callers to do
so. To ensure func state matches the verifier state when we're printing
data, take in frame number instead of bpf_func_state pointer instead and
avoid inconsistencies induced by the caller.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241204030400.208005-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Andrii spotted that process_dynptr_func's rejection of incorrect
argument register type will print an error string where argument numbers
are not zero-indexed, unlike elsewhere in the verifier. Fix this by
subtracting 1 from regno. The same scenario exists for iterator
messages. Fix selftest error strings that match on the exact argument
number while we're at it to ensure clean bisection.
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241203002235.3776418-1-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, KF_ARG_PTR_TO_ITER handling missed checking the reg->type and
ensuring it is PTR_TO_STACK. Instead of enforcing this in the caller of
process_iter_arg, move the check into it instead so that all callers
will gain the check by default. This is similar to process_dynptr_func.
An existing selftest in verifier_bits_iter.c fails due to this change,
but it's because it was passing a NULL pointer into iter_next helper and
getting an error further down the checks, but probably meant to pass an
uninitialized iterator on the stack (as is done in the subsequent test
below it). We will gain coverage for non-PTR_TO_STACK arguments in later
patches hence just change the declaration to zero-ed stack object.
Fixes: 06accc8779 ("bpf: add support for open-coded iterator loops")
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Tao Lyu <tao.lyu@epfl.ch>
[ Kartikeya: move check into process_iter_arg, rewrite commit log ]
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241203000238.3602922-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Instead of allocating and copying instruction history each time we
enqueue child verifier state, switch to a model where we use one common
dynamically sized array of instruction history entries across all states.
The key observation for proving this is correct is that instruction
history is only relevant while state is active, which means it either is
a current state (and thus we are actively modifying instruction history
and no other state can interfere with us) or we are checkpointed state
with some children still active (either enqueued or being current).
In the latter case our portion of instruction history is finalized and
won't change or grow, so as long as we keep it immutable until the state
is finalized, we are good.
Now, when state is finalized and is put into state hash for potentially
future pruning lookups, instruction history is not used anymore. This is
because instruction history is only used by precision marking logic, and
we never modify precision markings for finalized states.
So, instead of each state having its own small instruction history, we
keep a global dynamically-sized instruction history, where each state in
current DFS path from root to active state remembers its portion of
instruction history. Current state can append to this history, but
cannot modify any of its parent histories.
Async callback state enqueueing, while logically detached from parent
state, still is part of verification backtracking tree, so has to follow
the same schema as normal state checkpoints.
Because the insn_hist array can be grown through realloc, states don't
keep pointers, they instead maintain two indices, [start, end), into
global instruction history array. End is exclusive index, so
`start == end` means there is no relevant instruction history.
This eliminates a lot of allocations and minimizes overall memory usage.
For instance, running a worst-case test from [0] (but without the
heuristics-based fix [1]), it took 12.5 minutes until we get -ENOMEM.
With the changes in this patch the whole test succeeds in 10 minutes
(very slow, so heuristics from [1] is important, of course).
To further validate correctness, veristat-based comparison was performed for
Meta production BPF objects and BPF selftests objects. In both cases there
were no differences *at all* in terms of verdict or instruction and state
counts, providing a good confidence in the change.
Having this low-memory-overhead solution of keeping dynamic
per-instruction history cheaply opens up some new possibilities, like
keeping extra information for literally every single validated
instruction. This will be used for simplifying precision backpropagation
logic in follow up patches.
[0] https://lore.kernel.org/bpf/20241029172641.1042523-2-eddyz87@gmail.com/
[1] https://lore.kernel.org/bpf/20241029172641.1042523-1-eddyz87@gmail.com/
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20241115001303.277272-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Cross-merge bpf fixes after downstream PR.
In particular to bring the fix in
commit aa30eb3260 ("bpf: Force checkpoint when jmp history is too long").
The follow up verifier work depends on it.
And the fix in
commit 6801cf7890 ("selftests/bpf: Use -4095 as the bad address for bits iterator").
It's fixing instability of BPF CI on s390 arch.
No conflicts.
Adjacent changes in:
Auto-merging arch/Kconfig
Auto-merging kernel/bpf/helpers.c
Auto-merging kernel/bpf/memalloc.c
Auto-merging kernel/bpf/verifier.c
Auto-merging mm/slab_common.c
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For struct_ops progs, whether a particular prog uses private stack
depends on prog->aux->priv_stack_requested setting before actual
insn-level verification for that prog. One particular implementation
is to piggyback on struct_ops->check_member(). The next patch has
an example for this. The struct_ops->check_member() sets
prog->aux->priv_stack_requested to be true which enables private stack
usage.
The struct_ops prog follows the same rule as kprobe/tracing progs after
function bpf_enable_priv_stack(). For example, even a struct_ops prog
requests private stack, it could still use normal kernel stack if
the stack size is small (< 64 bytes).
Similar to tracing progs, nested same cpu same prog run will be skipped.
A field (recursion_detected()) is added to bpf_prog_aux structure.
If bpf_prog->aux->recursion_detected is implemented by the struct_ops
subsystem and nested same cpu/prog happens, the function will be
triggered to report an error, collect related info, etc.
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20241112163933.2224962-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
If private stack is used by any subprog, set that subprog
prog->aux->jits_use_priv_stack to be true so later jit can allocate
private stack for that subprog properly.
Also set env->prog->aux->jits_use_priv_stack to be true if
any subprog uses private stack. This is a use case for a
single main prog (no subprogs) to use private stack, and
also a use case for later struct-ops progs where
env->prog->aux->jits_use_priv_stack will enable recursion
check if any subprog uses private stack.
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20241112163912.2224007-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Private stack will be allocated with percpu allocator in jit time.
To avoid complexity at runtime, only one copy of private stack is
available per cpu per prog. So runtime recursion check is necessary
to avoid stack corruption.
Current private stack only supports kprobe/perf_event/tp/raw_tp
which has recursion check in the kernel, and prog types that use
bpf trampoline recursion check. For trampoline related prog types,
currently only tracing progs have recursion checking.
To avoid complexity, all async_cb subprogs use normal kernel stack
including those subprogs used by both main prog subtree and async_cb
subtree. Any prog having tail call also uses kernel stack.
To avoid jit penalty with private stack support, a subprog stack
size threshold is set such that only if the stack size is no less
than the threshold, private stack is supported. The current threshold
is 64 bytes. This avoids jit penality if the stack usage is small.
A useless 'continue' is also removed from a loop in func
check_max_stack_depth().
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20241112163907.2223839-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Logic to prevent callbacks from acquiring new references for the program
(i.e. leaving acquired references), and releasing caller references
(i.e. those acquired in parent frames) was introduced in commit
9d9d00ac29 ("bpf: Fix reference state management for synchronous callbacks").
This was necessary because back then, the verifier simulated each
callback once (that could potentially be executed N times, where N can
be zero). This meant that callbacks that left lingering resources or
cleared caller resources could do it more than once, operating on
undefined state or leaking memory.
With the fixes to callback verification in commit
ab5cfac139 ("bpf: verify callbacks as if they are called unknown number of times"),
all of this extra logic is no longer necessary. Hence, drop it as part
of this commit.
Cc: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241109231430.2475236-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
When bpf_spin_lock was introduced originally, there was deliberation on
whether to use an array of lock IDs, but since bpf_spin_lock is limited
to holding a single lock at any given time, we've been using a single ID
to identify the held lock.
In preparation for introducing spin locks that can be taken multiple
times, introduce support for acquiring multiple lock IDs. For this
purpose, reuse the acquired_refs array and store both lock and pointer
references. We tag the entry with REF_TYPE_PTR or REF_TYPE_LOCK to
disambiguate and find the relevant entry. The ptr field is used to track
the map_ptr or btf (for bpf_obj_new allocations) to ensure locks can be
matched with protected fields within the same "allocation", i.e.
bpf_obj_new object or map value.
The struct active_lock is changed to an int as the state is part of the
acquired_refs array, and we only need active_lock as a cheap way of
detecting lock presence.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241109231430.2475236-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Adding support to attach BPF program for entry and return probe
of the same function. This is common use case which at the moment
requires to create two uprobe multi links.
Adding new BPF_TRACE_UPROBE_SESSION attach type that instructs
kernel to attach single link program to both entry and exit probe.
It's possible to control execution of the BPF program on return
probe simply by returning zero or non zero from the entry BPF
program execution to execute or not the BPF program on return
probe respectively.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241108134544.480660-4-jolsa@kernel.org
The kprobe session program can return only 0 or 1,
instruct verifier to check for that.
Fixes: 535a3692ba ("bpf: Add support for kprobe session attach")
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241108134544.480660-2-jolsa@kernel.org
Arguments to a raw tracepoint are tagged as trusted, which carries the
semantics that the pointer will be non-NULL. However, in certain cases,
a raw tracepoint argument may end up being NULL. More context about this
issue is available in [0].
Thus, there is a discrepancy between the reality, that raw_tp arguments
can actually be NULL, and the verifier's knowledge, that they are never
NULL, causing explicit NULL checks to be deleted, and accesses to such
pointers potentially crashing the kernel.
To fix this, mark raw_tp arguments as PTR_MAYBE_NULL, and then special
case the dereference and pointer arithmetic to permit it, and allow
passing them into helpers/kfuncs; these exceptions are made for raw_tp
programs only. Ensure that we don't do this when ref_obj_id > 0, as in
that case this is an acquired object and doesn't need such adjustment.
The reason we do mask_raw_tp_trusted_reg logic is because other will
recheck in places whether the register is a trusted_reg, and then
consider our register as untrusted when detecting the presence of the
PTR_MAYBE_NULL flag.
To allow safe dereference, we enable PROBE_MEM marking when we see loads
into trusted pointers with PTR_MAYBE_NULL.
While trusted raw_tp arguments can also be passed into helpers or kfuncs
where such broken assumption may cause issues, a future patch set will
tackle their case separately, as PTR_TO_BTF_ID (without PTR_TRUSTED) can
already be passed into helpers and causes similar problems. Thus, they
are left alone for now.
It is possible that these checks also permit passing non-raw_tp args
that are trusted PTR_TO_BTF_ID with null marking. In such a case,
allowing dereference when pointer is NULL expands allowed behavior, so
won't regress existing programs, and the case of passing these into
helpers is the same as above and will be dealt with later.
Also update the failure case in tp_btf_nullable selftest to capture the
new behavior, as the verifier will no longer cause an error when
directly dereference a raw tracepoint argument marked as __nullable.
[0]: https://lore.kernel.org/bpf/ZrCZS6nisraEqehw@jlelli-thinkpadt14gen4.remote.csb
Reviewed-by: Jiri Olsa <jolsa@kernel.org>
Reported-by: Juri Lelli <juri.lelli@redhat.com>
Tested-by: Juri Lelli <juri.lelli@redhat.com>
Fixes: 3f00c52393 ("bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncs")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241104171959.2938862-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
There are similar checks for covering locks, references, RCU read
sections and preempt_disable sections in 3 places in the verifer, i.e.
for tail calls, bpf_ld_[abs, ind], and exit path (for BPF_EXIT and
bpf_throw). Unify all of these into a common check_resource_leak
function to avoid code duplication.
Also update the error strings in selftests to the new ones in the same
change to ensure clean bisection.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241103225940.1408302-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
There are three situations when a program logically exits and transfers
control to the kernel or another program: bpf_throw, BPF_EXIT, and tail
calls. The former two check for any lingering locks and references, but
tail calls currently do not. Expand the checks to check for spin locks,
RCU read sections and preempt disabled sections.
Spin locks are indirectly preventing tail calls as function calls are
disallowed, but the checks for preemption and RCU are more relaxed,
hence ensure tail calls are prevented in their presence.
Fixes: 9bb00b2895 ("bpf: Add kfunc bpf_rcu_read_lock/unlock()")
Fixes: fc7566ad0a ("bpf: Introduce bpf_preempt_[disable,enable] kfuncs")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241103225940.1408302-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
A specifically crafted program might trick verifier into growing very
long jump history within a single bpf_verifier_state instance.
Very long jump history makes mark_chain_precision() unreasonably slow,
especially in case if verifier processes a loop.
Mitigate this by forcing new state in is_state_visited() in case if
current state's jump history is too long.
Use same constant as in `skip_inf_loop_check`, but multiply it by
arbitrarily chosen value 2 to account for jump history containing not
only information about jumps, but also information about stack access.
For an example of problematic program consider the code below,
w/o this patch the example is processed by verifier for ~15 minutes,
before failing to allocate big-enough chunk for jmp_history.
0: r7 = *(u16 *)(r1 +0);"
1: r7 += 0x1ab064b9;"
2: if r7 & 0x702000 goto 1b;
3: r7 &= 0x1ee60e;"
4: r7 += r1;"
5: if r7 s> 0x37d2 goto +0;"
6: r0 = 0;"
7: exit;"
Perf profiling shows that most of the time is spent in
mark_chain_precision() ~95%.
The easiest way to explain why this program causes problems is to
apply the following patch:
diff --git a/include/linux/bpf.h b/include/linux/bpf.h
index 0c216e71cec7..4b4823961abe 100644
\--- a/include/linux/bpf.h
\+++ b/include/linux/bpf.h
\@@ -1926,7 +1926,7 @@ struct bpf_array {
};
};
-#define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */
+#define BPF_COMPLEXITY_LIMIT_INSNS 256 /* yes. 1M insns */
#define MAX_TAIL_CALL_CNT 33
/* Maximum number of loops for bpf_loop and bpf_iter_num.
diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c
index f514247ba8ba..75e88be3bb3e 100644
\--- a/kernel/bpf/verifier.c
\+++ b/kernel/bpf/verifier.c
\@@ -18024,8 +18024,13 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
skip_inf_loop_check:
if (!force_new_state &&
env->jmps_processed - env->prev_jmps_processed < 20 &&
- env->insn_processed - env->prev_insn_processed < 100)
+ env->insn_processed - env->prev_insn_processed < 100) {
+ verbose(env, "is_state_visited: suppressing checkpoint at %d, %d jmps processed, cur->jmp_history_cnt is %d\n",
+ env->insn_idx,
+ env->jmps_processed - env->prev_jmps_processed,
+ cur->jmp_history_cnt);
add_new_state = false;
+ }
goto miss;
}
/* If sl->state is a part of a loop and this loop's entry is a part of
\@@ -18142,6 +18147,9 @@ static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
if (!add_new_state)
return 0;
+ verbose(env, "is_state_visited: new checkpoint at %d, resetting env->jmps_processed\n",
+ env->insn_idx);
+
/* There were no equivalent states, remember the current one.
* Technically the current state is not proven to be safe yet,
* but it will either reach outer most bpf_exit (which means it's safe)
And observe verification log:
...
is_state_visited: new checkpoint at 5, resetting env->jmps_processed
5: R1=ctx() R7=ctx(...)
5: (65) if r7 s> 0x37d2 goto pc+0 ; R7=ctx(...)
6: (b7) r0 = 0 ; R0_w=0
7: (95) exit
from 5 to 6: R1=ctx() R7=ctx(...) R10=fp0
6: R1=ctx() R7=ctx(...) R10=fp0
6: (b7) r0 = 0 ; R0_w=0
7: (95) exit
is_state_visited: suppressing checkpoint at 1, 3 jmps processed, cur->jmp_history_cnt is 74
from 2 to 1: R1=ctx() R7_w=scalar(...) R10=fp0
1: R1=ctx() R7_w=scalar(...) R10=fp0
1: (07) r7 += 447767737
is_state_visited: suppressing checkpoint at 2, 3 jmps processed, cur->jmp_history_cnt is 75
2: R7_w=scalar(...)
2: (45) if r7 & 0x702000 goto pc-2
... mark_precise 152 steps for r7 ...
2: R7_w=scalar(...)
is_state_visited: suppressing checkpoint at 1, 4 jmps processed, cur->jmp_history_cnt is 75
1: (07) r7 += 447767737
is_state_visited: suppressing checkpoint at 2, 4 jmps processed, cur->jmp_history_cnt is 76
2: R7_w=scalar(...)
2: (45) if r7 & 0x702000 goto pc-2
...
BPF program is too large. Processed 257 insn
The log output shows that checkpoint at label (1) is never created,
because it is suppressed by `skip_inf_loop_check` logic:
a. When 'if' at (2) is processed it pushes a state with insn_idx (1)
onto stack and proceeds to (3);
b. At (5) checkpoint is created, and this resets
env->{jmps,insns}_processed.
c. Verification proceeds and reaches `exit`;
d. State saved at step (a) is popped from stack and is_state_visited()
considers if checkpoint needs to be added, but because
env->{jmps,insns}_processed had been just reset at step (b)
the `skip_inf_loop_check` logic forces `add_new_state` to false.
e. Verifier proceeds with current state, which slowly accumulates
more and more entries in the jump history.
The accumulation of entries in the jump history is a problem because
of two factors:
- it eventually exhausts memory available for kmalloc() allocation;
- mark_chain_precision() traverses the jump history of a state,
meaning that if `r7` is marked precise, verifier would iterate
ever growing jump history until parent state boundary is reached.
(note: the log also shows a REG INVARIANTS VIOLATION warning
upon jset processing, but that's another bug to fix).
With this patch applied, the example above is rejected by verifier
under 1s of time, reaching 1M instructions limit.
The program is a simplified reproducer from syzbot report.
Previous discussion could be found at [1].
The patch does not cause any changes in verification performance,
when tested on selftests from veristat.cfg and cilium programs taken
from [2].
[1] https://lore.kernel.org/bpf/20241009021254.2805446-1-eddyz87@gmail.com/
[2] https://github.com/anakryiko/cilium
Changelog:
- v1 -> v2:
- moved patch to bpf tree;
- moved force_new_state variable initialization after declaration and
shortened the comment.
v1: https://lore.kernel.org/bpf/20241018020307.1766906-1-eddyz87@gmail.com/
Fixes: 2589726d12 ("bpf: introduce bounded loops")
Reported-by: syzbot+7e46cdef14bf496a3ab4@syzkaller.appspotmail.com
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20241029172641.1042523-1-eddyz87@gmail.com
Closes: https://lore.kernel.org/bpf/670429f6.050a0220.49194.0517.GAE@google.com/
This patch adds BPF_UPTR support to the verifier. Not that only the
map_value will support the "__uptr" type tag.
This patch enforces only BPF_LDX is allowed to the value of an uptr.
After BPF_LDX, it will mark the dst_reg as PTR_TO_MEM | PTR_MAYBE_NULL
with size deduced from the field.kptr.btf_id. This will make the
dst_reg pointed memory to be readable and writable as scalar.
There is a redundant "val_reg = reg_state(env, value_regno);" statement
in the check_map_kptr_access(). This patch takes this chance to remove
it also.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20241023234759.860539-3-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
We need `goto next_insn;` at the end of patching instead of `continue;`.
It currently works by accident by making verifier re-process patched
instructions.
Reported-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Fixes: 314a53623c ("bpf: inline bpf_get_branch_snapshot() helper")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20241023161916.2896274-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Lonial reported an issue in the BPF verifier where check_mem_size_reg()
has the following code:
if (!tnum_is_const(reg->var_off))
/* For unprivileged variable accesses, disable raw
* mode so that the program is required to
* initialize all the memory that the helper could
* just partially fill up.
*/
meta = NULL;
This means that writes are not checked when the register containing the
size of the passed buffer has not a fixed size. Through this bug, a BPF
program can write to a map which is marked as read-only, for example,
.rodata global maps.
The problem is that MEM_UNINIT's initial meaning that "the passed buffer
to the BPF helper does not need to be initialized" which was added back
in commit 435faee1aa ("bpf, verifier: add ARG_PTR_TO_RAW_STACK type")
got overloaded over time with "the passed buffer is being written to".
The problem however is that checks such as the above which were added later
via 06c1c04972 ("bpf: allow helpers access to variable memory") set meta
to NULL in order force the user to always initialize the passed buffer to
the helper. Due to the current double meaning of MEM_UNINIT, this bypasses
verifier write checks to the memory (not boundary checks though) and only
assumes the latter memory is read instead.
Fix this by reverting MEM_UNINIT back to its original meaning, and having
MEM_WRITE as an annotation to BPF helpers in order to then trigger the
BPF verifier checks for writing to memory.
Some notes: check_arg_pair_ok() ensures that for ARG_CONST_SIZE{,_OR_ZERO}
we can access fn->arg_type[arg - 1] since it must contain a preceding
ARG_PTR_TO_MEM. For check_mem_reg() the meta argument can be removed
altogether since we do check both BPF_READ and BPF_WRITE. Same for the
equivalent check_kfunc_mem_size_reg().
Fixes: 7b3552d3f9 ("bpf: Reject writes for PTR_TO_MAP_KEY in check_helper_mem_access")
Fixes: 97e6d7dab1 ("bpf: Check PTR_TO_MEM | MEM_RDONLY in check_helper_mem_access")
Fixes: 15baa55ff5 ("bpf/verifier: allow all functions to read user provided context")
Reported-by: Lonial Con <kongln9170@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20241021152809.33343-2-daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Nathaniel reported a bug in the linked scalar delta tracking, which can lead
to accepting a program with OOB access. The specific code is related to the
sync_linked_regs() function and the BPF_ADD_CONST flag, which signifies a
constant offset between two scalar registers tracked by the same register id.
The verifier attempts to track "similar" scalars in order to propagate bounds
information learned about one scalar to others. For instance, if r1 and r2
are known to contain the same value, then upon encountering 'if (r1 != 0x1234)
goto xyz', not only does it know that r1 is equal to 0x1234 on the path where
that conditional jump is not taken, it also knows that r2 is.
Additionally, with env->bpf_capable set, the verifier will track scalars
which should be a constant delta apart (if r1 is known to be one greater than
r2, then if r1 is known to be equal to 0x1234, r2 must be equal to 0x1233.)
The code path for the latter in adjust_reg_min_max_vals() is reached when
processing both 32 and 64-bit addition operations. While adjust_reg_min_max_vals()
knows whether dst_reg was produced by a 32 or a 64-bit addition (based on the
alu32 bool), the only information saved in dst_reg is the id of the source
register (reg->id, or'ed by BPF_ADD_CONST) and the value of the constant
offset (reg->off).
Later, the function sync_linked_regs() will attempt to use this information
to propagate bounds information from one register (known_reg) to others,
meaning, for all R in linked_regs, it copies known_reg range (and possibly
adjusting delta) into R for the case of R->id == known_reg->id.
For the delta adjustment, meaning, matching reg->id with BPF_ADD_CONST, the
verifier adjusts the register as reg = known_reg; reg += delta where delta
is computed as (s32)reg->off - (s32)known_reg->off and placed as a scalar
into a fake_reg to then simulate the addition of reg += fake_reg. This is
only correct, however, if the value in reg was created by a 64-bit addition.
When reg contains the result of a 32-bit addition operation, its upper 32
bits will always be zero. sync_linked_regs() on the other hand, may cause
the verifier to believe that the addition between fake_reg and reg overflows
into those upper bits. For example, if reg was generated by adding the
constant 1 to known_reg using a 32-bit alu operation, then reg->off is 1
and known_reg->off is 0. If known_reg is known to be the constant 0xFFFFFFFF,
sync_linked_regs() will tell the verifier that reg is equal to the constant
0x100000000. This is incorrect as the actual value of reg will be 0, as the
32-bit addition will wrap around.
Example:
0: (b7) r0 = 0; R0_w=0
1: (18) r1 = 0x80000001; R1_w=0x80000001
3: (37) r1 /= 1; R1_w=scalar()
4: (bf) r2 = r1; R1_w=scalar(id=1) R2_w=scalar(id=1)
5: (bf) r4 = r1; R1_w=scalar(id=1) R4_w=scalar(id=1)
6: (04) w2 += 2147483647; R2_w=scalar(id=1+2147483647,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
7: (04) w4 += 0 ; R4_w=scalar(id=1+0,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
8: (15) if r2 == 0x0 goto pc+1
10: R0=0 R1=0xffffffff80000001 R2=0x7fffffff R4=0xffffffff80000001 R10=fp0
What can be seen here is that r1 is copied to r2 and r4, such that {r1,r2,r4}.id
are all the same which later lets sync_linked_regs() to be invoked. Then, in
a next step constants are added with alu32 to r2 and r4, setting their ->off,
as well as id |= BPF_ADD_CONST. Next, the conditional will bind r2 and
propagate ranges to its linked registers. The verifier now believes the upper
32 bits of r4 are r4=0xffffffff80000001, while actually r4=r1=0x80000001.
One approach for a simple fix suitable also for stable is to limit the constant
delta tracking to only 64-bit alu addition. If necessary at some later point,
BPF_ADD_CONST could be split into BPF_ADD_CONST64 and BPF_ADD_CONST32 to avoid
mixing the two under the tradeoff to further complicate sync_linked_regs().
However, none of the added tests from dedf56d775 ("selftests/bpf: Add tests
for add_const") make this necessary at this point, meaning, BPF CI also passes
with just limiting tracking to 64-bit alu addition.
Fixes: 98d7ca374b ("bpf: Track delta between "linked" registers.")
Reported-by: Nathaniel Theis <nathaniel.theis@nccgroup.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20241016134913.32249-1-daniel@iogearbox.net
The bpf_get_kmem_cache() is to get a slab cache information from a
virtual address like virt_to_cache(). If the address is a pointer
to a slab object, it'd return a valid kmem_cache pointer, otherwise
NULL is returned.
It doesn't grab a reference count of the kmem_cache so the caller is
responsible to manage the access. The returned point is marked as
PTR_UNTRUSTED.
The intended use case for now is to symbolize locks in slab objects
from the lock contention tracepoints.
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev> (mm/*)
Acked-by: Vlastimil Babka <vbabka@suse.cz> #mm/slab
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Link: https://lore.kernel.org/r/20241010232505.1339892-3-namhyung@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
coerce_reg_to_size_sx() updates the register state after a sign-extension
operation. However, there's a bug in the assignment order of the unsigned
min/max values, leading to incorrect truncation:
0: (85) call bpf_get_prandom_u32#7 ; R0_w=scalar()
1: (57) r0 &= 1 ; R0_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=1,var_off=(0x0; 0x1))
2: (07) r0 += 254 ; R0_w=scalar(smin=umin=smin32=umin32=254,smax=umax=smax32=umax32=255,var_off=(0xfe; 0x1))
3: (bf) r0 = (s8)r0 ; R0_w=scalar(smin=smin32=-2,smax=smax32=-1,umin=umin32=0xfffffffe,umax=0xffffffff,var_off=(0xfffffffffffffffe; 0x1))
In the current implementation, the unsigned 32-bit min/max values
(u32_min_value and u32_max_value) are assigned directly from the 64-bit
signed min/max values (s64_min and s64_max):
reg->umin_value = reg->u32_min_value = s64_min;
reg->umax_value = reg->u32_max_value = s64_max;
Due to the chain assigmnent, this is equivalent to:
reg->u32_min_value = s64_min; // Unintended truncation
reg->umin_value = reg->u32_min_value;
reg->u32_max_value = s64_max; // Unintended truncation
reg->umax_value = reg->u32_max_value;
Fixes: 1f9a1ea821 ("bpf: Support new sign-extension load insns")
Reported-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Reported-by: Zac Ecob <zacecob@protonmail.com>
Signed-off-by: Dimitar Kanaliev <dimitar.kanaliev@siteground.com>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Reviewed-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20241014121155.92887-2-dimitar.kanaliev@siteground.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The verifier contains a cache for looking up module BTF objects when
calling kfuncs defined in modules. This cache uses a 'struct
bpf_kfunc_btf_tab', which contains a sorted list of BTF objects that
were already seen in the current verifier run, and the BTF objects are
looked up by the offset stored in the relocated call instruction using
bsearch().
The first time a given offset is seen, the module BTF is loaded from the
file descriptor passed in by libbpf, and stored into the cache. However,
there's a bug in the code storing the new entry: it stores a pointer to
the new cache entry, then calls sort() to keep the cache sorted for the
next lookup using bsearch(), and then returns the entry that was just
stored through the stored pointer. However, because sort() modifies the
list of entries in place *by value*, the stored pointer may no longer
point to the right entry, in which case the wrong BTF object will be
returned.
The end result of this is an intermittent bug where, if a BPF program
calls two functions with the same signature in two different modules,
the function from the wrong module may sometimes end up being called.
Whether this happens depends on the order of the calls in the BPF
program (as that affects whether sort() reorders the array of BTF
objects), making it especially hard to track down. Simon, credited as
reporter below, spent significant effort analysing and creating a
reproducer for this issue. The reproducer is added as a selftest in a
subsequent patch.
The fix is straight forward: simply don't use the stored pointer after
calling sort(). Since we already have an on-stack pointer to the BTF
object itself at the point where the function return, just use that, and
populate it from the cache entry in the branch where the lookup
succeeds.
Fixes: 2357672c54 ("bpf: Introduce BPF support for kernel module function calls")
Reported-by: Simon Sundberg <simon.sundberg@kau.se>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/r/20241010-fix-kfunc-btf-caching-for-modules-v2-1-745af6c1af98@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The kzmalloc call in bpf_check can fail when memory is very fragmented,
which in turn can lead to an OOM kill.
Use kvzmalloc to fall back to vmalloc when memory is too fragmented to
allocate an order 3 sized bpf verifier environment.
Admittedly this is not a very common case, and only happens on systems
where memory has already been squeezed close to the limit, but this does
not seem like much of a hot path, and it's a simple enough fix.
Signed-off-by: Rik van Riel <riel@surriel.com>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Link: https://lore.kernel.org/r/20241008170735.16766766@imladris.surriel.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In order to allow pahole add btf_decl_tag("bpf_fastcall") for kfuncs
supporting bpf_fastcall, mark such functions with KF_FASTCALL in
id_set8 objects.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240916091712.2929279-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Range propagation must not affect subreg_def marks, otherwise the
following example is rewritten by verifier incorrectly when
BPF_F_TEST_RND_HI32 flag is set:
0: call bpf_ktime_get_ns call bpf_ktime_get_ns
1: r0 &= 0x7fffffff after verifier r0 &= 0x7fffffff
2: w1 = w0 rewrites w1 = w0
3: if w0 < 10 goto +0 --------------> r11 = 0x2f5674a6 (r)
4: r1 >>= 32 r11 <<= 32 (r)
5: r0 = r1 r1 |= r11 (r)
6: exit; if w0 < 0xa goto pc+0
r1 >>= 32
r0 = r1
exit
(or zero extension of w1 at (2) is missing for architectures that
require zero extension for upper register half).
The following happens w/o this patch:
- r0 is marked as not a subreg at (0);
- w1 is marked as subreg at (2);
- w1 subreg_def is overridden at (3) by copy_register_state();
- w1 is read at (5) but mark_insn_zext() does not mark (2)
for zero extension, because w1 subreg_def is not set;
- because of BPF_F_TEST_RND_HI32 flag verifier inserts random
value for hi32 bits of (2) (marked (r));
- this random value is read at (5).
Fixes: 75748837b7 ("bpf: Propagate scalar ranges through register assignments.")
Reported-by: Lonial Con <kongln9170@gmail.com>
Signed-off-by: Lonial Con <kongln9170@gmail.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Closes: https://lore.kernel.org/bpf/7e2aa30a62d740db182c170fdd8f81c596df280d.camel@gmail.com
Link: https://lore.kernel.org/bpf/20240924210844.1758441-1-eddyz87@gmail.com
-----BEGIN PGP SIGNATURE-----
iQIyBAABCAAdFiEE+soXsSLHKoYyzcli6rmadz2vbToFAmbyniwACgkQ6rmadz2v
bTqE0w/2J8TJWfR+1Z0Bf2Nzt3kFd/wLNn6FpWsq+z0/pzoP5AzborvmLzNiZmeh
0vJFieOL7pV4+NcaIHBPqfW1eMsXu+BlrtkHGLLYiCPJUr8o5jU9SrVKfF3arMZS
a6+zcX6EivX0MYWobZ2F7/8XF0nRQADxzInLazFmtJmLmOAyIch417KOg9ylwr3m
WVqhtCImUFyVz83XMFgbf2jXrvL9xD08iHN62GzcAioRF5LeJSPX0U/N15gWDqF7
V68F0PnvUf6/hkFvYVynhpMivE8u+8VXCHX+heZ8yUyf4ExV/+KSZrImupJ0WLeO
iX/qJ/9XP+g6ad9Olqpu6hmPi/6c6epQgbSOchpG04FGBGmJv1j9w4wnlHCgQDdB
i2oKHRtMKdqNZc0sOSfvw/KyxZXJuD1VQ9YgGVpZbHUbSZDoj7T40zWziUp8VgyR
nNtOmfJLDbtYlPV7/cQY5Ui4ccMJm6GzxxLBcqcMWxBu/90Ng0wTSubLbg3RHmWu
d9cCL6IprjJnliEUqC4k4gqZy6RJlHvQ8+NDllaW+4iPnz7B2WaUbwRX/oZ5yiYK
bLjWCWo+SzntVPAzTsmAYs2G47vWoALxo2NpNXLfmhJiWwfakJaQu7fwrDxsY11M
OgByiOzcbAcvkJzeVIDhfLVq5z49KF6k4D8Qu0uvXHDeC8Mraw==
=zzmh
-----END PGP SIGNATURE-----
Merge tag 'bpf-next-6.12-struct-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Pull bpf 'struct fd' updates from Alexei Starovoitov:
"This includes struct_fd BPF changes from Al and Andrii"
* tag 'bpf-next-6.12-struct-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next:
bpf: convert bpf_token_create() to CLASS(fd, ...)
security,bpf: constify struct path in bpf_token_create() LSM hook
bpf: more trivial fdget() conversions
bpf: trivial conversions for fdget()
bpf: switch maps to CLASS(fd, ...)
bpf: factor out fetching bpf_map from FD and adding it to used_maps list
bpf: switch fdget_raw() uses to CLASS(fd_raw, ...)
bpf: convert __bpf_prog_get() to CLASS(fd, ...)
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE+soXsSLHKoYyzcli6rmadz2vbToFAmbk/nIACgkQ6rmadz2v
bTqxuBAAnqW81Rr0nORIxeJMbyo4EiFuYHGk6u5BYP9NPzqHroUPCLVmSP7Hp/Ta
CJjsiZeivZsGa6Qlc3BCa4hHNpqP5WE1C/73svSDn7/99EfxdSBtirpMVFUPsUtn
DDb5chNpvnxKNS8Mw5Ty8wBrdbXHMlSx+IfaFHpv0Yn6EAcuF4UdoEUq2l3PqhfD
Il9Zm127eViPGAP+o+TBZFfW+rRw8d0ngqeRq2GvJ8ibNEDWss+GmBI1Dod7d+fC
dUDg96Ipdm1a5Xz7dnH80eXz9JHdpu6qhQrQMKKArnlpJElrKiOf9b17ZcJoPQOR
ZnstEnUyVnrWROZxUuKY72+2tx3TuSf+L9uZqFHNx3Ix5FIoS+tFbHf4b8SxtsOb
hb2X7SigdGqhQDxUT+IPeO5hsJlIvG1/VYxMXxgc++rh9DjL06hDLUSH1WBSU0fC
kFQ7HrcpAlVHtWmGbwwUyVjD+KC/qmZBTAnkcYT4C62WZVytSCnihIuSFAvV1tpZ
SSIhVPyQ599UoZIiQYihp0S4qP74FotCtErWSrThneh2Cl8kDsRq//lV1nj/PTV8
CpTvz4VCFDFTgthCfd62fP95EwW5K+aE3NjGTPW/9Hx/0+J/1tT+yqWsrToGaruf
TbrqtzQhpclz9UEqA+696cVAXNj9uRU4AoD3YIg72kVnRlkgYd0=
=MDwh
-----END PGP SIGNATURE-----
Merge tag 'bpf-next-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Pull bpf updates from Alexei Starovoitov:
- Introduce '__attribute__((bpf_fastcall))' for helpers and kfuncs with
corresponding support in LLVM.
It is similar to existing 'no_caller_saved_registers' attribute in
GCC/LLVM with a provision for backward compatibility. It allows
compilers generate more efficient BPF code assuming the verifier or
JITs will inline or partially inline a helper/kfunc with such
attribute. bpf_cast_to_kern_ctx, bpf_rdonly_cast,
bpf_get_smp_processor_id are the first set of such helpers.
- Harden and extend ELF build ID parsing logic.
When called from sleepable context the relevants parts of ELF file
will be read to find and fetch .note.gnu.build-id information. Also
harden the logic to avoid TOCTOU, overflow, out-of-bounds problems.
- Improvements and fixes for sched-ext:
- Allow passing BPF iterators as kfunc arguments
- Make the pointer returned from iter_next method trusted
- Fix x86 JIT convergence issue due to growing/shrinking conditional
jumps in variable length encoding
- BPF_LSM related:
- Introduce few VFS kfuncs and consolidate them in
fs/bpf_fs_kfuncs.c
- Enforce correct range of return values from certain LSM hooks
- Disallow attaching to other LSM hooks
- Prerequisite work for upcoming Qdisc in BPF:
- Allow kptrs in program provided structs
- Support for gen_epilogue in verifier_ops
- Important fixes:
- Fix uprobe multi pid filter check
- Fix bpf_strtol and bpf_strtoul helpers
- Track equal scalars history on per-instruction level
- Fix tailcall hierarchy on x86 and arm64
- Fix signed division overflow to prevent INT_MIN/-1 trap on x86
- Fix get kernel stack in BPF progs attached to tracepoint:syscall
- Selftests:
- Add uprobe bench/stress tool
- Generate file dependencies to drastically improve re-build time
- Match JIT-ed and BPF asm with __xlated/__jited keywords
- Convert older tests to test_progs framework
- Add support for RISC-V
- Few fixes when BPF programs are compiled with GCC-BPF backend
(support for GCC-BPF in BPF CI is ongoing in parallel)
- Add traffic monitor
- Enable cross compile and musl libc
* tag 'bpf-next-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (260 commits)
btf: require pahole 1.21+ for DEBUG_INFO_BTF with default DWARF version
btf: move pahole check in scripts/link-vmlinux.sh to lib/Kconfig.debug
btf: remove redundant CONFIG_BPF test in scripts/link-vmlinux.sh
bpf: Call the missed kfree() when there is no special field in btf
bpf: Call the missed btf_record_free() when map creation fails
selftests/bpf: Add a test case to write mtu result into .rodata
selftests/bpf: Add a test case to write strtol result into .rodata
selftests/bpf: Rename ARG_PTR_TO_LONG test description
selftests/bpf: Fix ARG_PTR_TO_LONG {half-,}uninitialized test
bpf: Zero former ARG_PTR_TO_{LONG,INT} args in case of error
bpf: Improve check_raw_mode_ok test for MEM_UNINIT-tagged types
bpf: Fix helper writes to read-only maps
bpf: Remove truncation test in bpf_strtol and bpf_strtoul helpers
bpf: Fix bpf_strtol and bpf_strtoul helpers for 32bit
selftests/bpf: Add tests for sdiv/smod overflow cases
bpf: Fix a sdiv overflow issue
libbpf: Add bpf_object__token_fd accessor
docs/bpf: Add missing BPF program types to docs
docs/bpf: Add constant values for linkages
bpf: Use fake pt_regs when doing bpf syscall tracepoint tracing
...
When checking malformed helper function signatures, also take other argument
types into account aside from just ARG_PTR_TO_UNINIT_MEM.
This concerns (formerly) ARG_PTR_TO_{INT,LONG} given uninitialized memory can
be passed there, too.
The func proto sanity check goes back to commit 435faee1aa ("bpf, verifier:
add ARG_PTR_TO_RAW_STACK type"), and its purpose was to detect wrong func protos
which had more than just one MEM_UNINIT-tagged type as arguments.
The reason more than one is currently not supported is as we mark stack slots with
STACK_MISC in check_helper_call() in case of raw mode based on meta.access_size to
allow uninitialized stack memory to be passed to helpers when they just write into
the buffer.
Probing for base type as well as MEM_UNINIT tagging ensures that other types do not
get missed (as it used to be the case for ARG_PTR_TO_{INT,LONG}).
Fixes: 57c3bb725a ("bpf: Introduce ARG_PTR_TO_{INT,LONG} arg types")
Reported-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20240913191754.13290-4-daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Lonial found an issue that despite user- and BPF-side frozen BPF map
(like in case of .rodata), it was still possible to write into it from
a BPF program side through specific helpers having ARG_PTR_TO_{LONG,INT}
as arguments.
In check_func_arg() when the argument is as mentioned, the meta->raw_mode
is never set. Later, check_helper_mem_access(), under the case of
PTR_TO_MAP_VALUE as register base type, it assumes BPF_READ for the
subsequent call to check_map_access_type() and given the BPF map is
read-only it succeeds.
The helpers really need to be annotated as ARG_PTR_TO_{LONG,INT} | MEM_UNINIT
when results are written into them as opposed to read out of them. The
latter indicates that it's okay to pass a pointer to uninitialized memory
as the memory is written to anyway.
However, ARG_PTR_TO_{LONG,INT} is a special case of ARG_PTR_TO_FIXED_SIZE_MEM
just with additional alignment requirement. So it is better to just get
rid of the ARG_PTR_TO_{LONG,INT} special cases altogether and reuse the
fixed size memory types. For this, add MEM_ALIGNED to additionally ensure
alignment given these helpers write directly into the args via *<ptr> = val.
The .arg*_size has been initialized reflecting the actual sizeof(*<ptr>).
MEM_ALIGNED can only be used in combination with MEM_FIXED_SIZE annotated
argument types, since in !MEM_FIXED_SIZE cases the verifier does not know
the buffer size a priori and therefore cannot blindly write *<ptr> = val.
Fixes: 57c3bb725a ("bpf: Introduce ARG_PTR_TO_{INT,LONG} arg types")
Reported-by: Lonial Con <kongln9170@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20240913191754.13290-3-daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Zac Ecob reported a problem where a bpf program may cause kernel crash due
to the following error:
Oops: divide error: 0000 [#1] PREEMPT SMP KASAN PTI
The failure is due to the below signed divide:
LLONG_MIN/-1 where LLONG_MIN equals to -9,223,372,036,854,775,808.
LLONG_MIN/-1 is supposed to give a positive number 9,223,372,036,854,775,808,
but it is impossible since for 64-bit system, the maximum positive
number is 9,223,372,036,854,775,807. On x86_64, LLONG_MIN/-1 will
cause a kernel exception. On arm64, the result for LLONG_MIN/-1 is
LLONG_MIN.
Further investigation found all the following sdiv/smod cases may trigger
an exception when bpf program is running on x86_64 platform:
- LLONG_MIN/-1 for 64bit operation
- INT_MIN/-1 for 32bit operation
- LLONG_MIN%-1 for 64bit operation
- INT_MIN%-1 for 32bit operation
where -1 can be an immediate or in a register.
On arm64, there are no exceptions:
- LLONG_MIN/-1 = LLONG_MIN
- INT_MIN/-1 = INT_MIN
- LLONG_MIN%-1 = 0
- INT_MIN%-1 = 0
where -1 can be an immediate or in a register.
Insn patching is needed to handle the above cases and the patched codes
produced results aligned with above arm64 result. The below are pseudo
codes to handle sdiv/smod exceptions including both divisor -1 and divisor 0
and the divisor is stored in a register.
sdiv:
tmp = rX
tmp += 1 /* [-1, 0] -> [0, 1]
if tmp >(unsigned) 1 goto L2
if tmp == 0 goto L1
rY = 0
L1:
rY = -rY;
goto L3
L2:
rY /= rX
L3:
smod:
tmp = rX
tmp += 1 /* [-1, 0] -> [0, 1]
if tmp >(unsigned) 1 goto L1
if tmp == 1 (is64 ? goto L2 : goto L3)
rY = 0;
goto L2
L1:
rY %= rX
L2:
goto L4 // only when !is64
L3:
wY = wY // only when !is64
L4:
[1] https://lore.kernel.org/bpf/tPJLTEh7S_DxFEqAI2Ji5MBSoZVg7_G-Py2iaZpAaWtM961fFTWtsnlzwvTbzBzaUzwQAoNATXKUlt0LZOFgnDcIyKCswAnAGdUF3LBrhGQ=@protonmail.com/
Reported-by: Zac Ecob <zacecob@protonmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240913150326.1187788-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Pointers passed to tp_btf were trusted to be valid, but some tracepoints
do take NULL pointer as input, such as trace_tcp_send_reset(). Then the
invalid memory access cannot be detected by verifier.
This patch fix it by add a suffix "__nullable" to the unreliable
argument. The suffix is shown in btf, and PTR_MAYBE_NULL will be added
to nullable arguments. Then users must check the pointer before use it.
A problem here is that we use "btf_trace_##call" to search func_proto.
As it is a typedef, argument names as well as the suffix are not
recorded. To solve this, I use bpf_raw_event_map to find
"__bpf_trace##template" from "btf_trace_##call", and then we can see the
suffix.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Philo Lu <lulie@linux.alibaba.com>
Link: https://lore.kernel.org/r/20240911033719.91468-2-lulie@linux.alibaba.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
When "arg#%d expected pointer to ctx, but got %s" error is printed, both
template parts actually point to the type of the argument, therefore, it
will also say "but got PTR", regardless of what was the actual register
type.
Fix the message to print the register type in the second part of the
template, change the existing test to adapt to the new format, and add a
new test to test the case when arg is a pointer to context, but reg is a
scalar.
Fixes: 00b85860fe ("bpf: Rewrite kfunc argument handling")
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/bpf/20240909133909.1315460-1-maxim@isovalent.com
Commit 980ca8ceea ("bpf: check bpf_dummy_struct_ops program params for
test runs") does bitwise AND between reg_type and PTR_MAYBE_NULL, which
is correct, but due to type difference the compiler complains:
net/bpf/bpf_dummy_struct_ops.c:118:31: warning: bitwise operation between different enumeration types ('const enum bpf_reg_type' and 'enum bpf_type_flag') [-Wenum-enum-conversion]
118 | if (info && (info->reg_type & PTR_MAYBE_NULL))
| ~~~~~~~~~~~~~~ ^ ~~~~~~~~~~~~~~
Workaround the warning by moving the type_may_be_null() helper from
verifier.c into bpf_verifier.h, and reuse it here to check whether param
is nullable.
Fixes: 980ca8ceea ("bpf: check bpf_dummy_struct_ops program params for test runs")
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202404241956.HEiRYwWq-lkp@intel.com/
Signed-off-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240905055233.70203-1-shung-hsi.yu@suse.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch removes the insn_buf array stack usage from the
inline_bpf_loop(). Instead, the env->insn_buf is used. The
usage in inline_bpf_loop() needs more than 16 insn, so the
INSN_BUF_SIZE needs to be increased from 16 to 32.
The compiler stack size warning on the verifier is gone
after this change.
Cc: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20240904180847.56947-2-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently we cannot pass the pointer returned by iter next method as
argument to KF_TRUSTED_ARGS or KF_RCU kfuncs, because the pointer
returned by iter next method is not "valid".
This patch sets the pointer returned by iter next method to be valid.
This is based on the fact that if the iterator is implemented correctly,
then the pointer returned from the iter next method should be valid.
This does not make NULL pointer valid. If the iter next method has
KF_RET_NULL flag, then the verifier will ask the ebpf program to
check NULL pointer.
KF_RCU_PROTECTED iterator is a special case, the pointer returned by
iter next method should only be valid within RCU critical section,
so it should be with MEM_RCU, not PTR_TRUSTED.
Another special case is bpf_iter_num_next, which returns a pointer with
base type PTR_TO_MEM. PTR_TO_MEM should not be combined with type flag
PTR_TRUSTED (PTR_TO_MEM already means the pointer is valid).
The pointer returned by iter next method of other types of iterators
is with PTR_TRUSTED.
In addition, this patch adds get_iter_from_state to help us get the
current iterator from the current state.
Signed-off-by: Juntong Deng <juntong.deng@outlook.com>
Link: https://lore.kernel.org/r/AM6PR03MB584869F8B448EA1C87B7CDA399962@AM6PR03MB5848.eurprd03.prod.outlook.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch adds a .gen_epilogue to the bpf_verifier_ops. It is similar
to the existing .gen_prologue. Instead of allowing a subsystem
to run code at the beginning of a bpf prog, it allows the subsystem
to run code just before the bpf prog exit.
One of the use case is to allow the upcoming bpf qdisc to ensure that
the skb->dev is the same as the qdisc->dev_queue->dev. The bpf qdisc
struct_ops implementation could either fix it up or drop the skb.
Another use case could be in bpf_tcp_ca.c to enforce snd_cwnd
has sane value (e.g. non zero).
The epilogue can do the useful thing (like checking skb->dev) if it
can access the bpf prog's ctx. Unlike prologue, r1 may not hold the
ctx pointer. This patch saves the r1 in the stack if the .gen_epilogue
has returned some instructions in the "epilogue_buf".
The existing .gen_prologue is done in convert_ctx_accesses().
The new .gen_epilogue is done in the convert_ctx_accesses() also.
When it sees the (BPF_JMP | BPF_EXIT) instruction, it will be patched
with the earlier generated "epilogue_buf". The epilogue patching is
only done for the main prog.
Only one epilogue will be patched to the main program. When the
bpf prog has multiple BPF_EXIT instructions, a BPF_JA is used
to goto the earlier patched epilogue. Majority of the archs
support (BPF_JMP32 | BPF_JA): x86, arm, s390, risv64, loongarch,
powerpc and arc. This patch keeps it simple and always
use (BPF_JMP32 | BPF_JA). A new macro BPF_JMP32_A is added to
generate the (BPF_JMP32 | BPF_JA) insn.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20240829210833.388152-4-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The next patch will add a ctx ptr saving instruction
"(r1 = *(u64 *)(r10 -8)" at the beginning for the main prog
when there is an epilogue patch (by the .gen_epilogue() verifier
ops added in the next patch).
There is one corner case if the bpf prog has a BPF_JMP that jumps
to the 1st instruction. It needs an adjustment such that
those BPF_JMP instructions won't jump to the newly added
ctx saving instruction.
The commit 5337ac4c9b ("bpf: Fix the corner case with may_goto and jump to the 1st insn.")
has the details on this case.
Note that the jump back to 1st instruction is not limited to the
ctx ptr saving instruction. The same also applies to the prologue.
A later test, pro_epilogue_goto_start.c, has a test for the prologue
only case.
Thus, this patch does one adjustment after gen_prologue and
the future ctx ptr saving. It is done by
adjust_jmp_off(env->prog, 0, delta) where delta has the total
number of instructions in the prologue and
the future ctx ptr saving instruction.
The adjust_jmp_off(env->prog, 0, delta) assumes that the
prologue does not have a goto 1st instruction itself.
To accommodate the prologue might have a goto 1st insn itself,
this patch changes the adjust_jmp_off() to skip considering
the instructions between [tgt_idx, tgt_idx + delta).
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20240829210833.388152-3-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch moves the 'struct bpf_insn insn_buf[16]' stack usage
to the bpf_verifier_env. A '#define INSN_BUF_SIZE 16' is also added
to replace the ARRAY_SIZE(insn_buf) usages.
Both convert_ctx_accesses() and do_misc_fixup() are changed
to use the env->insn_buf.
It is a refactoring work for adding the epilogue_buf[16] in a later patch.
With this patch, the stack size usage decreased.
Before:
./kernel/bpf/verifier.c:22133:5: warning: stack frame size (2584)
After:
./kernel/bpf/verifier.c:22184:5: warning: stack frame size (2264)
Reviewed-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20240829210833.388152-2-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently we cannot pass zero offset (implicit cast) or non-zero offset
pointers to KF_ACQUIRE kfuncs. This is because KF_ACQUIRE kfuncs
requires strict type matching, but zero offset or non-zero offset does
not change the type of pointer, which causes the ebpf program to be
rejected by the verifier.
This can cause some problems, one example is that bpf_skb_peek_tail
kfunc [0] cannot be implemented by just passing in non-zero offset
pointers. We cannot pass pointers like &sk->sk_write_queue (non-zero
offset) or &sk->__sk_common (zero offset) to KF_ACQUIRE kfuncs.
This patch makes KF_ACQUIRE kfuncs not require strict type matching.
[0]: https://lore.kernel.org/bpf/AM6PR03MB5848CA39CB4B7A4397D380B099B12@AM6PR03MB5848.eurprd03.prod.outlook.com/
Signed-off-by: Juntong Deng <juntong.deng@outlook.com>
Link: https://lore.kernel.org/r/AM6PR03MB5848FD2BD89BF0B6B5AA3B4C99952@AM6PR03MB5848.eurprd03.prod.outlook.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, users can only stash kptr into map values with bpf_kptr_xchg().
This patch further supports stashing kptr into local kptr by adding local
kptr as a valid destination type.
When stashing into local kptr, btf_record in program BTF is used instead
of btf_record in map to search for the btf_field of the local kptr.
The local kptr specific checks in check_reg_type() only apply when the
source argument of bpf_kptr_xchg() is local kptr. Therefore, we make the
scope of the check explicit as the destination now can also be local kptr.
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Amery Hung <amery.hung@bytedance.com>
Link: https://lore.kernel.org/r/20240813212424.2871455-5-amery.hung@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
ARG_PTR_TO_KPTR is currently only used by the bpf_kptr_xchg helper.
Although it limits reg types for that helper's first arg to
PTR_TO_MAP_VALUE, any arbitrary mapval won't do: further custom
verification logic ensures that the mapval reg being xchgd-into is
pointing to a kptr field. If this is not the case, it's not safe to xchg
into that reg's pointee.
Let's rename the bpf_arg_type to more accurately describe the fairly
specific expectations that this arg type encodes.
This is a nonfunctional change.
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Amery Hung <amery.hung@bytedance.com>
Link: https://lore.kernel.org/r/20240813212424.2871455-4-amery.hung@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
do_misc_fixups() relaces bpf_cast_to_kern_ctx() and bpf_rdonly_cast()
by a single instruction "r0 = r1". This follows bpf_fastcall contract.
This commit allows bpf_fastcall pattern rewrite for these two
functions in order to use them in bpf_fastcall selftests.
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240822084112.3257995-5-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Attribute used by LLVM implementation of the feature had been changed
from no_caller_saved_registers to bpf_fastcall (see [1]).
This commit replaces references to nocsr by references to bpf_fastcall
to keep LLVM and Kernel parts in sync.
[1] https://github.com/llvm/llvm-project/pull/105417
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240822084112.3257995-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
There are potentially useful cases where a specific iterator type might
need to be passed into some kfunc. So, in addition to existing
bpf_iter_<type>_{new,next,destroy}() kfuncs, allow to pass iterator
pointer to any kfunc.
We employ "__iter" naming suffix for arguments that are meant to accept
iterators. We also enforce that they accept PTR -> STRUCT btf_iter_<type>
type chain and point to a valid initialized on-the-stack iterator state.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240808232230.2848712-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Calling conventions for __bpf_map_get() would be more convenient
if it left fpdut() on failure to callers. Makes for simpler logics
in the callers.
Among other things, the proof of memory safety no longer has to
rely upon file->private_data never being ERR_PTR(...) for bpffs files.
Original calling conventions made it impossible for the caller to tell
whether __bpf_map_get() has returned ERR_PTR(-EINVAL) because it has found
the file not be a bpf map one (in which case it would've done fdput())
or because it found that ERR_PTR(-EINVAL) in file->private_data of a
bpf map file (in which case fdput() would _not_ have been done).
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Factor out the logic to extract bpf_map instances from FD embedded in
bpf_insns, adding it to the list of used_maps (unless it's already
there, in which case we just reuse map's index). This simplifies the
logic in resolve_pseudo_ldimm64(), especially around `struct fd`
handling, as all that is now neatly contained in the helper and doesn't
leak into a dozen error handling paths.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Daniel Hodges reported a kernel verifier crash when playing with sched-ext.
Further investigation shows that the crash is due to invalid memory access
in stacksafe(). More specifically, it is the following code:
if (exact != NOT_EXACT &&
old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
cur->stack[spi].slot_type[i % BPF_REG_SIZE])
return false;
The 'i' iterates old->allocated_stack.
If cur->allocated_stack < old->allocated_stack the out-of-bound
access will happen.
To fix the issue add 'i >= cur->allocated_stack' check such that if
the condition is true, stacksafe() should fail. Otherwise,
cur->stack[spi].slot_type[i % BPF_REG_SIZE] memory access is legal.
Fixes: 2793a8b015 ("bpf: exact states comparison for iterator convergence checks")
Cc: Eduard Zingerman <eddyz87@gmail.com>
Reported-by: Daniel Hodges <hodgesd@meta.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240812214847.213612-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The function bpf_get_smp_processor_id() is processed in a different
way, depending on the arch:
- on x86 verifier replaces call to bpf_get_smp_processor_id() with a
sequence of instructions that modify only r0;
- on riscv64 jit replaces call to bpf_get_smp_processor_id() with a
sequence of instructions that modify only r0;
- on arm64 jit replaces call to bpf_get_smp_processor_id() with a
sequence of instructions that modify only r0 and tmp registers.
These rewrites satisfy attribute no_caller_saved_registers contract.
Allow rewrite of no_caller_saved_registers patterns for
bpf_get_smp_processor_id() in order to use this function as a canary
for no_caller_saved_registers tests.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240722233844.1406874-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
GCC and LLVM define a no_caller_saved_registers function attribute.
This attribute means that function scratches only some of
the caller saved registers defined by ABI.
For BPF the set of such registers could be defined as follows:
- R0 is scratched only if function is non-void;
- R1-R5 are scratched only if corresponding parameter type is defined
in the function prototype.
This commit introduces flag bpf_func_prot->allow_nocsr.
If this flag is set for some helper function, verifier assumes that
it follows no_caller_saved_registers calling convention.
The contract between kernel and clang allows to simultaneously use
such functions and maintain backwards compatibility with old
kernels that don't understand no_caller_saved_registers calls
(nocsr for short):
- clang generates a simple pattern for nocsr calls, e.g.:
r1 = 1;
r2 = 2;
*(u64 *)(r10 - 8) = r1;
*(u64 *)(r10 - 16) = r2;
call %[to_be_inlined]
r2 = *(u64 *)(r10 - 16);
r1 = *(u64 *)(r10 - 8);
r0 = r1;
r0 += r2;
exit;
- kernel removes unnecessary spills and fills, if called function is
inlined by verifier or current JIT (with assumption that patch
inserted by verifier or JIT honors nocsr contract, e.g. does not
scratch r3-r5 for the example above), e.g. the code above would be
transformed to:
r1 = 1;
r2 = 2;
call %[to_be_inlined]
r0 = r1;
r0 += r2;
exit;
Technically, the transformation is split into the following phases:
- function mark_nocsr_patterns(), called from bpf_check()
searches and marks potential patterns in instruction auxiliary data;
- upon stack read or write access,
function check_nocsr_stack_contract() is used to verify if
stack offsets, presumably reserved for nocsr patterns, are used
only from those patterns;
- function remove_nocsr_spills_fills(), called from bpf_check(),
applies the rewrite for valid patterns.
See comment in mark_nocsr_pattern_for_call() for more details.
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240722233844.1406874-3-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Extract the part of check_helper_call() as a utility function allowing
to query 'struct bpf_func_proto' for a specific helper function id.
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240722233844.1406874-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
With latest llvm19, the selftest iters/iter_arr_with_actual_elem_count
failed with -mcpu=v4.
The following are the details:
0: R1=ctx() R10=fp0
; int iter_arr_with_actual_elem_count(const void *ctx) @ iters.c:1420
0: (b4) w7 = 0 ; R7_w=0
; int i, n = loop_data.n, sum = 0; @ iters.c:1422
1: (18) r1 = 0xffffc90000191478 ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144)
3: (61) r6 = *(u32 *)(r1 +128) ; R1_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) R6_w=scalar(smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff))
; if (n > ARRAY_SIZE(loop_data.data)) @ iters.c:1424
4: (26) if w6 > 0x20 goto pc+27 ; R6_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
5: (bf) r8 = r10 ; R8_w=fp0 R10=fp0
6: (07) r8 += -8 ; R8_w=fp-8
; bpf_for(i, 0, n) { @ iters.c:1427
7: (bf) r1 = r8 ; R1_w=fp-8 R8_w=fp-8
8: (b4) w2 = 0 ; R2_w=0
9: (bc) w3 = w6 ; R3_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R6_w=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f))
10: (85) call bpf_iter_num_new#45179 ; R0=scalar() fp-8=iter_num(ref_id=2,state=active,depth=0) refs=2
11: (bf) r1 = r8 ; R1=fp-8 R8=fp-8 refs=2
12: (85) call bpf_iter_num_next#45181 13: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R6=scalar(id=1,smin=smin32=0,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
; bpf_for(i, 0, n) { @ iters.c:1427
13: (15) if r0 == 0x0 goto pc+2 ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) refs=2
14: (81) r1 = *(s32 *)(r0 +0) ; R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff) refs=2
15: (ae) if w1 < w6 goto pc+4 20: R0=rdonly_mem(id=3,ref_obj_id=2,sz=4) R1=scalar(smin=0xffffffff80000000,smax=smax32=umax32=31,umax=0xffffffff0000001f,smin32=0,var_off=(0x0; 0xffffffff0000001f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=0 R8=fp-8 R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=1) refs=2
; sum += loop_data.data[i]; @ iters.c:1429
20: (67) r1 <<= 2 ; R1_w=scalar(smax=0x7ffffffc0000007c,umax=0xfffffffc0000007c,smin32=0,smax32=umax32=124,var_off=(0x0; 0xfffffffc0000007c)) refs=2
21: (18) r2 = 0xffffc90000191478 ; R2_w=map_value(map=iters.bss,ks=4,vs=1280,off=1144) refs=2
23: (0f) r2 += r1
math between map_value pointer and register with unbounded min value is not allowed
The source code:
int iter_arr_with_actual_elem_count(const void *ctx)
{
int i, n = loop_data.n, sum = 0;
if (n > ARRAY_SIZE(loop_data.data))
return 0;
bpf_for(i, 0, n) {
/* no rechecking of i against ARRAY_SIZE(loop_data.n) */
sum += loop_data.data[i];
}
return sum;
}
The insn #14 is a sign-extenstion load which is related to 'int i'.
The insn #15 did a subreg comparision. Note that smin=0xffffffff80000000 and this caused later
insn #23 failed verification due to unbounded min value.
Actually insn #15 R1 smin range can be better. Before insn #15, we have
R1_w=scalar(smin=0xffffffff80000000,smax=0x7fffffff)
With the above range, we know for R1, upper 32bit can only be 0xffffffff or 0.
Otherwise, the value range for R1 could be beyond [smin=0xffffffff80000000,smax=0x7fffffff].
After insn #15, for the true patch, we know smin32=0 and smax32=32. With the upper 32bit 0xffffffff,
then the corresponding value is [0xffffffff00000000, 0xffffffff00000020]. The range is
obviously beyond the original range [smin=0xffffffff80000000,smax=0x7fffffff] and the
range is not possible. So the upper 32bit must be 0, which implies smin = smin32 and
smax = smax32.
This patch fixed the issue by adding additional register deduction after 32-bit compare
insn. If the signed 32-bit register range is non-negative then 64-bit smin is
in range of [S32_MIN, S32_MAX], then the actual 64-bit smin/smax should be the same
as 32-bit smin32/smax32.
With this patch, iters/iter_arr_with_actual_elem_count succeeded with better register range:
from 15 to 20: R0=rdonly_mem(id=7,ref_obj_id=2,sz=4) R1_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=31,var_off=(0x0; 0x1f)) R6=scalar(id=1,smin=umin=smin32=umin32=1,smax=umax=smax32=umax32=32,var_off=(0x0; 0x3f)) R7=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R8=scalar(id=9,smin=0,smax=umax=0xffffffff,var_off=(0x0; 0xffffffff)) R10=fp0 fp-8=iter_num(ref_id=2,state=active,depth=3) refs=2
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240723162933.2731620-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
syzbot reported a kernel crash due to
commit 1f1e864b65 ("bpf: Handle sign-extenstin ctx member accesses").
The reason is due to sign-extension of 32-bit load for
packet data/data_end/data_meta uapi field.
The original code looks like:
r2 = *(s32 *)(r1 + 76) /* load __sk_buff->data */
r3 = *(u32 *)(r1 + 80) /* load __sk_buff->data_end */
r0 = r2
r0 += 8
if r3 > r0 goto +1
...
Note that __sk_buff->data load has 32-bit sign extension.
After verification and convert_ctx_accesses(), the final asm code looks like:
r2 = *(u64 *)(r1 +208)
r2 = (s32)r2
r3 = *(u64 *)(r1 +80)
r0 = r2
r0 += 8
if r3 > r0 goto pc+1
...
Note that 'r2 = (s32)r2' may make the kernel __sk_buff->data address invalid
which may cause runtime failure.
Currently, in C code, typically we have
void *data = (void *)(long)skb->data;
void *data_end = (void *)(long)skb->data_end;
...
and it will generate
r2 = *(u64 *)(r1 +208)
r3 = *(u64 *)(r1 +80)
r0 = r2
r0 += 8
if r3 > r0 goto pc+1
If we allow sign-extension,
void *data = (void *)(long)(int)skb->data;
void *data_end = (void *)(long)skb->data_end;
...
the generated code looks like
r2 = *(u64 *)(r1 +208)
r2 <<= 32
r2 s>>= 32
r3 = *(u64 *)(r1 +80)
r0 = r2
r0 += 8
if r3 > r0 goto pc+1
and this will cause verification failure since "r2 <<= 32" is not allowed
as "r2" is a packet pointer.
To fix this issue for case
r2 = *(s32 *)(r1 + 76) /* load __sk_buff->data */
this patch added additional checking in is_valid_access() callback
function for packet data/data_end/data_meta access. If those accesses
are with sign-extenstion, the verification will fail.
[1] https://lore.kernel.org/bpf/000000000000c90eee061d236d37@google.com/
Reported-by: syzbot+ad9ec60c8eaf69e6f99c@syzkaller.appspotmail.com
Fixes: 1f1e864b65 ("bpf: Handle sign-extenstin ctx member accesses")
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20240723153439.2429035-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
After checking lsm hook return range in verifier, the test case
"test_progs -t test_lsm" failed, and the failure log says:
libbpf: prog 'test_int_hook': BPF program load failed: Invalid argument
libbpf: prog 'test_int_hook': -- BEGIN PROG LOAD LOG --
0: R1=ctx() R10=fp0
; int BPF_PROG(test_int_hook, struct vm_area_struct *vma, @ lsm.c:89
0: (79) r0 = *(u64 *)(r1 +24) ; R0_w=scalar(smin=smin32=-4095,smax=smax32=0) R1=ctx()
[...]
24: (b4) w0 = -1 ; R0_w=0xffffffff
; int BPF_PROG(test_int_hook, struct vm_area_struct *vma, @ lsm.c:89
25: (95) exit
At program exit the register R0 has smin=4294967295 smax=4294967295 should have been in [-4095, 0]
It can be seen that instruction "w0 = -1" zero extended -1 to 64-bit
register r0, setting both smin and smax values of r0 to 4294967295.
This resulted in a false reject when r0 was checked with range [-4095, 0].
Given bpf lsm does not return 64-bit values, this patch fixes it by changing
the compare between r0 and return range from 64-bit operation to 32-bit
operation for bpf lsm.
Fixes: 8fa4ecd49b ("bpf: enforce exact retval range on subprog/callback exit")
Signed-off-by: Xu Kuohai <xukuohai@huawei.com>
Acked-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20240719110059.797546-5-xukuohai@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
A bpf prog returning a positive number attached to file_alloc_security
hook makes kernel panic.
This happens because file system can not filter out the positive number
returned by the LSM prog using IS_ERR, and misinterprets this positive
number as a file pointer.
Given that hook file_alloc_security never returned positive number
before the introduction of BPF LSM, and other BPF LSM hooks may
encounter similar issues, this patch adds LSM return value check
in verifier, to ensure no unexpected value is returned.
Fixes: 520b7aa00d ("bpf: lsm: Initialize the BPF LSM hooks")
Reported-by: Xin Liu <liuxin350@huawei.com>
Signed-off-by: Xu Kuohai <xukuohai@huawei.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20240719110059.797546-3-xukuohai@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
The bpf_tcp_ca struct_ops currently uses a "u32 unsupported_ops[]"
array to track which ops is not supported.
After cfi_stubs had been added, the function pointer in cfi_stubs is
also NULL for the unsupported ops. Thus, the "u32 unsupported_ops[]"
becomes redundant. This observation was originally brought up in the
bpf/cfi discussion:
https://lore.kernel.org/bpf/CAADnVQJoEkdjyCEJRPASjBw1QGsKYrF33QdMGc1RZa9b88bAEA@mail.gmail.com/
The recent bpf qdisc patch (https://lore.kernel.org/bpf/20240714175130.4051012-6-amery.hung@bytedance.com/)
also needs to specify quite many unsupported ops. It is a good time
to clean it up.
This patch removes the need of "u32 unsupported_ops[]" and tests for null-ness
in the cfi_stubs instead.
Testing the cfi_stubs is done in a new function bpf_struct_ops_supported().
The verifier will call bpf_struct_ops_supported() when loading the
struct_ops program. The ".check_member" is removed from the bpf_tcp_ca
in this patch. ".check_member" could still be useful for other subsytems
to enforce other restrictions (e.g. sched_ext checks for prog->sleepable).
To keep the same error return, ENOTSUPP is used.
Cc: Amery Hung <ameryhung@gmail.com>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20240722183049.2254692-2-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Function mark_precise_scalar_ids() is superseded by
bt_sync_linked_regs() and equal scalars tracking in jump history.
mark_precise_scalar_ids() propagates precision over registers sharing
same ID on parent/child state boundaries, while jump history records
allow bt_sync_linked_regs() to propagate same information with
instruction level granularity, which is strictly more precise.
This commit removes mark_precise_scalar_ids() and updates test cases
in progs/verifier_scalar_ids to reflect new verifier behavior.
The tests are updated in the following manner:
- mark_precise_scalar_ids() propagated precision regardless of
presence of conditional jumps, while new jump history based logic
only kicks in when conditional jumps are present.
Hence test cases are augmented with conditional jumps to still
trigger precision propagation.
- As equal scalars tracking no longer relies on parent/child state
boundaries some test cases are no longer interesting,
such test cases are removed, namely:
- precision_same_state and precision_cross_state are superseded by
linked_regs_bpf_k;
- precision_same_state_broken_link and equal_scalars_broken_link
are superseded by linked_regs_broken_link.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240718202357.1746514-3-eddyz87@gmail.com
Use bpf_verifier_state->jmp_history to track which registers were
updated by find_equal_scalars() (renamed to collect_linked_regs())
when conditional jump was verified. Use recorded information in
backtrack_insn() to propagate precision.
E.g. for the following program:
while verifying instructions
1: r1 = r0 |
2: if r1 < 8 goto ... | push r0,r1 as linked registers in jmp_history
3: if r0 > 16 goto ... | push r0,r1 as linked registers in jmp_history
4: r2 = r10 |
5: r2 += r0 v mark_chain_precision(r0)
while doing mark_chain_precision(r0)
5: r2 += r0 | mark r0 precise
4: r2 = r10 |
3: if r0 > 16 goto ... | mark r0,r1 as precise
2: if r1 < 8 goto ... | mark r0,r1 as precise
1: r1 = r0 v
Technically, do this as follows:
- Use 10 bits to identify each register that gains range because of
sync_linked_regs():
- 3 bits for frame number;
- 6 bits for register or stack slot number;
- 1 bit to indicate if register is spilled.
- Use u64 as a vector of 6 such records + 4 bits for vector length.
- Augment struct bpf_jmp_history_entry with a field 'linked_regs'
representing such vector.
- When doing check_cond_jmp_op() remember up to 6 registers that
gain range because of sync_linked_regs() in such a vector.
- Don't propagate range information and reset IDs for registers that
don't fit in 6-value vector.
- Push a pair {instruction index, linked registers vector}
to bpf_verifier_state->jmp_history.
- When doing backtrack_insn() check if any of recorded linked
registers is currently marked precise, if so mark all linked
registers as precise.
This also requires fixes for two test_verifier tests:
- precise: test 1
- precise: test 2
Both tests contain the following instruction sequence:
19: (bf) r2 = r9 ; R2=scalar(id=3) R9=scalar(id=3)
20: (a5) if r2 < 0x8 goto pc+1 ; R2=scalar(id=3,umin=8)
21: (95) exit
22: (07) r2 += 1 ; R2_w=scalar(id=3+1,...)
23: (bf) r1 = r10 ; R1_w=fp0 R10=fp0
24: (07) r1 += -8 ; R1_w=fp-8
25: (b7) r3 = 0 ; R3_w=0
26: (85) call bpf_probe_read_kernel#113
The call to bpf_probe_read_kernel() at (26) forces r2 to be precise.
Previously, this forced all registers with same id to become precise
immediately when mark_chain_precision() is called.
After this change, the precision is propagated to registers sharing
same id only when 'if' instruction is backtracked.
Hence verification log for both tests is changed:
regs=r2,r9 -> regs=r2 for instructions 25..20.
Fixes: 904e6ddf41 ("bpf: Use scalar ids in mark_chain_precision()")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20240718202357.1746514-2-eddyz87@gmail.com
Closes: https://lore.kernel.org/bpf/CAEf4BzZ0xidVCqB47XnkXcNhkPWF6_nTV7yt+_Lf0kcFEut2Mg@mail.gmail.com/
walkers") is known to cause a performance regression
(https://lore.kernel.org/all/3acefad9-96e5-4681-8014-827d6be71c7a@linux.ibm.com/T/#mfa809800a7862fb5bdf834c6f71a3a5113eb83ff).
Yu has a fix which I'll send along later via the hotfixes branch.
- In the series "mm: Avoid possible overflows in dirty throttling" Jan
Kara addresses a couple of issues in the writeback throttling code.
These fixes are also targetted at -stable kernels.
- Ryusuke Konishi's series "nilfs2: fix potential issues related to
reserved inodes" does that. This should actually be in the
mm-nonmm-stable tree, along with the many other nilfs2 patches. My bad.
- More folio conversions from Kefeng Wang in the series "mm: convert to
folio_alloc_mpol()"
- Kemeng Shi has sent some cleanups to the writeback code in the series
"Add helper functions to remove repeated code and improve readability of
cgroup writeback"
- Kairui Song has made the swap code a little smaller and a little
faster in the series "mm/swap: clean up and optimize swap cache index".
- In the series "mm/memory: cleanly support zeropage in
vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David
Hildenbrand has reworked the rather sketchy handling of the use of the
zeropage in MAP_SHARED mappings. I don't see any runtime effects here -
more a cleanup/understandability/maintainablity thing.
- Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling of
higher addresses, for aarch64. The (poorly named) series is
"Restructure va_high_addr_switch".
- The core TLB handling code gets some cleanups and possible slight
optimizations in Bang Li's series "Add update_mmu_tlb_range() to
simplify code".
- Jane Chu has improved the handling of our
fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in the
series "Enhance soft hwpoison handling and injection".
- Jeff Johnson has sent a billion patches everywhere to add
MODULE_DESCRIPTION() to everything. Some landed in this pull.
- In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang has
simplified migration's use of hardware-offload memory copying.
- Yosry Ahmed performs more folio API conversions in his series "mm:
zswap: trivial folio conversions".
- In the series "large folios swap-in: handle refault cases first",
Chuanhua Han inches us forward in the handling of large pages in the
swap code. This is a cleanup and optimization, working toward the end
objective of full support of large folio swapin/out.
- In the series "mm,swap: cleanup VMA based swap readahead window
calculation", Huang Ying has contributed some cleanups and a possible
fixlet to his VMA based swap readahead code.
- In the series "add mTHP support for anonymous shmem" Baolin Wang has
taught anonymous shmem mappings to use multisize THP. By default this
is a no-op - users must opt in vis sysfs controls. Dramatic
improvements in pagefault latency are realized.
- David Hildenbrand has some cleanups to our remaining use of
page_mapcount() in the series "fs/proc: move page_mapcount() to
fs/proc/internal.h".
- David also has some highmem accounting cleanups in the series
"mm/highmem: don't track highmem pages manually".
- Build-time fixes and cleanups from John Hubbard in the series
"cleanups, fixes, and progress towards avoiding "make headers"".
- Cleanups and consolidation of the core pagemap handling from Barry
Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers
and utilize them".
- Lance Yang's series "Reclaim lazyfree THP without splitting" has
reduced the latency of the reclaim of pmd-mapped THPs under fairly
common circumstances. A 10x speedup is seen in a microbenchmark.
It does this by punting to aother CPU but I guess that's a win unless
all CPUs are pegged.
- hugetlb_cgroup cleanups from Xiu Jianfeng in the series
"mm/hugetlb_cgroup: rework on cftypes".
- Miaohe Lin's series "Some cleanups for memory-failure" does just that
thing.
- Is anyone reading this stuff? If so, email me!
- Someone other than SeongJae has developed a DAMON feature in Honggyu
Kim's series "DAMON based tiered memory management for CXL memory".
This adds DAMON features which may be used to help determine the
efficiency of our placement of CXL/PCIe attached DRAM.
- DAMON user API centralization and simplificatio work in SeongJae
Park's series "mm/damon: introduce DAMON parameters online commit
function".
- In the series "mm: page_type, zsmalloc and page_mapcount_reset()"
David Hildenbrand does some maintenance work on zsmalloc - partially
modernizing its use of pageframe fields.
- Kefeng Wang provides more folio conversions in the series "mm: remove
page_maybe_dma_pinned() and page_mkclean()".
- More cleanup from David Hildenbrand, this time in the series
"mm/memory_hotplug: use PageOffline() instead of PageReserved() for
!ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline()
pages" and permits the removal of some virtio-mem hacks.
- Barry Song's series "mm: clarify folio_add_new_anon_rmap() and
__folio_add_anon_rmap()" is a cleanup to the anon folio handling in
preparation for mTHP (multisize THP) swapin.
- Kefeng Wang's series "mm: improve clear and copy user folio"
implements more folio conversions, this time in the area of large folio
userspace copying.
- The series "Docs/mm/damon/maintaier-profile: document a mailing tool
and community meetup series" tells people how to get better involved
with other DAMON developers. From SeongJae Park.
- A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does
that.
- David Hildenbrand sends along more cleanups, this time against the
migration code. The series is "mm/migrate: move NUMA hinting fault
folio isolation + checks under PTL".
- Jan Kara has found quite a lot of strangenesses and minor errors in
the readahead code. He addresses this in the series "mm: Fix various
readahead quirks".
- SeongJae Park's series "selftests/damon: test DAMOS tried regions and
{min,max}_nr_regions" adds features and addresses errors in DAMON's self
testing code.
- Gavin Shan has found a userspace-triggerable WARN in the pagecache
code. The series "mm/filemap: Limit page cache size to that supported
by xarray" addresses this. The series is marked cc:stable.
- Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations
and cleanup" cleans up and slightly optimizes KSM.
- Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of
code motion. The series (which also makes the memcg-v1 code
Kconfigurable) are
"mm: memcg: separate legacy cgroup v1 code and put under config
option" and
"mm: memcg: put cgroup v1-specific memcg data under CONFIG_MEMCG_V1"
- Dan Schatzberg's series "Add swappiness argument to memory.reclaim"
adds an additional feature to this cgroup-v2 control file.
- The series "Userspace controls soft-offline pages" from Jiaqi Yan
permits userspace to stop the kernel's automatic treatment of excessive
correctable memory errors. In order to permit userspace to monitor and
handle this situation.
- Kefeng Wang's series "mm: migrate: support poison recover from migrate
folio" teaches the kernel to appropriately handle migration from
poisoned source folios rather than simply panicing.
- SeongJae Park's series "Docs/damon: minor fixups and improvements"
does those things.
- In the series "mm/zsmalloc: change back to per-size_class lock"
Chengming Zhou improves zsmalloc's scalability and memory utilization.
- Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for
pinning memfd folios" makes the GUP code use FOLL_PIN rather than bare
refcount increments. So these paes can first be moved aside if they
reside in the movable zone or a CMA block.
- Andrii Nakryiko has added a binary ioctl()-based API to /proc/pid/maps
for much faster reading of vma information. The series is "query VMAs
from /proc/<pid>/maps".
- In the series "mm: introduce per-order mTHP split counters" Lance Yang
improves the kernel's presentation of developer information related to
multisize THP splitting.
- Michael Ellerman has developed the series "Reimplement huge pages
without hugepd on powerpc (8xx, e500, book3s/64)". This permits
userspace to use all available huge page sizes.
- In the series "revert unconditional slab and page allocator fault
injection calls" Vlastimil Babka removes a performance-affecting and not
very useful feature from slab fault injection.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZp2C+QAKCRDdBJ7gKXxA
joTkAQDvjqOoFStqk4GU3OXMYB7WCU/ZQMFG0iuu1EEwTVDZ4QEA8CnG7seek1R3
xEoo+vw0sWWeLV3qzsxnCA1BJ8cTJA8=
=z0Lf
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- In the series "mm: Avoid possible overflows in dirty throttling" Jan
Kara addresses a couple of issues in the writeback throttling code.
These fixes are also targetted at -stable kernels.
- Ryusuke Konishi's series "nilfs2: fix potential issues related to
reserved inodes" does that. This should actually be in the
mm-nonmm-stable tree, along with the many other nilfs2 patches. My
bad.
- More folio conversions from Kefeng Wang in the series "mm: convert to
folio_alloc_mpol()"
- Kemeng Shi has sent some cleanups to the writeback code in the series
"Add helper functions to remove repeated code and improve readability
of cgroup writeback"
- Kairui Song has made the swap code a little smaller and a little
faster in the series "mm/swap: clean up and optimize swap cache
index".
- In the series "mm/memory: cleanly support zeropage in
vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David
Hildenbrand has reworked the rather sketchy handling of the use of
the zeropage in MAP_SHARED mappings. I don't see any runtime effects
here - more a cleanup/understandability/maintainablity thing.
- Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling
of higher addresses, for aarch64. The (poorly named) series is
"Restructure va_high_addr_switch".
- The core TLB handling code gets some cleanups and possible slight
optimizations in Bang Li's series "Add update_mmu_tlb_range() to
simplify code".
- Jane Chu has improved the handling of our
fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in
the series "Enhance soft hwpoison handling and injection".
- Jeff Johnson has sent a billion patches everywhere to add
MODULE_DESCRIPTION() to everything. Some landed in this pull.
- In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang
has simplified migration's use of hardware-offload memory copying.
- Yosry Ahmed performs more folio API conversions in his series "mm:
zswap: trivial folio conversions".
- In the series "large folios swap-in: handle refault cases first",
Chuanhua Han inches us forward in the handling of large pages in the
swap code. This is a cleanup and optimization, working toward the end
objective of full support of large folio swapin/out.
- In the series "mm,swap: cleanup VMA based swap readahead window
calculation", Huang Ying has contributed some cleanups and a possible
fixlet to his VMA based swap readahead code.
- In the series "add mTHP support for anonymous shmem" Baolin Wang has
taught anonymous shmem mappings to use multisize THP. By default this
is a no-op - users must opt in vis sysfs controls. Dramatic
improvements in pagefault latency are realized.
- David Hildenbrand has some cleanups to our remaining use of
page_mapcount() in the series "fs/proc: move page_mapcount() to
fs/proc/internal.h".
- David also has some highmem accounting cleanups in the series
"mm/highmem: don't track highmem pages manually".
- Build-time fixes and cleanups from John Hubbard in the series
"cleanups, fixes, and progress towards avoiding "make headers"".
- Cleanups and consolidation of the core pagemap handling from Barry
Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers
and utilize them".
- Lance Yang's series "Reclaim lazyfree THP without splitting" has
reduced the latency of the reclaim of pmd-mapped THPs under fairly
common circumstances. A 10x speedup is seen in a microbenchmark.
It does this by punting to aother CPU but I guess that's a win unless
all CPUs are pegged.
- hugetlb_cgroup cleanups from Xiu Jianfeng in the series
"mm/hugetlb_cgroup: rework on cftypes".
- Miaohe Lin's series "Some cleanups for memory-failure" does just that
thing.
- Someone other than SeongJae has developed a DAMON feature in Honggyu
Kim's series "DAMON based tiered memory management for CXL memory".
This adds DAMON features which may be used to help determine the
efficiency of our placement of CXL/PCIe attached DRAM.
- DAMON user API centralization and simplificatio work in SeongJae
Park's series "mm/damon: introduce DAMON parameters online commit
function".
- In the series "mm: page_type, zsmalloc and page_mapcount_reset()"
David Hildenbrand does some maintenance work on zsmalloc - partially
modernizing its use of pageframe fields.
- Kefeng Wang provides more folio conversions in the series "mm: remove
page_maybe_dma_pinned() and page_mkclean()".
- More cleanup from David Hildenbrand, this time in the series
"mm/memory_hotplug: use PageOffline() instead of PageReserved() for
!ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline()
pages" and permits the removal of some virtio-mem hacks.
- Barry Song's series "mm: clarify folio_add_new_anon_rmap() and
__folio_add_anon_rmap()" is a cleanup to the anon folio handling in
preparation for mTHP (multisize THP) swapin.
- Kefeng Wang's series "mm: improve clear and copy user folio"
implements more folio conversions, this time in the area of large
folio userspace copying.
- The series "Docs/mm/damon/maintaier-profile: document a mailing tool
and community meetup series" tells people how to get better involved
with other DAMON developers. From SeongJae Park.
- A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does
that.
- David Hildenbrand sends along more cleanups, this time against the
migration code. The series is "mm/migrate: move NUMA hinting fault
folio isolation + checks under PTL".
- Jan Kara has found quite a lot of strangenesses and minor errors in
the readahead code. He addresses this in the series "mm: Fix various
readahead quirks".
- SeongJae Park's series "selftests/damon: test DAMOS tried regions and
{min,max}_nr_regions" adds features and addresses errors in DAMON's
self testing code.
- Gavin Shan has found a userspace-triggerable WARN in the pagecache
code. The series "mm/filemap: Limit page cache size to that supported
by xarray" addresses this. The series is marked cc:stable.
- Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations
and cleanup" cleans up and slightly optimizes KSM.
- Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of
code motion. The series (which also makes the memcg-v1 code
Kconfigurable) are "mm: memcg: separate legacy cgroup v1 code and put
under config option" and "mm: memcg: put cgroup v1-specific memcg
data under CONFIG_MEMCG_V1"
- Dan Schatzberg's series "Add swappiness argument to memory.reclaim"
adds an additional feature to this cgroup-v2 control file.
- The series "Userspace controls soft-offline pages" from Jiaqi Yan
permits userspace to stop the kernel's automatic treatment of
excessive correctable memory errors. In order to permit userspace to
monitor and handle this situation.
- Kefeng Wang's series "mm: migrate: support poison recover from
migrate folio" teaches the kernel to appropriately handle migration
from poisoned source folios rather than simply panicing.
- SeongJae Park's series "Docs/damon: minor fixups and improvements"
does those things.
- In the series "mm/zsmalloc: change back to per-size_class lock"
Chengming Zhou improves zsmalloc's scalability and memory
utilization.
- Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for
pinning memfd folios" makes the GUP code use FOLL_PIN rather than
bare refcount increments. So these paes can first be moved aside if
they reside in the movable zone or a CMA block.
- Andrii Nakryiko has added a binary ioctl()-based API to
/proc/pid/maps for much faster reading of vma information. The series
is "query VMAs from /proc/<pid>/maps".
- In the series "mm: introduce per-order mTHP split counters" Lance
Yang improves the kernel's presentation of developer information
related to multisize THP splitting.
- Michael Ellerman has developed the series "Reimplement huge pages
without hugepd on powerpc (8xx, e500, book3s/64)". This permits
userspace to use all available huge page sizes.
- In the series "revert unconditional slab and page allocator fault
injection calls" Vlastimil Babka removes a performance-affecting and
not very useful feature from slab fault injection.
* tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (411 commits)
mm/mglru: fix ineffective protection calculation
mm/zswap: fix a white space issue
mm/hugetlb: fix kernel NULL pointer dereference when migrating hugetlb folio
mm/hugetlb: fix possible recursive locking detected warning
mm/gup: clear the LRU flag of a page before adding to LRU batch
mm/numa_balancing: teach mpol_to_str about the balancing mode
mm: memcg1: convert charge move flags to unsigned long long
alloc_tag: fix page_ext_get/page_ext_put sequence during page splitting
lib: reuse page_ext_data() to obtain codetag_ref
lib: add missing newline character in the warning message
mm/mglru: fix overshooting shrinker memory
mm/mglru: fix div-by-zero in vmpressure_calc_level()
mm/kmemleak: replace strncpy() with strscpy()
mm, page_alloc: put should_fail_alloc_page() back behing CONFIG_FAIL_PAGE_ALLOC
mm, slab: put should_failslab() back behind CONFIG_SHOULD_FAILSLAB
mm: ignore data-race in __swap_writepage
hugetlbfs: ensure generic_hugetlb_get_unmapped_area() returns higher address than mmap_min_addr
mm: shmem: rename mTHP shmem counters
mm: swap_state: use folio_alloc_mpol() in __read_swap_cache_async()
mm/migrate: putback split folios when numa hint migration fails
...
This mostly reverts commit af3b854492 ("mm/page_alloc.c: allow error
injection"). The commit made should_fail_alloc_page() a noinline function
that's always called from the page allocation hotpath, even if it's empty
because CONFIG_FAIL_PAGE_ALLOC is not enabled, and there is no option to
disable it and prevent the associated function call overhead.
As with the preceding patch "mm, slab: put should_failslab back behind
CONFIG_SHOULD_FAILSLAB" and for the same reasons, put the
should_fail_alloc_page() back behind the config option. When enabled, the
ALLOW_ERROR_INJECTION and BTF_ID records are preserved so it's not a
complete revert.
Link: https://lkml.kernel.org/r/20240711-b4-fault-injection-reverts-v1-2-9e2651945d68@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Eduard Zingerman <eddyz87@gmail.com>
Cc: Hao Luo <haoluo@google.com>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: KP Singh <kpsingh@kernel.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Song Liu <song@kernel.org>
Cc: Stanislav Fomichev <sdf@fomichev.me>
Cc: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "revert unconditional slab and page allocator fault injection
calls".
These two patches largely revert commits that added function call overhead
into slab and page allocation hotpaths and that cannot be currently
disabled even though related CONFIG_ options do exist.
A much more involved solution that can keep the callsites always existing
but hidden behind a static key if unused, is possible [1] and can be
pursued by anyone who believes it's necessary. Meanwhile the fact the
should_failslab() error injection is already not functional on kernels
built with current gcc without anyone noticing [2], and lukewarm response
to [1] suggests the need is not there. I believe it will be more fair to
have the state after this series as a baseline for possible further
optimisation, instead of the unconditional overhead.
For example a possible compromise for anyone who's fine with an empty
function call overhead but not the full CONFIG_FAILSLAB /
CONFIG_FAIL_PAGE_ALLOC overhead is to reuse patch 1 from [1] but insert a
static key check only inside should_failslab() and
should_fail_alloc_page() before performing the more expensive checks.
[1] https://lore.kernel.org/all/20240620-fault-injection-statickeys-v2-0-e23947d3d84b@suse.cz/#t
[2] https://github.com/bpftrace/bpftrace/issues/3258
This patch (of 2):
This mostly reverts commit 4f6923fbb3 ("mm: make should_failslab always
available for fault injection"). The commit made should_failslab() a
noinline function that's always called from the slab allocation hotpath,
even if it's empty because CONFIG_SHOULD_FAILSLAB is not enabled, and
there is no option to disable that call. This is visible in profiles and
the function call overhead can be noticeable especially with cpu
mitigations.
Meanwhile the bpftrace program example in the commit silently does not
work without CONFIG_SHOULD_FAILSLAB anyway with a recent gcc, because the
empty function gets a .constprop clone that is actually being called
(uselessly) from the slab hotpath, while the error injection is hooked to
the original function that's not being called at all [1].
Thus put the whole should_failslab() function back behind
CONFIG_SHOULD_FAILSLAB. It's not a complete revert of 4f6923fbb3 - the
int return type that returns -ENOMEM on failure is preserved, as well
ALLOW_ERROR_INJECTION annotation. The BTF_ID() record that was meanwhile
added is also guarded by CONFIG_SHOULD_FAILSLAB.
[1] https://github.com/bpftrace/bpftrace/issues/3258
Link: https://lkml.kernel.org/r/20240711-b4-fault-injection-reverts-v1-0-9e2651945d68@suse.cz
Link: https://lkml.kernel.org/r/20240711-b4-fault-injection-reverts-v1-1-9e2651945d68@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Eduard Zingerman <eddyz87@gmail.com>
Cc: Hao Luo <haoluo@google.com>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: KP Singh <kpsingh@kernel.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Song Liu <song@kernel.org>
Cc: Stanislav Fomichev <sdf@fomichev.me>
Cc: Yonghong Song <yonghong.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
adjust_jmp_off() incorrectly used the insn->imm field for all overflow check,
which is incorrect as that should only be done or the BPF_JMP32 | BPF_JA case,
not the general jump instruction case. Fix it by using insn->off for overflow
check in the general case.
Fixes: 5337ac4c9b ("bpf: Fix the corner case with may_goto and jump to the 1st insn.")
Signed-off-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Link: https://lore.kernel.org/r/20240712080127.136608-2-shung-hsi.yu@suse.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, BPF kfuncs which accept trusted pointer arguments
i.e. those flagged as KF_TRUSTED_ARGS, KF_RCU, or KF_RELEASE, all
require an original/unmodified trusted pointer argument to be supplied
to them. By original/unmodified, it means that the backing register
holding the trusted pointer argument that is to be supplied to the BPF
kfunc must have its fixed offset set to zero, or else the BPF verifier
will outright reject the BPF program load. However, this zero fixed
offset constraint that is currently enforced by the BPF verifier onto
BPF kfuncs specifically flagged to accept KF_TRUSTED_ARGS or KF_RCU
trusted pointer arguments is rather unnecessary, and can limit their
usability in practice. Specifically, it completely eliminates the
possibility of constructing a derived trusted pointer from an original
trusted pointer. To put it simply, a derived pointer is a pointer
which points to one of the nested member fields of the object being
pointed to by the original trusted pointer.
This patch relaxes the zero fixed offset constraint that is enforced
upon BPF kfuncs which specifically accept KF_TRUSTED_ARGS, or KF_RCU
arguments. Although, the zero fixed offset constraint technically also
applies to BPF kfuncs accepting KF_RELEASE arguments, relaxing this
constraint for such BPF kfuncs has subtle and unwanted
side-effects. This was discovered by experimenting a little further
with an initial version of this patch series [0]. The primary issue
with relaxing the zero fixed offset constraint on BPF kfuncs accepting
KF_RELEASE arguments is that it'd would open up the opportunity for
BPF programs to supply both trusted pointers and derived trusted
pointers to them. For KF_RELEASE BPF kfuncs specifically, this could
be problematic as resources associated with the backing pointer could
be released by the backing BPF kfunc and cause instabilities for the
rest of the kernel.
With this new fixed offset semantic in-place for BPF kfuncs accepting
KF_TRUSTED_ARGS and KF_RCU arguments, we now have more flexibility
when it comes to the BPF kfuncs that we're able to introduce moving
forward.
Early discussions covering the possibility of relaxing the zero fixed
offset constraint can be found using the link below. This will provide
more context on where all this has stemmed from [1].
Notably, pre-existing tests have been updated such that they provide
coverage for the updated zero fixed offset
functionality. Specifically, the nested offset test was converted from
a negative to positive test as it was already designed to assert zero
fixed offset semantics of a KF_TRUSTED_ARGS BPF kfunc.
[0] https://lore.kernel.org/bpf/ZnA9ndnXKtHOuYMe@google.com/
[1] https://lore.kernel.org/bpf/ZhkbrM55MKQ0KeIV@google.com/
Signed-off-by: Matt Bobrowski <mattbobrowski@google.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20240709210939.1544011-1-mattbobrowski@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZoxN0AAKCRDbK58LschI
g0c5AQDa3ZV9gfbN42y1zSDoM1uOgO60fb+ydxyOYh8l3+OiQQD/fLfpTY3gBFSY
9yi/pZhw/QdNzQskHNIBrHFGtJbMxgs=
=p1Zz
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:
====================
pull-request: bpf-next 2024-07-08
The following pull-request contains BPF updates for your *net-next* tree.
We've added 102 non-merge commits during the last 28 day(s) which contain
a total of 127 files changed, 4606 insertions(+), 980 deletions(-).
The main changes are:
1) Support resilient split BTF which cuts down on duplication and makes BTF
as compact as possible wrt BTF from modules, from Alan Maguire & Eduard Zingerman.
2) Add support for dumping kfunc prototypes from BTF which enables both detecting
as well as dumping compilable prototypes for kfuncs, from Daniel Xu.
3) Batch of s390x BPF JIT improvements to add support for BPF arena and to implement
support for BPF exceptions, from Ilya Leoshkevich.
4) Batch of riscv64 BPF JIT improvements in particular to add 12-argument support
for BPF trampolines and to utilize bpf_prog_pack for the latter, from Pu Lehui.
5) Extend BPF test infrastructure to add a CHECKSUM_COMPLETE validation option
for skbs and add coverage along with it, from Vadim Fedorenko.
6) Inline bpf_get_current_task/_btf() helpers in the arm64 BPF JIT which gives
a small 1% performance improvement in micro-benchmarks, from Puranjay Mohan.
7) Extend the BPF verifier to track the delta between linked registers in order
to better deal with recent LLVM code optimizations, from Alexei Starovoitov.
8) Fix bpf_wq_set_callback_impl() kfunc signature where the third argument should
have been a pointer to the map value, from Benjamin Tissoires.
9) Extend BPF selftests to add regular expression support for test output matching
and adjust some of the selftest when compiled under gcc, from Cupertino Miranda.
10) Simplify task_file_seq_get_next() and remove an unnecessary loop which always
iterates exactly once anyway, from Dan Carpenter.
11) Add the capability to offload the netfilter flowtable in XDP layer through
kfuncs, from Florian Westphal & Lorenzo Bianconi.
12) Various cleanups in networking helpers in BPF selftests to shave off a few
lines of open-coded functions on client/server handling, from Geliang Tang.
13) Properly propagate prog->aux->tail_call_reachable out of BPF verifier, so
that x86 JIT does not need to implement detection, from Leon Hwang.
14) Fix BPF verifier to add a missing check_func_arg_reg_off() to prevent an
out-of-bounds memory access for dynpointers, from Matt Bobrowski.
15) Fix bpf_session_cookie() kfunc to return __u64 instead of long pointer as
it might lead to problems on 32-bit archs, from Jiri Olsa.
16) Enhance traffic validation and dynamic batch size support in xsk selftests,
from Tushar Vyavahare.
bpf-next-for-netdev
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (102 commits)
selftests/bpf: DENYLIST.aarch64: Remove fexit_sleep
selftests/bpf: amend for wrong bpf_wq_set_callback_impl signature
bpf: helpers: fix bpf_wq_set_callback_impl signature
libbpf: Add NULL checks to bpf_object__{prev_map,next_map}
selftests/bpf: Remove exceptions tests from DENYLIST.s390x
s390/bpf: Implement exceptions
s390/bpf: Change seen_reg to a mask
bpf: Remove unnecessary loop in task_file_seq_get_next()
riscv, bpf: Optimize stack usage of trampoline
bpf, devmap: Add .map_alloc_check
selftests/bpf: Remove arena tests from DENYLIST.s390x
selftests/bpf: Add UAF tests for arena atomics
selftests/bpf: Introduce __arena_global
s390/bpf: Support arena atomics
s390/bpf: Enable arena
s390/bpf: Support address space cast instruction
s390/bpf: Support BPF_PROBE_MEM32
s390/bpf: Land on the next JITed instruction after exception
s390/bpf: Introduce pre- and post- probe functions
s390/bpf: Get rid of get_probe_mem_regno()
...
====================
Link: https://patch.msgid.link/20240708221438.10974-1-daniel@iogearbox.net
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Zero-extending results of atomic probe operations fails with:
verifier bug. zext_dst is set, but no reg is defined
The problem is that insn_def_regno() handles BPF_ATOMICs, but not
BPF_PROBE_ATOMICs. Fix by adding the missing condition.
Fixes: d503a04f8b ("bpf: Add support for certain atomics in bpf_arena to x86 JIT")
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20240701234304.14336-2-iii@linux.ibm.com
Cross-merge networking fixes after downstream PR.
No conflicts.
Adjacent changes:
e3f02f32a0 ("ionic: fix kernel panic due to multi-buffer handling")
d9c0420999 ("ionic: Mark error paths in the data path as unlikely")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Currently, it's possible to pass in a modified CONST_PTR_TO_DYNPTR to
a global function as an argument. The adverse effects of this is that
BPF helpers can continue to make use of this modified
CONST_PTR_TO_DYNPTR from within the context of the global function,
which can unintentionally result in out-of-bounds memory accesses and
therefore compromise overall system stability i.e.
[ 244.157771] BUG: KASAN: slab-out-of-bounds in bpf_dynptr_data+0x137/0x140
[ 244.161345] Read of size 8 at addr ffff88810914be68 by task test_progs/302
[ 244.167151] CPU: 0 PID: 302 Comm: test_progs Tainted: G O E 6.10.0-rc3-00131-g66b586715063 #533
[ 244.174318] Call Trace:
[ 244.175787] <TASK>
[ 244.177356] dump_stack_lvl+0x66/0xa0
[ 244.179531] print_report+0xce/0x670
[ 244.182314] ? __virt_addr_valid+0x200/0x3e0
[ 244.184908] kasan_report+0xd7/0x110
[ 244.187408] ? bpf_dynptr_data+0x137/0x140
[ 244.189714] ? bpf_dynptr_data+0x137/0x140
[ 244.192020] bpf_dynptr_data+0x137/0x140
[ 244.194264] bpf_prog_b02a02fdd2bdc5fa_global_call_bpf_dynptr_data+0x22/0x26
[ 244.198044] bpf_prog_b0fe7b9d7dc3abde_callback_adjust_bpf_dynptr_reg_off+0x1f/0x23
[ 244.202136] bpf_user_ringbuf_drain+0x2c7/0x570
[ 244.204744] ? 0xffffffffc0009e58
[ 244.206593] ? __pfx_bpf_user_ringbuf_drain+0x10/0x10
[ 244.209795] bpf_prog_33ab33f6a804ba2d_user_ringbuf_callback_const_ptr_to_dynptr_reg_off+0x47/0x4b
[ 244.215922] bpf_trampoline_6442502480+0x43/0xe3
[ 244.218691] __x64_sys_prlimit64+0x9/0xf0
[ 244.220912] do_syscall_64+0xc1/0x1d0
[ 244.223043] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 244.226458] RIP: 0033:0x7ffa3eb8f059
[ 244.228582] Code: 08 89 e8 5b 5d c3 66 2e 0f 1f 84 00 00 00 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 8f 1d 0d 00 f7 d8 64 89 01 48
[ 244.241307] RSP: 002b:00007ffa3e9c6eb8 EFLAGS: 00000206 ORIG_RAX: 000000000000012e
[ 244.246474] RAX: ffffffffffffffda RBX: 00007ffa3e9c7cdc RCX: 00007ffa3eb8f059
[ 244.250478] RDX: 00007ffa3eb162b4 RSI: 0000000000000000 RDI: 00007ffa3e9c7fb0
[ 244.255396] RBP: 00007ffa3e9c6ed0 R08: 00007ffa3e9c76c0 R09: 0000000000000000
[ 244.260195] R10: 0000000000000000 R11: 0000000000000206 R12: ffffffffffffff80
[ 244.264201] R13: 000000000000001c R14: 00007ffc5d6b4260 R15: 00007ffa3e1c7000
[ 244.268303] </TASK>
Add a check_func_arg_reg_off() to the path in which the BPF verifier
verifies the arguments of global function arguments, specifically
those which take an argument of type ARG_PTR_TO_DYNPTR |
MEM_RDONLY. Also, process_dynptr_func() doesn't appear to perform any
explicit and strict type matching on the supplied register type, so
let's also enforce that a register either type PTR_TO_STACK or
CONST_PTR_TO_DYNPTR is by the caller.
Reported-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Matt Bobrowski <mattbobrowski@google.com>
Link: https://lore.kernel.org/r/20240625062857.92760-1-mattbobrowski@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Zac's syzbot crafted a bpf prog that exposed two bugs in may_goto.
The 1st bug is the way may_goto is patched. When offset is negative
it should be patched differently.
The 2nd bug is in the verifier:
when current state may_goto_depth is equal to visited state may_goto_depth
it means there is an actual infinite loop. It's not correct to prune
exploration of the program at this point.
Note, that this check doesn't limit the program to only one may_goto insn,
since 2nd and any further may_goto will increment may_goto_depth only
in the queued state pushed for future exploration. The current state
will have may_goto_depth == 0 regardless of number of may_goto insns
and the verifier has to explore the program until bpf_exit.
Fixes: 011832b97b ("bpf: Introduce may_goto instruction")
Reported-by: Zac Ecob <zacecob@protonmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Closes: https://lore.kernel.org/bpf/CAADnVQL-15aNp04-cyHRn47Yv61NXfYyhopyZtUyxNojUZUXpA@mail.gmail.com/
Link: https://lore.kernel.org/bpf/20240619235355.85031-1-alexei.starovoitov@gmail.com
When the following program is processed by the verifier:
L1: may_goto L2
goto L1
L2: w0 = 0
exit
the may_goto insn is first converted to:
L1: r11 = *(u64 *)(r10 -8)
if r11 == 0x0 goto L2
r11 -= 1
*(u64 *)(r10 -8) = r11
goto L1
L2: w0 = 0
exit
then later as the last step the verifier inserts:
*(u64 *)(r10 -8) = BPF_MAX_LOOPS
as the first insn of the program to initialize loop count.
When the first insn happens to be a branch target of some jmp the
bpf_patch_insn_data() logic will produce:
L1: *(u64 *)(r10 -8) = BPF_MAX_LOOPS
r11 = *(u64 *)(r10 -8)
if r11 == 0x0 goto L2
r11 -= 1
*(u64 *)(r10 -8) = r11
goto L1
L2: w0 = 0
exit
because instruction patching adjusts all jmps and calls, but for this
particular corner case it's incorrect and the L1 label should be one
instruction down, like:
*(u64 *)(r10 -8) = BPF_MAX_LOOPS
L1: r11 = *(u64 *)(r10 -8)
if r11 == 0x0 goto L2
r11 -= 1
*(u64 *)(r10 -8) = r11
goto L1
L2: w0 = 0
exit
and that's what this patch is fixing.
After bpf_patch_insn_data() call adjust_jmp_off() to adjust all jmps
that point to newly insert BPF_ST insn to point to insn after.
Note that bpf_patch_insn_data() cannot easily be changed to accommodate
this logic, since jumps that point before or after a sequence of patched
instructions have to be adjusted with the full length of the patch.
Conceptually it's somewhat similar to "insert" of instructions between other
instructions with weird semantics. Like "insert" before 1st insn would require
adjustment of CALL insns to point to newly inserted 1st insn, but not an
adjustment JMP insns that point to 1st, yet still adjusting JMP insns that
cross over 1st insn (point to insn before or insn after), hence use simple
adjust_jmp_off() logic to fix this corner case. Ideally bpf_patch_insn_data()
would have an auxiliary info to say where 'the start of newly inserted patch
is', but it would be too complex for backport.
Fixes: 011832b97b ("bpf: Introduce may_goto instruction")
Reported-by: Zac Ecob <zacecob@protonmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Closes: https://lore.kernel.org/bpf/CAADnVQJ_WWx8w4b=6Gc2EpzAjgv+6A0ridnMz2TvS2egj4r3Gw@mail.gmail.com/
Link: https://lore.kernel.org/bpf/20240619011859.79334-1-alexei.starovoitov@gmail.com
Fixes a compiler warning. The __bpf_free_used_btfs function
was taking an extra unused struct bpf_prog_aux *aux param
Signed-off-by: Rafael Passos <rafael@rcpassos.me>
Link: https://lore.kernel.org/r/20240615022641.210320-3-rafael@rcpassos.me
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
It's confusing to inspect 'prog->aux->tail_call_reachable' with drgn[0],
when bpf prog has tail call but 'tail_call_reachable' is false.
This patch corrects 'tail_call_reachable' when bpf prog has tail call.
Signed-off-by: Leon Hwang <hffilwlqm@gmail.com>
Link: https://lore.kernel.org/r/20240610124224.34673-2-hffilwlqm@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>