- The 3 patch series "mm, swap: improve cluster scan strategy" from
Kairui Song improves performance and reduces the failure rate of swap
cluster allocation.
- The 4 patch series "support large align and nid in Rust allocators"
from Vitaly Wool permits Rust allocators to set NUMA node and large
alignment when perforning slub and vmalloc reallocs.
- The 2 patch series "mm/damon/vaddr: support stat-purpose DAMOS" from
Yueyang Pan extend DAMOS_STAT's handling of the DAMON operations sets
for virtual address spaces for ops-level DAMOS filters.
- The 3 patch series "execute PROCMAP_QUERY ioctl under per-vma lock"
from Suren Baghdasaryan reduces mmap_lock contention during reads of
/proc/pid/maps.
- The 2 patch series "mm/mincore: minor clean up for swap cache
checking" from Kairui Song performs some cleanup in the swap code.
- The 11 patch series "mm: vm_normal_page*() improvements" from David
Hildenbrand provides code cleanup in the pagemap code.
- The 5 patch series "add persistent huge zero folio support" from
Pankaj Raghav provides a block layer speedup by optionalls making the
huge_zero_pagepersistent, instead of releasing it when its refcount
falls to zero.
- The 3 patch series "kho: fixes and cleanups" from Mike Rapoport adds a
few touchups to the recently added Kexec Handover feature.
- The 10 patch series "mm: make mm->flags a bitmap and 64-bit on all
arches" from Lorenzo Stoakes turns mm_struct.flags into a bitmap. To
end the constant struggle with space shortage on 32-bit conflicting with
64-bit's needs.
- The 2 patch series "mm/swapfile.c and swap.h cleanup" from Chris Li
cleans up some swap code.
- The 7 patch series "selftests/mm: Fix false positives and skip
unsupported tests" from Donet Tom fixes a few things in our selftests
code.
- The 7 patch series "prctl: extend PR_SET_THP_DISABLE to only provide
THPs when advised" from David Hildenbrand "allows individual processes
to opt-out of THP=always into THP=madvise, without affecting other
workloads on the system".
It's a long story - the [1/N] changelog spells out the considerations.
- The 11 patch series "Add and use memdesc_flags_t" from Matthew Wilcox
gets us started on the memdesc project. Please see
https://kernelnewbies.org/MatthewWilcox/Memdescs and
https://blogs.oracle.com/linux/post/introducing-memdesc.
- The 3 patch series "Tiny optimization for large read operations" from
Chi Zhiling improves the efficiency of the pagecache read path.
- The 5 patch series "Better split_huge_page_test result check" from Zi
Yan improves our folio splitting selftest code.
- The 2 patch series "test that rmap behaves as expected" from Wei Yang
adds some rmap selftests.
- The 3 patch series "remove write_cache_pages()" from Christoph Hellwig
removes that function and converts its two remaining callers.
- The 2 patch series "selftests/mm: uffd-stress fixes" from Dev Jain
fixes some UFFD selftests issues.
- The 3 patch series "introduce kernel file mapped folios" from Boris
Burkov introduces the concept of "kernel file pages". Using these
permits btrfs to account its metadata pages to the root cgroup, rather
than to the cgroups of random inappropriate tasks.
- The 2 patch series "mm/pageblock: improve readability of some
pageblock handling" from Wei Yang provides some readability improvements
to the page allocator code.
- The 11 patch series "mm/damon: support ARM32 with LPAE" from SeongJae
Park teaches DAMON to understand arm32 highmem.
- The 4 patch series "tools: testing: Use existing atomic.h for
vma/maple tests" from Brendan Jackman performs some code cleanups and
deduplication under tools/testing/.
- The 2 patch series "maple_tree: Fix testing for 32bit compiles" from
Liam Howlett fixes a couple of 32-bit issues in
tools/testing/radix-tree.c.
- The 2 patch series "kasan: unify kasan_enabled() and remove
arch-specific implementations" from Sabyrzhan Tasbolatov moves KASAN
arch-specific initialization code into a common arch-neutral
implementation.
- The 3 patch series "mm: remove zpool" from Johannes Weiner removes
zspool - an indirection layer which now only redirects to a single thing
(zsmalloc).
- The 2 patch series "mm: task_stack: Stack handling cleanups" from
Pasha Tatashin makes a couple of cleanups in the fork code.
- The 37 patch series "mm: remove nth_page()" from David Hildenbrand
makes rather a lot of adjustments at various nth_page() callsites,
eventually permitting the removal of that undesirable helper function.
- The 2 patch series "introduce kasan.write_only option in hw-tags" from
Yeoreum Yun creates a KASAN read-only mode for ARM, using that
architecture's memory tagging feature. It is felt that a read-only mode
KASAN is suitable for use in production systems rather than debug-only.
- The 3 patch series "mm: hugetlb: cleanup hugetlb folio allocation"
from Kefeng Wang does some tidying in the hugetlb folio allocation code.
- The 12 patch series "mm: establish const-correctness for pointer
parameters" from Max Kellermann makes quite a number of the MM API
functions more accurate about the constness of their arguments. This
was getting in the way of subsystems (in this case CEPH) when they
attempt to improving their own const/non-const accuracy.
- The 7 patch series "Cleanup free_pages() misuse" from Vishal Moola
fixes a number of code sites which were confused over when to use
free_pages() vs __free_pages().
- The 3 patch series "Add Rust abstraction for Maple Trees" from Alice
Ryhl makes the mapletree code accessible to Rust. Required by nouveau
and by its forthcoming successor: the new Rust Nova driver.
- The 2 patch series "selftests/mm: split_huge_page_test:
split_pte_mapped_thp improvements" from David Hildenbrand adds a fix and
some cleanups to the thp selftesting code.
- The 14 patch series "mm, swap: introduce swap table as swap cache
(phase I)" from Chris Li and Kairui Song is the first step along the
path to implementing "swap tables" - a new approach to swap allocation
and state tracking which is expected to yield speed and space
improvements. This patchset itself yields a 5-20% performance benefit
in some situations.
- The 3 patch series "Some ptdesc cleanups" from Matthew Wilcox utilizes
the new memdesc layer to clean up the ptdesc code a little.
- The 3 patch series "Fix va_high_addr_switch.sh test failure" from
Chunyu Hu fixes some issues in our 5-level pagetable selftesting code.
- The 2 patch series "Minor fixes for memory allocation profiling" from
Suren Baghdasaryan addresses a couple of minor issues in relatively new
memory allocation profiling feature.
- The 3 patch series "Small cleanups" from Matthew Wilcox has a few
cleanups in preparation for more memdesc work.
- The 2 patch series "mm/damon: add addr_unit for DAMON_LRU_SORT and
DAMON_RECLAIM" from Quanmin Yan makes some changes to DAMON in
furtherance of supporting arm highmem.
- The 2 patch series "selftests/mm: Add -Wunreachable-code and fix
warnings" from Muhammad Anjum adds that compiler check to selftests code
and fixes the fallout, by removing dead code.
- The 10 patch series "Improvements to Victim Process Thawing and OOM
Reaper Traversal Order" from zhongjinji makes a number of improvements
in the OOM killer: mainly thawing a more appropriate group of victim
threads so they can release resources.
- The 5 patch series "mm/damon: misc fixups and improvements for 6.18"
from SeongJae Park is a bunch of small and unrelated fixups for DAMON.
- The 7 patch series "mm/damon: define and use DAMON initialization
check function" from SeongJae Park implement reliability and
maintainability improvements to a recently-added bug fix.
- The 2 patch series "mm/damon/stat: expose auto-tuned intervals and
non-idle ages" from SeongJae Park provides additional transparency to
userspace clients of the DAMON_STAT information.
- The 2 patch series "Expand scope of khugepaged anonymous collapse"
from Dev Jain removes some constraints on khubepaged's collapsing of
anon VMAs. It also increases the success rate of MADV_COLLAPSE against
an anon vma.
- The 2 patch series "mm: do not assume file == vma->vm_file in
compat_vma_mmap_prepare()" from Lorenzo Stoakes moves us further towards
removal of file_operations.mmap(). This patchset concentrates upon
clearing up the treatment of stacked filesystems.
- The 6 patch series "mm: Improve mlock tracking for large folios" from
Kiryl Shutsemau provides some fixes and improvements to mlock's tracking
of large folios. /proc/meminfo's "Mlocked" field became more accurate.
- The 2 patch series "mm/ksm: Fix incorrect accounting of KSM counters
during fork" from Donet Tom fixes several user-visible KSM stats
inaccuracies across forks and adds selftest code to verify these
counters.
- The 2 patch series "mm_slot: fix the usage of mm_slot_entry" from Wei
Yang addresses some potential but presently benign issues in KSM's
mm_slot handling.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCaN3cywAKCRDdBJ7gKXxA
jtaPAQDmIuIu7+XnVUK5V11hsQ/5QtsUeLHV3OsAn4yW5/3dEQD/UddRU08ePN+1
2VRB0EwkLAdfMWW7TfiNZ+yhuoiL/AA=
=4mhY
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2025-10-01-19-00' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- "mm, swap: improve cluster scan strategy" from Kairui Song improves
performance and reduces the failure rate of swap cluster allocation
- "support large align and nid in Rust allocators" from Vitaly Wool
permits Rust allocators to set NUMA node and large alignment when
perforning slub and vmalloc reallocs
- "mm/damon/vaddr: support stat-purpose DAMOS" from Yueyang Pan extend
DAMOS_STAT's handling of the DAMON operations sets for virtual
address spaces for ops-level DAMOS filters
- "execute PROCMAP_QUERY ioctl under per-vma lock" from Suren
Baghdasaryan reduces mmap_lock contention during reads of
/proc/pid/maps
- "mm/mincore: minor clean up for swap cache checking" from Kairui Song
performs some cleanup in the swap code
- "mm: vm_normal_page*() improvements" from David Hildenbrand provides
code cleanup in the pagemap code
- "add persistent huge zero folio support" from Pankaj Raghav provides
a block layer speedup by optionalls making the
huge_zero_pagepersistent, instead of releasing it when its refcount
falls to zero
- "kho: fixes and cleanups" from Mike Rapoport adds a few touchups to
the recently added Kexec Handover feature
- "mm: make mm->flags a bitmap and 64-bit on all arches" from Lorenzo
Stoakes turns mm_struct.flags into a bitmap. To end the constant
struggle with space shortage on 32-bit conflicting with 64-bit's
needs
- "mm/swapfile.c and swap.h cleanup" from Chris Li cleans up some swap
code
- "selftests/mm: Fix false positives and skip unsupported tests" from
Donet Tom fixes a few things in our selftests code
- "prctl: extend PR_SET_THP_DISABLE to only provide THPs when advised"
from David Hildenbrand "allows individual processes to opt-out of
THP=always into THP=madvise, without affecting other workloads on the
system".
It's a long story - the [1/N] changelog spells out the considerations
- "Add and use memdesc_flags_t" from Matthew Wilcox gets us started on
the memdesc project. Please see
https://kernelnewbies.org/MatthewWilcox/Memdescs and
https://blogs.oracle.com/linux/post/introducing-memdesc
- "Tiny optimization for large read operations" from Chi Zhiling
improves the efficiency of the pagecache read path
- "Better split_huge_page_test result check" from Zi Yan improves our
folio splitting selftest code
- "test that rmap behaves as expected" from Wei Yang adds some rmap
selftests
- "remove write_cache_pages()" from Christoph Hellwig removes that
function and converts its two remaining callers
- "selftests/mm: uffd-stress fixes" from Dev Jain fixes some UFFD
selftests issues
- "introduce kernel file mapped folios" from Boris Burkov introduces
the concept of "kernel file pages". Using these permits btrfs to
account its metadata pages to the root cgroup, rather than to the
cgroups of random inappropriate tasks
- "mm/pageblock: improve readability of some pageblock handling" from
Wei Yang provides some readability improvements to the page allocator
code
- "mm/damon: support ARM32 with LPAE" from SeongJae Park teaches DAMON
to understand arm32 highmem
- "tools: testing: Use existing atomic.h for vma/maple tests" from
Brendan Jackman performs some code cleanups and deduplication under
tools/testing/
- "maple_tree: Fix testing for 32bit compiles" from Liam Howlett fixes
a couple of 32-bit issues in tools/testing/radix-tree.c
- "kasan: unify kasan_enabled() and remove arch-specific
implementations" from Sabyrzhan Tasbolatov moves KASAN arch-specific
initialization code into a common arch-neutral implementation
- "mm: remove zpool" from Johannes Weiner removes zspool - an
indirection layer which now only redirects to a single thing
(zsmalloc)
- "mm: task_stack: Stack handling cleanups" from Pasha Tatashin makes a
couple of cleanups in the fork code
- "mm: remove nth_page()" from David Hildenbrand makes rather a lot of
adjustments at various nth_page() callsites, eventually permitting
the removal of that undesirable helper function
- "introduce kasan.write_only option in hw-tags" from Yeoreum Yun
creates a KASAN read-only mode for ARM, using that architecture's
memory tagging feature. It is felt that a read-only mode KASAN is
suitable for use in production systems rather than debug-only
- "mm: hugetlb: cleanup hugetlb folio allocation" from Kefeng Wang does
some tidying in the hugetlb folio allocation code
- "mm: establish const-correctness for pointer parameters" from Max
Kellermann makes quite a number of the MM API functions more accurate
about the constness of their arguments. This was getting in the way
of subsystems (in this case CEPH) when they attempt to improving
their own const/non-const accuracy
- "Cleanup free_pages() misuse" from Vishal Moola fixes a number of
code sites which were confused over when to use free_pages() vs
__free_pages()
- "Add Rust abstraction for Maple Trees" from Alice Ryhl makes the
mapletree code accessible to Rust. Required by nouveau and by its
forthcoming successor: the new Rust Nova driver
- "selftests/mm: split_huge_page_test: split_pte_mapped_thp
improvements" from David Hildenbrand adds a fix and some cleanups to
the thp selftesting code
- "mm, swap: introduce swap table as swap cache (phase I)" from Chris
Li and Kairui Song is the first step along the path to implementing
"swap tables" - a new approach to swap allocation and state tracking
which is expected to yield speed and space improvements. This
patchset itself yields a 5-20% performance benefit in some situations
- "Some ptdesc cleanups" from Matthew Wilcox utilizes the new memdesc
layer to clean up the ptdesc code a little
- "Fix va_high_addr_switch.sh test failure" from Chunyu Hu fixes some
issues in our 5-level pagetable selftesting code
- "Minor fixes for memory allocation profiling" from Suren Baghdasaryan
addresses a couple of minor issues in relatively new memory
allocation profiling feature
- "Small cleanups" from Matthew Wilcox has a few cleanups in
preparation for more memdesc work
- "mm/damon: add addr_unit for DAMON_LRU_SORT and DAMON_RECLAIM" from
Quanmin Yan makes some changes to DAMON in furtherance of supporting
arm highmem
- "selftests/mm: Add -Wunreachable-code and fix warnings" from Muhammad
Anjum adds that compiler check to selftests code and fixes the
fallout, by removing dead code
- "Improvements to Victim Process Thawing and OOM Reaper Traversal
Order" from zhongjinji makes a number of improvements in the OOM
killer: mainly thawing a more appropriate group of victim threads so
they can release resources
- "mm/damon: misc fixups and improvements for 6.18" from SeongJae Park
is a bunch of small and unrelated fixups for DAMON
- "mm/damon: define and use DAMON initialization check function" from
SeongJae Park implement reliability and maintainability improvements
to a recently-added bug fix
- "mm/damon/stat: expose auto-tuned intervals and non-idle ages" from
SeongJae Park provides additional transparency to userspace clients
of the DAMON_STAT information
- "Expand scope of khugepaged anonymous collapse" from Dev Jain removes
some constraints on khubepaged's collapsing of anon VMAs. It also
increases the success rate of MADV_COLLAPSE against an anon vma
- "mm: do not assume file == vma->vm_file in compat_vma_mmap_prepare()"
from Lorenzo Stoakes moves us further towards removal of
file_operations.mmap(). This patchset concentrates upon clearing up
the treatment of stacked filesystems
- "mm: Improve mlock tracking for large folios" from Kiryl Shutsemau
provides some fixes and improvements to mlock's tracking of large
folios. /proc/meminfo's "Mlocked" field became more accurate
- "mm/ksm: Fix incorrect accounting of KSM counters during fork" from
Donet Tom fixes several user-visible KSM stats inaccuracies across
forks and adds selftest code to verify these counters
- "mm_slot: fix the usage of mm_slot_entry" from Wei Yang addresses
some potential but presently benign issues in KSM's mm_slot handling
* tag 'mm-stable-2025-10-01-19-00' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (372 commits)
mm: swap: check for stable address space before operating on the VMA
mm: convert folio_page() back to a macro
mm/khugepaged: use start_addr/addr for improved readability
hugetlbfs: skip VMAs without shareable locks in hugetlb_vmdelete_list
alloc_tag: fix boot failure due to NULL pointer dereference
mm: silence data-race in update_hiwater_rss
mm/memory-failure: don't select MEMORY_ISOLATION
mm/khugepaged: remove definition of struct khugepaged_mm_slot
mm/ksm: get mm_slot by mm_slot_entry() when slot is !NULL
hugetlb: increase number of reserving hugepages via cmdline
selftests/mm: add fork inheritance test for ksm_merging_pages counter
mm/ksm: fix incorrect KSM counter handling in mm_struct during fork
drivers/base/node: fix double free in register_one_node()
mm: remove PMD alignment constraint in execmem_vmalloc()
mm/memory_hotplug: fix typo 'esecially' -> 'especially'
mm/rmap: improve mlock tracking for large folios
mm/filemap: map entire large folio faultaround
mm/fault: try to map the entire file folio in finish_fault()
mm/rmap: mlock large folios in try_to_unmap_one()
mm/rmap: fix a mlock race condition in folio_referenced_one()
...
From the cover letter [1]:
This patch set introduces kmalloc_nolock() which is the next logical
step towards any context allocation necessary to remove bpf_mem_alloc
and get rid of preallocation requirement in BPF infrastructure.
In production BPF maps grew to gigabytes in size. Preallocation wastes
memory. Alloc from any context addresses this issue for BPF and other
subsystems that are forced to preallocate too.
This long task started with introduction of alloc_pages_nolock(), then
memcg and objcg were converted to operate from any context including
NMI, this set completes the task with kmalloc_nolock() that builds on
top of alloc_pages_nolock() and memcg changes.
After that BPF subsystem will gradually adopt it everywhere.
Link: https://lore.kernel.org/all/20250909010007.1660-1-alexei.starovoitov@gmail.com/ [1]
This series adds an opt-in percpu array-based caching layer to SLUB.
It has evolved to a state where kmem caches with sheaves are compatible
with all SLUB features (slub_debug, SLUB_TINY, NUMA locality
considerations). The plan is therefore that it will be later enabled for
all kmem caches and replace the complicated cpu (partial) slabs code.
Note the name "sheaf" was invented by Matthew Wilcox so we don't call
the arrays magazines like the original Bonwick paper. The per-NUMA-node
cache of sheaves is thus called "barn".
This caching may seem similar to the arrays we had in SLAB, but there
are some important differences:
- deals differently with NUMA locality of freed objects, thus there are
no per-node "shared" arrays (with possible lock contention) and no
"alien" arrays that would need periodical flushing
- instead, freeing remote objects (which is rare) bypasses the sheaves
- percpu sheaves thus contain only local objects (modulo rare races
and local node exhaustion)
- NUMA restricted allocations and strict_numa mode is still honoured
- improves kfree_rcu() handling by reusing whole sheaves
- there is an API for obtaining a preallocated sheaf that can be used
for guaranteed and efficient allocations in a restricted context, when
the upper bound for needed objects is known but rarely reached
- opt-in, not used for every cache (for now)
The motivation comes mainly from the ongoing work related to VMA locking
scalability and the related maple tree operations. This is why VMA and
maple nodes caches are sheaf-enabled in the patchset.
A sheaf-enabled cache has the following expected advantages:
- Cheaper fast paths. For allocations, instead of local double cmpxchg,
thanks to local_trylock() it becomes a preempt_disable() and no atomic
operations. Same for freeing, which is otherwise a local double cmpxchg
only for short term allocations (so the same slab is still active on the
same cpu when freeing the object) and a more costly locked double
cmpxchg otherwise.
- kfree_rcu() batching and recycling. kfree_rcu() will put objects to a
separate percpu sheaf and only submit the whole sheaf to call_rcu()
when full. After the grace period, the sheaf can be used for
allocations, which is more efficient than freeing and reallocating
individual slab objects (even with the batching done by kfree_rcu()
implementation itself). In case only some cpus are allowed to handle rcu
callbacks, the sheaf can still be made available to other cpus on the
same node via the shared barn. The maple_node cache uses kfree_rcu() and
thus can benefit from this.
Note: this path is currently limited to !PREEMPT_RT
- Preallocation support. A prefilled sheaf can be privately borrowed to
perform a short term operation that is not allowed to block in the
middle and may need to allocate some objects. If an upper bound (worst
case) for the number of allocations is known, but only much fewer
allocations actually needed on average, borrowing and returning a sheaf
is much more efficient then a bulk allocation for the worst case
followed by a bulk free of the many unused objects. Maple tree write
operations should benefit from this.
- Compatibility with slub_debug. When slub_debug is enabled for a cache,
we simply don't create the percpu sheaves so that the debugging hooks
(at the node partial list slowpaths) are reached as before. The same
thing is done for CONFIG_SLUB_TINY. Sheaf preallocation still works by
reusing the (ineffective) paths for requests exceeding the cache's
sheaf_capacity. This is in line with the existing approach where
debugging bypasses the fast paths and SLUB_TINY preferes memory
savings over performance.
The above is adapted from the cover letter [1], which contains also
in-kernel microbenchmark results showing the lower overhead of sheaves.
Results from Suren Baghdasaryan [2] using a mmap/munmap microbenchmark
also show improvements.
Results from Sudarsan Mahendran [3] using will-it-scale show both
benefits and regressions, probably due to overall noisiness of those
tests.
Link: https://lore.kernel.org/all/20250910-slub-percpu-caches-v8-0-ca3099d8352c@suse.cz/ [1]
Link: https://lore.kernel.org/all/CAJuCfpEQ%3DRUgcAvRzE5jRrhhFpkm8E2PpBK9e9GhK26ZaJQt%3DQ@mail.gmail.com/ [2]
Link: https://lore.kernel.org/all/20250913000935.1021068-1-sudarsanm@google.com/ [3]
kmalloc_nolock() relies on ability of local_trylock_t to detect
the situation when per-cpu kmem_cache is locked.
In !PREEMPT_RT local_(try)lock_irqsave(&s->cpu_slab->lock, flags)
disables IRQs and marks s->cpu_slab->lock as acquired.
local_lock_is_locked(&s->cpu_slab->lock) returns true when
slab is in the middle of manipulating per-cpu cache
of that specific kmem_cache.
kmalloc_nolock() can be called from any context and can re-enter
into ___slab_alloc():
kmalloc() -> ___slab_alloc(cache_A) -> irqsave -> NMI -> bpf ->
kmalloc_nolock() -> ___slab_alloc(cache_B)
or
kmalloc() -> ___slab_alloc(cache_A) -> irqsave -> tracepoint/kprobe -> bpf ->
kmalloc_nolock() -> ___slab_alloc(cache_B)
Hence the caller of ___slab_alloc() checks if &s->cpu_slab->lock
can be acquired without a deadlock before invoking the function.
If that specific per-cpu kmem_cache is busy the kmalloc_nolock()
retries in a different kmalloc bucket. The second attempt will
likely succeed, since this cpu locked different kmem_cache.
Similarly, in PREEMPT_RT local_lock_is_locked() returns true when
per-cpu rt_spin_lock is locked by current _task_. In this case
re-entrance into the same kmalloc bucket is unsafe, and
kmalloc_nolock() tries a different bucket that is most likely is
not locked by the current task. Though it may be locked by a
different task it's safe to rt_spin_lock() and sleep on it.
Similar to alloc_pages_nolock() the kmalloc_nolock() returns NULL
immediately if called from hard irq or NMI in PREEMPT_RT.
kfree_nolock() defers freeing to irq_work when local_lock_is_locked()
and (in_nmi() or in PREEMPT_RT).
SLUB_TINY config doesn't use local_lock_is_locked() and relies on
spin_trylock_irqsave(&n->list_lock) to allocate,
while kfree_nolock() always defers to irq_work.
Note, kfree_nolock() must be called _only_ for objects allocated
with kmalloc_nolock(). Debug checks (like kmemleak and kfence)
were skipped on allocation, hence obj = kmalloc(); kfree_nolock(obj);
will miss kmemleak/kfence book keeping and will cause false positives.
large_kmalloc is not supported by either kmalloc_nolock()
or kfree_nolock().
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Harry Yoo <harry.yoo@oracle.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
kmalloc_nolock() can be called from any context
the ___slab_alloc() can acquire local_trylock_t (which is rt_spin_lock
in PREEMPT_RT) and attempt to acquire a different local_trylock_t
while in the same task context.
The calling sequence might look like:
kmalloc() -> tracepoint -> bpf -> kmalloc_nolock()
or more precisely:
__lock_acquire+0x12ad/0x2590
lock_acquire+0x133/0x2d0
rt_spin_lock+0x6f/0x250
___slab_alloc+0xb7/0xec0
kmalloc_nolock_noprof+0x15a/0x430
my_debug_callback+0x20e/0x390 [testmod]
___slab_alloc+0x256/0xec0
__kmalloc_cache_noprof+0xd6/0x3b0
Make LOCKDEP understand that local_trylock_t-s protect
different kmem_caches. In order to do that add lock_class_key
for each kmem_cache and use that key in local_trylock_t.
This stack trace is possible on both PREEMPT_RT and !PREEMPT_RT,
but teach lockdep about it only for PREEMPT_RT, since
in !PREEMPT_RT the ___slab_alloc() code is using
local_trylock_irqsave() when lockdep is on.
Note, this patch applies this logic to local_lock_t
while the next one converts it to local_trylock_t.
Both are mapped to rt_spin_lock in PREEMPT_RT.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Extend the sheaf infrastructure for more efficient kfree_rcu() handling.
For caches with sheaves, on each cpu maintain a rcu_free sheaf in
addition to main and spare sheaves.
kfree_rcu() operations will try to put objects on this sheaf. Once full,
the sheaf is detached and submitted to call_rcu() with a handler that
will try to put it in the barn, or flush to slab pages using bulk free,
when the barn is full. Then a new empty sheaf must be obtained to put
more objects there.
It's possible that no free sheaves are available to use for a new
rcu_free sheaf, and the allocation in kfree_rcu() context can only use
GFP_NOWAIT and thus may fail. In that case, fall back to the existing
kfree_rcu() implementation.
Expected advantages:
- batching the kfree_rcu() operations, that could eventually replace the
existing batching
- sheaves can be reused for allocations via barn instead of being
flushed to slabs, which is more efficient
- this includes cases where only some cpus are allowed to process rcu
callbacks (CONFIG_RCU_NOCB_CPU)
Possible disadvantage:
- objects might be waiting for more than their grace period (it is
determined by the last object freed into the sheaf), increasing memory
usage - but the existing batching does that too.
Only implement this for CONFIG_KVFREE_RCU_BATCHED as the tiny
implementation favors smaller memory footprint over performance.
Also for now skip the usage of rcu sheaf for CONFIG_PREEMPT_RT as the
contexts where kfree_rcu() is called might not be compatible with taking
a barn spinlock or a GFP_NOWAIT allocation of a new sheaf taking a
spinlock - the current kfree_rcu() implementation avoids doing that.
Teach kvfree_rcu_barrier() to flush all rcu_free sheaves from all caches
that have them. This is not a cheap operation, but the barrier usage is
rare - currently kmem_cache_destroy() or on module unload.
Add CONFIG_SLUB_STATS counters free_rcu_sheaf and free_rcu_sheaf_fail to
count how many kfree_rcu() used the rcu_free sheaf successfully and how
many had to fall back to the existing implementation.
Reviewed-by: Harry Yoo <harry.yoo@oracle.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Specifying a non-zero value for a new struct kmem_cache_args field
sheaf_capacity will setup a caching layer of percpu arrays called
sheaves of given capacity for the created cache.
Allocations from the cache will allocate via the percpu sheaves (main or
spare) as long as they have no NUMA node preference. Frees will also
put the object back into one of the sheaves.
When both percpu sheaves are found empty during an allocation, an empty
sheaf may be replaced with a full one from the per-node barn. If none
are available and the allocation is allowed to block, an empty sheaf is
refilled from slab(s) by an internal bulk alloc operation. When both
percpu sheaves are full during freeing, the barn can replace a full one
with an empty one, unless over a full sheaves limit. In that case a
sheaf is flushed to slab(s) by an internal bulk free operation. Flushing
sheaves and barns is also wired to the existing cpu flushing and cache
shrinking operations.
The sheaves do not distinguish NUMA locality of the cached objects. If
an allocation is requested with kmem_cache_alloc_node() (or a mempolicy
with strict_numa mode enabled) with a specific node (not NUMA_NO_NODE),
the sheaves are bypassed.
The bulk operations exposed to slab users also try to utilize the
sheaves as long as the necessary (full or empty) sheaves are available
on the cpu or in the barn. Once depleted, they will fallback to bulk
alloc/free to slabs directly to avoid double copying.
The sheaf_capacity value is exported in sysfs for observability.
Sysfs CONFIG_SLUB_STATS counters alloc_cpu_sheaf and free_cpu_sheaf
count objects allocated or freed using the sheaves (and thus not
counting towards the other alloc/free path counters). Counters
sheaf_refill and sheaf_flush count objects filled or flushed from or to
slab pages, and can be used to assess how effective the caching is. The
refill and flush operations will also count towards the usual
alloc_fastpath/slowpath, free_fastpath/slowpath and other counters for
the backing slabs. For barn operations, barn_get and barn_put count how
many full sheaves were get from or put to the barn, the _fail variants
count how many such requests could not be satisfied mainly because the
barn was either empty or full. While the barn also holds empty sheaves
to make some operations easier, these are not as critical to mandate own
counters. Finally, there are sheaf_alloc/sheaf_free counters.
Access to the percpu sheaves is protected by local_trylock() when
potential callers include irq context, and local_lock() otherwise (such
as when we already know the gfp flags allow blocking). The trylock
failures should be rare and we can easily fallback. Each per-NUMA-node
barn has a spin_lock.
When slub_debug is enabled for a cache with sheaf_capacity also
specified, the latter is ignored so that allocations and frees reach the
slow path where debugging hooks are processed. Similarly, we ignore it
with CONFIG_SLUB_TINY which prefers low memory usage to performance.
[boot failure: https://lore.kernel.org/all/583eacf5-c971-451a-9f76-fed0e341b815@linux.ibm.com/ ]
Reported-and-tested-by: Venkat Rao Bagalkote <venkat88@linux.ibm.com>
Reviewed-by: Harry Yoo <harry.yoo@oracle.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
When object extension vector allocation fails, we set slab->obj_exts to
OBJEXTS_ALLOC_FAIL to indicate the failure. Later, once the vector is
successfully allocated, we will use this flag to mark codetag references
stored in that vector as empty to avoid codetag warnings.
slab_obj_exts() used to retrieve the slab->obj_exts vector pointer checks
slab->obj_exts for being either NULL or a pointer with MEMCG_DATA_OBJEXTS
bit set. However it does not handle the case when slab->obj_exts equals
OBJEXTS_ALLOC_FAIL. Add the missing condition to avoid extra warning.
Fixes: 09c46563ff ("codetag: debug: introduce OBJEXTS_ALLOC_FAIL to mark failed slab_ext allocations")
Reported-by: Shakeel Butt <shakeel.butt@linux.dev>
Closes: https://lore.kernel.org/all/jftidhymri2af5u3xtcqry3cfu6aqzte3uzlznhlaylgrdztsi@5vpjnzpsemf5/
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Cc: stable@vger.kernel.org # v6.10+
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
We no longer need to convert from slab to folio to get the nid, we can ask
memdesc_nid() for the nid directly.
Link: https://lkml.kernel.org/r/20250805172307.1302730-7-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The slab flags are memdesc flags and contain the same information in the
upper bits as the other memdescs (like node ID).
Link: https://lkml.kernel.org/r/20250805172307.1302730-6-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Give slab its own name for this flag. Move the implementation from
slab.h to slub.c since it's only used inside slub.c.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Harry Yoo <harry.yoo@oracle.com>
Link: https://patch.msgid.link/20250611155916.2579160-5-willy@infradead.org
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Slab has its own reasons for using flag bits; they aren't just
the page bits. Maybe this won't be the ultimate solution, but
we should be clear that these bits are in use.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: https://patch.msgid.link/20250611155916.2579160-3-willy@infradead.org
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Merge the slab feature branch kfree_rcu_tiny for 6.15:
- Move the TINY_RCU kvfree_rcu() implementation from RCU to SLAB
subsystem and cleanup its integration.
SLUB is the only remaining allocator. We can therefore get rid of
the logic for allocator-specific flags:
* Merge SLAB_CACHE_FLAGS into SLAB_CORE_FLAGS.
* Remove CACHE_CREATE_MASK and instead mask out SLAB_DEBUG_FLAGS if
!CONFIG_SLUB_DEBUG. SLAB_DEBUG_FLAGS is now defined
unconditionally (no impact on existing code, which ignores it if
!CONFIG_SLUB_DEBUG).
* Define SLAB_FLAGS_PERMITTED in terms of SLAB_CORE_FLAGS and
SLAB_DEBUG_FLAGS (no functional change).
While at it also remove misleading comments that suggest that
multiple allocators are available.
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
RCU has been special-casing callback function pointers that are integers
lower than 4096 as offsets of rcu_head for kvfree() instead. The tree
RCU implementation no longer does that as the batched kvfree_rcu() is
not a simple call_rcu(). The tiny RCU still does, and the plan is also
to make tree RCU use call_rcu() for SLUB_TINY configurations.
Instead of teaching tree RCU again to special case the offsets, let's
remove the special casing completely. Since there's no SLOB anymore, it
is possible to create a callback function that can take a pointer to a
middle of slab object with unknown offset and determine the object's
pointer before freeing it, so implement that as kvfree_rcu_cb().
Large kmalloc and vmalloc allocations are handled simply by aligning
down to page size. For that we retain the requirement that the offset is
smaller than 4096. But we can remove __is_kvfree_rcu_offset() completely
and instead just opencode the condition in the BUILD_BUG_ON() check.
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Use corrected function parameter names to eliminate kernel-doc
warnings:
slab.h:142: warning: Function parameter or struct member 's' not described in 'slab_folio'
slab.h:142: warning: Excess function parameter 'slab' description in 'slab_folio'
slab.h:168: warning: Function parameter or struct member 's' not described in 'slab_page'
slab.h:168: warning: Excess function parameter 'slab' description in 'slab_page'
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
For a kmalloc object, when both kasan and slub redzone sanity check
are enabled, they could both manipulate its data space like storing
kasan free meta data and setting up kmalloc redzone, and may affect
accuracy of that object's 'orig_size'.
As an accurate 'orig_size' will be needed by some function like
krealloc() soon, save kasan's free meta data in slub's metadata area
instead of inside object when 'orig_size' is enabled.
This will make it easier to maintain/understand the code. Size wise,
when these two options are both enabled, the slub meta data space is
already huge, and this just slightly increase the overall size.
Signed-off-by: Feng Tang <feng.tang@intel.com>
Acked-by: Andrey Konovalov <andreyknvl@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
The test_leak_destroy kunit test intends to test the detection of stray
objects in kmem_cache_destroy(), which normally produces a warning. The
other slab kunit tests suppress the warnings in the kunit test context,
so suppress warnings and related printk output in this test as well.
Automated test running environments then don't need to learn to filter
the warnings.
Also rename the test's kmem_cache, the name was wrongly copy-pasted from
test_kfree_rcu.
Fixes: 4e1c44b3db ("kunit, slub: add test_kfree_rcu() and test_leak_destroy()")
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202408251723.42f3d902-oliver.sang@intel.com
Reported-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Closes: https://lore.kernel.org/all/CAB=+i9RHHbfSkmUuLshXGY_ifEZg9vCZi3fqr99+kmmnpDus7Q@mail.gmail.com/
Reported-by: Guenter Roeck <linux@roeck-us.net>
Closes: https://lore.kernel.org/all/6fcb1252-7990-4f0d-8027-5e83f0fb9409@roeck-us.net/
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
The fix implemented in commit 4ec10268ed ("mm, slab: unlink slabinfo,
sysfs and debugfs immediately") caused a subtle side effect due to which
while destroying the kmem cache, the code path would never get into
sysfs_slab_release() function even though SLAB_SUPPORTS_SYSFS is defined
and slab state is FULL. Due to this side effect, we would never release
kobject defined for kmem cache and leak the associated memory.
The issue here's with the use of __is_defined() macro in kmem_cache_
release(). The __is_defined() macro expands to __take_second_arg(
arg1_or_junk 1, 0). If "arg1_or_junk" is defined to 1 then it expands to
__take_second_arg(0, 1, 0) and returns 1. If "arg1_or_junk" is NOT defined
to any value then it expands to __take_second_arg(... 1, 0) and returns 0.
In this particular issue, SLAB_SUPPORTS_SYSFS is defined without any
associated value and that causes __is_defined(SLAB_SUPPORTS_SYSFS) to
always evaluate to 0 and hence it would never invoke sysfs_slab_release().
This patch helps fix this issue by defining SLAB_SUPPORTS_SYSFS to 1.
Fixes: 4ec10268ed ("mm, slab: unlink slabinfo, sysfs and debugfs immediately")
Reported-by: Yi Zhang <yi.zhang@redhat.com>
Closes: https://lore.kernel.org/all/CAHj4cs9YCCcfmdxN43-9H3HnTYQsRtTYw1Kzq-L468GfLKAENA@mail.gmail.com/
Signed-off-by: Nilay Shroff <nilay@linux.ibm.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Yi Zhang <yi.zhang@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Merge kmem_cache_create() refactoring by Christian Brauner.
Note this includes a merge of the vfs.file tree that contains the
prerequisity kmem_cache_create_rcu() work.
Pass down struct kmem_cache_args to calculate_sizes() so we can use
args->{use}_freeptr_offset directly. This allows us to remove
->rcu_freeptr_offset from struct kmem_cache.
Reviewed-by: Kees Cook <kees@kernel.org>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
and initialize most things in do_kmem_cache_create(). In a follow-up
patch we'll remove rcu_freeptr_offset from struct kmem_cache.
Reviewed-by: Kees Cook <kees@kernel.org>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
At the moment, the slab objects are charged to the memcg at the
allocation time. However there are cases where slab objects are
allocated at the time where the right target memcg to charge it to is
not known. One such case is the network sockets for the incoming
connection which are allocated in the softirq context.
Couple hundred thousand connections are very normal on large loaded
server and almost all of those sockets underlying those connections get
allocated in the softirq context and thus not charged to any memcg.
However later at the accept() time we know the right target memcg to
charge. Let's add new API to charge already allocated objects, so we can
have better accounting of the memory usage.
To measure the performance impact of this change, tcp_crr is used from
the neper [1] performance suite. Basically it is a network ping pong
test with new connection for each ping pong.
The server and the client are run inside 3 level of cgroup hierarchy
using the following commands:
Server:
$ tcp_crr -6
Client:
$ tcp_crr -6 -c -H ${server_ip}
If the client and server run on different machines with 50 GBPS NIC,
there is no visible impact of the change.
For the same machine experiment with v6.11-rc5 as base.
base (throughput) with-patch
tcp_crr 14545 (+- 80) 14463 (+- 56)
It seems like the performance impact is within the noise.
Link: https://github.com/google/neper [1]
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Paolo Abeni <pabeni@redhat.com> # net
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
When a kmem cache is created with SLAB_TYPESAFE_BY_RCU the free pointer
must be located outside of the object because we don't know what part of
the memory can safely be overwritten as it may be needed to prevent
object recycling.
That has the consequence that SLAB_TYPESAFE_BY_RCU may end up adding a
new cacheline. This is the case for e.g., struct file. After having it
shrunk down by 40 bytes and having it fit in three cachelines we still
have SLAB_TYPESAFE_BY_RCU adding a fourth cacheline because it needs to
accommodate the free pointer.
Add a new kmem_cache_create_rcu() function that allows the caller to
specify an offset where the free pointer is supposed to be placed.
Link: https://lore.kernel.org/r/20240828-work-kmem_cache-rcu-v3-2-5460bc1f09f6@kernel.org
Acked-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
walkers") is known to cause a performance regression
(https://lore.kernel.org/all/3acefad9-96e5-4681-8014-827d6be71c7a@linux.ibm.com/T/#mfa809800a7862fb5bdf834c6f71a3a5113eb83ff).
Yu has a fix which I'll send along later via the hotfixes branch.
- In the series "mm: Avoid possible overflows in dirty throttling" Jan
Kara addresses a couple of issues in the writeback throttling code.
These fixes are also targetted at -stable kernels.
- Ryusuke Konishi's series "nilfs2: fix potential issues related to
reserved inodes" does that. This should actually be in the
mm-nonmm-stable tree, along with the many other nilfs2 patches. My bad.
- More folio conversions from Kefeng Wang in the series "mm: convert to
folio_alloc_mpol()"
- Kemeng Shi has sent some cleanups to the writeback code in the series
"Add helper functions to remove repeated code and improve readability of
cgroup writeback"
- Kairui Song has made the swap code a little smaller and a little
faster in the series "mm/swap: clean up and optimize swap cache index".
- In the series "mm/memory: cleanly support zeropage in
vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David
Hildenbrand has reworked the rather sketchy handling of the use of the
zeropage in MAP_SHARED mappings. I don't see any runtime effects here -
more a cleanup/understandability/maintainablity thing.
- Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling of
higher addresses, for aarch64. The (poorly named) series is
"Restructure va_high_addr_switch".
- The core TLB handling code gets some cleanups and possible slight
optimizations in Bang Li's series "Add update_mmu_tlb_range() to
simplify code".
- Jane Chu has improved the handling of our
fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in the
series "Enhance soft hwpoison handling and injection".
- Jeff Johnson has sent a billion patches everywhere to add
MODULE_DESCRIPTION() to everything. Some landed in this pull.
- In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang has
simplified migration's use of hardware-offload memory copying.
- Yosry Ahmed performs more folio API conversions in his series "mm:
zswap: trivial folio conversions".
- In the series "large folios swap-in: handle refault cases first",
Chuanhua Han inches us forward in the handling of large pages in the
swap code. This is a cleanup and optimization, working toward the end
objective of full support of large folio swapin/out.
- In the series "mm,swap: cleanup VMA based swap readahead window
calculation", Huang Ying has contributed some cleanups and a possible
fixlet to his VMA based swap readahead code.
- In the series "add mTHP support for anonymous shmem" Baolin Wang has
taught anonymous shmem mappings to use multisize THP. By default this
is a no-op - users must opt in vis sysfs controls. Dramatic
improvements in pagefault latency are realized.
- David Hildenbrand has some cleanups to our remaining use of
page_mapcount() in the series "fs/proc: move page_mapcount() to
fs/proc/internal.h".
- David also has some highmem accounting cleanups in the series
"mm/highmem: don't track highmem pages manually".
- Build-time fixes and cleanups from John Hubbard in the series
"cleanups, fixes, and progress towards avoiding "make headers"".
- Cleanups and consolidation of the core pagemap handling from Barry
Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers
and utilize them".
- Lance Yang's series "Reclaim lazyfree THP without splitting" has
reduced the latency of the reclaim of pmd-mapped THPs under fairly
common circumstances. A 10x speedup is seen in a microbenchmark.
It does this by punting to aother CPU but I guess that's a win unless
all CPUs are pegged.
- hugetlb_cgroup cleanups from Xiu Jianfeng in the series
"mm/hugetlb_cgroup: rework on cftypes".
- Miaohe Lin's series "Some cleanups for memory-failure" does just that
thing.
- Is anyone reading this stuff? If so, email me!
- Someone other than SeongJae has developed a DAMON feature in Honggyu
Kim's series "DAMON based tiered memory management for CXL memory".
This adds DAMON features which may be used to help determine the
efficiency of our placement of CXL/PCIe attached DRAM.
- DAMON user API centralization and simplificatio work in SeongJae
Park's series "mm/damon: introduce DAMON parameters online commit
function".
- In the series "mm: page_type, zsmalloc and page_mapcount_reset()"
David Hildenbrand does some maintenance work on zsmalloc - partially
modernizing its use of pageframe fields.
- Kefeng Wang provides more folio conversions in the series "mm: remove
page_maybe_dma_pinned() and page_mkclean()".
- More cleanup from David Hildenbrand, this time in the series
"mm/memory_hotplug: use PageOffline() instead of PageReserved() for
!ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline()
pages" and permits the removal of some virtio-mem hacks.
- Barry Song's series "mm: clarify folio_add_new_anon_rmap() and
__folio_add_anon_rmap()" is a cleanup to the anon folio handling in
preparation for mTHP (multisize THP) swapin.
- Kefeng Wang's series "mm: improve clear and copy user folio"
implements more folio conversions, this time in the area of large folio
userspace copying.
- The series "Docs/mm/damon/maintaier-profile: document a mailing tool
and community meetup series" tells people how to get better involved
with other DAMON developers. From SeongJae Park.
- A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does
that.
- David Hildenbrand sends along more cleanups, this time against the
migration code. The series is "mm/migrate: move NUMA hinting fault
folio isolation + checks under PTL".
- Jan Kara has found quite a lot of strangenesses and minor errors in
the readahead code. He addresses this in the series "mm: Fix various
readahead quirks".
- SeongJae Park's series "selftests/damon: test DAMOS tried regions and
{min,max}_nr_regions" adds features and addresses errors in DAMON's self
testing code.
- Gavin Shan has found a userspace-triggerable WARN in the pagecache
code. The series "mm/filemap: Limit page cache size to that supported
by xarray" addresses this. The series is marked cc:stable.
- Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations
and cleanup" cleans up and slightly optimizes KSM.
- Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of
code motion. The series (which also makes the memcg-v1 code
Kconfigurable) are
"mm: memcg: separate legacy cgroup v1 code and put under config
option" and
"mm: memcg: put cgroup v1-specific memcg data under CONFIG_MEMCG_V1"
- Dan Schatzberg's series "Add swappiness argument to memory.reclaim"
adds an additional feature to this cgroup-v2 control file.
- The series "Userspace controls soft-offline pages" from Jiaqi Yan
permits userspace to stop the kernel's automatic treatment of excessive
correctable memory errors. In order to permit userspace to monitor and
handle this situation.
- Kefeng Wang's series "mm: migrate: support poison recover from migrate
folio" teaches the kernel to appropriately handle migration from
poisoned source folios rather than simply panicing.
- SeongJae Park's series "Docs/damon: minor fixups and improvements"
does those things.
- In the series "mm/zsmalloc: change back to per-size_class lock"
Chengming Zhou improves zsmalloc's scalability and memory utilization.
- Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for
pinning memfd folios" makes the GUP code use FOLL_PIN rather than bare
refcount increments. So these paes can first be moved aside if they
reside in the movable zone or a CMA block.
- Andrii Nakryiko has added a binary ioctl()-based API to /proc/pid/maps
for much faster reading of vma information. The series is "query VMAs
from /proc/<pid>/maps".
- In the series "mm: introduce per-order mTHP split counters" Lance Yang
improves the kernel's presentation of developer information related to
multisize THP splitting.
- Michael Ellerman has developed the series "Reimplement huge pages
without hugepd on powerpc (8xx, e500, book3s/64)". This permits
userspace to use all available huge page sizes.
- In the series "revert unconditional slab and page allocator fault
injection calls" Vlastimil Babka removes a performance-affecting and not
very useful feature from slab fault injection.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZp2C+QAKCRDdBJ7gKXxA
joTkAQDvjqOoFStqk4GU3OXMYB7WCU/ZQMFG0iuu1EEwTVDZ4QEA8CnG7seek1R3
xEoo+vw0sWWeLV3qzsxnCA1BJ8cTJA8=
=z0Lf
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- In the series "mm: Avoid possible overflows in dirty throttling" Jan
Kara addresses a couple of issues in the writeback throttling code.
These fixes are also targetted at -stable kernels.
- Ryusuke Konishi's series "nilfs2: fix potential issues related to
reserved inodes" does that. This should actually be in the
mm-nonmm-stable tree, along with the many other nilfs2 patches. My
bad.
- More folio conversions from Kefeng Wang in the series "mm: convert to
folio_alloc_mpol()"
- Kemeng Shi has sent some cleanups to the writeback code in the series
"Add helper functions to remove repeated code and improve readability
of cgroup writeback"
- Kairui Song has made the swap code a little smaller and a little
faster in the series "mm/swap: clean up and optimize swap cache
index".
- In the series "mm/memory: cleanly support zeropage in
vm_insert_page*(), vm_map_pages*() and vmf_insert_mixed()" David
Hildenbrand has reworked the rather sketchy handling of the use of
the zeropage in MAP_SHARED mappings. I don't see any runtime effects
here - more a cleanup/understandability/maintainablity thing.
- Dev Jain has improved selftests/mm/va_high_addr_switch.c's handling
of higher addresses, for aarch64. The (poorly named) series is
"Restructure va_high_addr_switch".
- The core TLB handling code gets some cleanups and possible slight
optimizations in Bang Li's series "Add update_mmu_tlb_range() to
simplify code".
- Jane Chu has improved the handling of our
fake-an-unrecoverable-memory-error testing feature MADV_HWPOISON in
the series "Enhance soft hwpoison handling and injection".
- Jeff Johnson has sent a billion patches everywhere to add
MODULE_DESCRIPTION() to everything. Some landed in this pull.
- In the series "mm: cleanup MIGRATE_SYNC_NO_COPY mode", Kefeng Wang
has simplified migration's use of hardware-offload memory copying.
- Yosry Ahmed performs more folio API conversions in his series "mm:
zswap: trivial folio conversions".
- In the series "large folios swap-in: handle refault cases first",
Chuanhua Han inches us forward in the handling of large pages in the
swap code. This is a cleanup and optimization, working toward the end
objective of full support of large folio swapin/out.
- In the series "mm,swap: cleanup VMA based swap readahead window
calculation", Huang Ying has contributed some cleanups and a possible
fixlet to his VMA based swap readahead code.
- In the series "add mTHP support for anonymous shmem" Baolin Wang has
taught anonymous shmem mappings to use multisize THP. By default this
is a no-op - users must opt in vis sysfs controls. Dramatic
improvements in pagefault latency are realized.
- David Hildenbrand has some cleanups to our remaining use of
page_mapcount() in the series "fs/proc: move page_mapcount() to
fs/proc/internal.h".
- David also has some highmem accounting cleanups in the series
"mm/highmem: don't track highmem pages manually".
- Build-time fixes and cleanups from John Hubbard in the series
"cleanups, fixes, and progress towards avoiding "make headers"".
- Cleanups and consolidation of the core pagemap handling from Barry
Song in the series "mm: introduce pmd|pte_needs_soft_dirty_wp helpers
and utilize them".
- Lance Yang's series "Reclaim lazyfree THP without splitting" has
reduced the latency of the reclaim of pmd-mapped THPs under fairly
common circumstances. A 10x speedup is seen in a microbenchmark.
It does this by punting to aother CPU but I guess that's a win unless
all CPUs are pegged.
- hugetlb_cgroup cleanups from Xiu Jianfeng in the series
"mm/hugetlb_cgroup: rework on cftypes".
- Miaohe Lin's series "Some cleanups for memory-failure" does just that
thing.
- Someone other than SeongJae has developed a DAMON feature in Honggyu
Kim's series "DAMON based tiered memory management for CXL memory".
This adds DAMON features which may be used to help determine the
efficiency of our placement of CXL/PCIe attached DRAM.
- DAMON user API centralization and simplificatio work in SeongJae
Park's series "mm/damon: introduce DAMON parameters online commit
function".
- In the series "mm: page_type, zsmalloc and page_mapcount_reset()"
David Hildenbrand does some maintenance work on zsmalloc - partially
modernizing its use of pageframe fields.
- Kefeng Wang provides more folio conversions in the series "mm: remove
page_maybe_dma_pinned() and page_mkclean()".
- More cleanup from David Hildenbrand, this time in the series
"mm/memory_hotplug: use PageOffline() instead of PageReserved() for
!ZONE_DEVICE". It "enlightens memory hotplug more about PageOffline()
pages" and permits the removal of some virtio-mem hacks.
- Barry Song's series "mm: clarify folio_add_new_anon_rmap() and
__folio_add_anon_rmap()" is a cleanup to the anon folio handling in
preparation for mTHP (multisize THP) swapin.
- Kefeng Wang's series "mm: improve clear and copy user folio"
implements more folio conversions, this time in the area of large
folio userspace copying.
- The series "Docs/mm/damon/maintaier-profile: document a mailing tool
and community meetup series" tells people how to get better involved
with other DAMON developers. From SeongJae Park.
- A large series ("kmsan: Enable on s390") from Ilya Leoshkevich does
that.
- David Hildenbrand sends along more cleanups, this time against the
migration code. The series is "mm/migrate: move NUMA hinting fault
folio isolation + checks under PTL".
- Jan Kara has found quite a lot of strangenesses and minor errors in
the readahead code. He addresses this in the series "mm: Fix various
readahead quirks".
- SeongJae Park's series "selftests/damon: test DAMOS tried regions and
{min,max}_nr_regions" adds features and addresses errors in DAMON's
self testing code.
- Gavin Shan has found a userspace-triggerable WARN in the pagecache
code. The series "mm/filemap: Limit page cache size to that supported
by xarray" addresses this. The series is marked cc:stable.
- Chengming Zhou's series "mm/ksm: cmp_and_merge_page() optimizations
and cleanup" cleans up and slightly optimizes KSM.
- Roman Gushchin has separated the memcg-v1 and memcg-v2 code - lots of
code motion. The series (which also makes the memcg-v1 code
Kconfigurable) are "mm: memcg: separate legacy cgroup v1 code and put
under config option" and "mm: memcg: put cgroup v1-specific memcg
data under CONFIG_MEMCG_V1"
- Dan Schatzberg's series "Add swappiness argument to memory.reclaim"
adds an additional feature to this cgroup-v2 control file.
- The series "Userspace controls soft-offline pages" from Jiaqi Yan
permits userspace to stop the kernel's automatic treatment of
excessive correctable memory errors. In order to permit userspace to
monitor and handle this situation.
- Kefeng Wang's series "mm: migrate: support poison recover from
migrate folio" teaches the kernel to appropriately handle migration
from poisoned source folios rather than simply panicing.
- SeongJae Park's series "Docs/damon: minor fixups and improvements"
does those things.
- In the series "mm/zsmalloc: change back to per-size_class lock"
Chengming Zhou improves zsmalloc's scalability and memory
utilization.
- Vivek Kasireddy's series "mm/gup: Introduce memfd_pin_folios() for
pinning memfd folios" makes the GUP code use FOLL_PIN rather than
bare refcount increments. So these paes can first be moved aside if
they reside in the movable zone or a CMA block.
- Andrii Nakryiko has added a binary ioctl()-based API to
/proc/pid/maps for much faster reading of vma information. The series
is "query VMAs from /proc/<pid>/maps".
- In the series "mm: introduce per-order mTHP split counters" Lance
Yang improves the kernel's presentation of developer information
related to multisize THP splitting.
- Michael Ellerman has developed the series "Reimplement huge pages
without hugepd on powerpc (8xx, e500, book3s/64)". This permits
userspace to use all available huge page sizes.
- In the series "revert unconditional slab and page allocator fault
injection calls" Vlastimil Babka removes a performance-affecting and
not very useful feature from slab fault injection.
* tag 'mm-stable-2024-07-21-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (411 commits)
mm/mglru: fix ineffective protection calculation
mm/zswap: fix a white space issue
mm/hugetlb: fix kernel NULL pointer dereference when migrating hugetlb folio
mm/hugetlb: fix possible recursive locking detected warning
mm/gup: clear the LRU flag of a page before adding to LRU batch
mm/numa_balancing: teach mpol_to_str about the balancing mode
mm: memcg1: convert charge move flags to unsigned long long
alloc_tag: fix page_ext_get/page_ext_put sequence during page splitting
lib: reuse page_ext_data() to obtain codetag_ref
lib: add missing newline character in the warning message
mm/mglru: fix overshooting shrinker memory
mm/mglru: fix div-by-zero in vmpressure_calc_level()
mm/kmemleak: replace strncpy() with strscpy()
mm, page_alloc: put should_fail_alloc_page() back behing CONFIG_FAIL_PAGE_ALLOC
mm, slab: put should_failslab() back behind CONFIG_SHOULD_FAILSLAB
mm: ignore data-race in __swap_writepage
hugetlbfs: ensure generic_hugetlb_get_unmapped_area() returns higher address than mmap_min_addr
mm: shmem: rename mTHP shmem counters
mm: swap_state: use folio_alloc_mpol() in __read_swap_cache_async()
mm/migrate: putback split folios when numa hint migration fails
...
commit 21c690a349 ("mm: introduce slabobj_ext to support slab object
extensions") changed the folio/page->memcg_data define condition from
MEMCG to SLAB_OBJ_EXT. This action make memcg_data exposed while !MEMCG.
As Vlastimil Babka suggested, let's add _unused_slab_obj_exts for
SLAB_MATCH for slab.obj_exts while !MEMCG. That could resolve the match
issue, clean up the feature logical.
Signed-off-by: Alex Shi (Tencent) <alexs@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Yoann Congal <yoann.congal@smile.fr>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
CONFIG_MEMCG_KMEM used to be a user-visible option for whether slab
tracking is enabled. It has been default-enabled and equivalent to
CONFIG_MEMCG for almost a decade. We've only grown more kernel memory
accounting sites since, and there is no imaginable cgroup usecase going
forward that wants to track user pages but not the multitude of
user-drivable kernel allocations.
Link: https://lkml.kernel.org/r/20240701153148.452230-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Introduce CONFIG_SLAB_BUCKETS which provides the infrastructure to
support separated kmalloc buckets (in the following kmem_buckets_create()
patches and future codetag-based separation). Since this will provide
a mitigation for a very common case of exploits, it is recommended to
enable this feature for general purpose distros. By default, the new
Kconfig will be enabled if CONFIG_SLAB_FREELIST_HARDENED is enabled (and
it is added to the hardening.config Kconfig fragment).
To be able to choose which buckets to allocate from, make the buckets
available to the internal kmalloc interfaces by adding them as the
second argument, rather than depending on the buckets being chosen from
the fixed set of global buckets. Where the bucket is not available,
pass NULL, which means "use the default system kmalloc bucket set"
(the prior existing behavior), as implemented in kmalloc_slab().
To avoid adding the extra argument when !CONFIG_SLAB_BUCKETS, only the
top-level macros and static inlines use the buckets argument (where
they are stripped out and compiled out respectively). The actual extern
functions can then be built without the argument, and the internals
fall back to the global kmalloc buckets unconditionally.
Co-developed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Kees Cook <kees@kernel.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Mark a few more folio functions as taking a const folio pointer, which
allows us to remove a few places in slab which cast away the const.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
documented (hopefully adequately) in the respective changelogs. Notable
series include:
- Lucas Stach has provided some page-mapping
cleanup/consolidation/maintainability work in the series "mm/treewide:
Remove pXd_huge() API".
- In the series "Allow migrate on protnone reference with
MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
MPOL_PREFERRED_MANY mode, yielding almost doubled performance in one
test.
- In their series "Memory allocation profiling" Kent Overstreet and
Suren Baghdasaryan have contributed a means of determining (via
/proc/allocinfo) whereabouts in the kernel memory is being allocated:
number of calls and amount of memory.
- Matthew Wilcox has provided the series "Various significant MM
patches" which does a number of rather unrelated things, but in largely
similar code sites.
- In his series "mm: page_alloc: freelist migratetype hygiene" Johannes
Weiner has fixed the page allocator's handling of migratetype requests,
with resulting improvements in compaction efficiency.
- In the series "make the hugetlb migration strategy consistent" Baolin
Wang has fixed a hugetlb migration issue, which should improve hugetlb
allocation reliability.
- Liu Shixin has hit an I/O meltdown caused by readahead in a
memory-tight memcg. Addressed in the series "Fix I/O high when memory
almost met memcg limit".
- In the series "mm/filemap: optimize folio adding and splitting" Kairui
Song has optimized pagecache insertion, yielding ~10% performance
improvement in one test.
- Baoquan He has cleaned up and consolidated the early zone
initialization code in the series "mm/mm_init.c: refactor
free_area_init_core()".
- Baoquan has also redone some MM initializatio code in the series
"mm/init: minor clean up and improvement".
- MM helper cleanups from Christoph Hellwig in his series "remove
follow_pfn".
- More cleanups from Matthew Wilcox in the series "Various page->flags
cleanups".
- Vlastimil Babka has contributed maintainability improvements in the
series "memcg_kmem hooks refactoring".
- More folio conversions and cleanups in Matthew Wilcox's series
"Convert huge_zero_page to huge_zero_folio"
"khugepaged folio conversions"
"Remove page_idle and page_young wrappers"
"Use folio APIs in procfs"
"Clean up __folio_put()"
"Some cleanups for memory-failure"
"Remove page_mapping()"
"More folio compat code removal"
- David Hildenbrand chipped in with "fs/proc/task_mmu: convert hugetlb
functions to work on folis".
- Code consolidation and cleanup work related to GUP's handling of
hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
- Rick Edgecombe has developed some fixes to stack guard gaps in the
series "Cover a guard gap corner case".
- Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the series
"mm/ksm: fix ksm exec support for prctl".
- Baolin Wang has implemented NUMA balancing for multi-size THPs. This
is a simple first-cut implementation for now. The series is "support
multi-size THP numa balancing".
- Cleanups to vma handling helper functions from Matthew Wilcox in the
series "Unify vma_address and vma_pgoff_address".
- Some selftests maintenance work from Dev Jain in the series
"selftests/mm: mremap_test: Optimizations and style fixes".
- Improvements to the swapping of multi-size THPs from Ryan Roberts in
the series "Swap-out mTHP without splitting".
- Kefeng Wang has significantly optimized the handling of arm64's
permission page faults in the series
"arch/mm/fault: accelerate pagefault when badaccess"
"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
- GUP cleanups from David Hildenbrand in "mm/gup: consistently call it
GUP-fast".
- hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault path to
use struct vm_fault".
- selftests build fixes from John Hubbard in the series "Fix
selftests/mm build without requiring "make headers"".
- Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
series "Improved Memory Tier Creation for CPUless NUMA Nodes". Fixes
the initialization code so that migration between different memory types
works as intended.
- David Hildenbrand has improved follow_pte() and fixed an errant driver
in the series "mm: follow_pte() improvements and acrn follow_pte()
fixes".
- David also did some cleanup work on large folio mapcounts in his
series "mm: mapcount for large folios + page_mapcount() cleanups".
- Folio conversions in KSM in Alex Shi's series "transfer page to folio
in KSM".
- Barry Song has added some sysfs stats for monitoring multi-size THP's
in the series "mm: add per-order mTHP alloc and swpout counters".
- Some zswap cleanups from Yosry Ahmed in the series "zswap same-filled
and limit checking cleanups".
- Matthew Wilcox has been looking at buffer_head code and found the
documentation to be lacking. The series is "Improve buffer head
documentation".
- Multi-size THPs get more work, this time from Lance Yang. His series
"mm/madvise: enhance lazyfreeing with mTHP in madvise_free" optimizes
the freeing of these things.
- Kemeng Shi has added more userspace-visible writeback instrumentation
in the series "Improve visibility of writeback".
- Kemeng Shi then sent some maintenance work on top in the series "Fix
and cleanups to page-writeback".
- Matthew Wilcox reduces mmap_lock traffic in the anon vma code in the
series "Improve anon_vma scalability for anon VMAs". Intel's test bot
reported an improbable 3x improvement in one test.
- SeongJae Park adds some DAMON feature work in the series
"mm/damon: add a DAMOS filter type for page granularity access recheck"
"selftests/damon: add DAMOS quota goal test"
- Also some maintenance work in the series
"mm/damon/paddr: simplify page level access re-check for pageout"
"mm/damon: misc fixes and improvements"
- David Hildenbrand has disabled some known-to-fail selftests ni the
series "selftests: mm: cow: flag vmsplice() hugetlb tests as XFAIL".
- memcg metadata storage optimizations from Shakeel Butt in "memcg:
reduce memory consumption by memcg stats".
- DAX fixes and maintenance work from Vishal Verma in the series
"dax/bus.c: Fixups for dax-bus locking".
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZkgQYwAKCRDdBJ7gKXxA
jrdKAP9WVJdpEcXxpoub/vVE0UWGtffr8foifi9bCwrQrGh5mgEAx7Yf0+d/oBZB
nvA4E0DcPrUAFy144FNM0NTCb7u9vAw=
=V3R/
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull mm updates from Andrew Morton:
"The usual shower of singleton fixes and minor series all over MM,
documented (hopefully adequately) in the respective changelogs.
Notable series include:
- Lucas Stach has provided some page-mapping cleanup/consolidation/
maintainability work in the series "mm/treewide: Remove pXd_huge()
API".
- In the series "Allow migrate on protnone reference with
MPOL_PREFERRED_MANY policy", Donet Tom has optimized mempolicy's
MPOL_PREFERRED_MANY mode, yielding almost doubled performance in
one test.
- In their series "Memory allocation profiling" Kent Overstreet and
Suren Baghdasaryan have contributed a means of determining (via
/proc/allocinfo) whereabouts in the kernel memory is being
allocated: number of calls and amount of memory.
- Matthew Wilcox has provided the series "Various significant MM
patches" which does a number of rather unrelated things, but in
largely similar code sites.
- In his series "mm: page_alloc: freelist migratetype hygiene"
Johannes Weiner has fixed the page allocator's handling of
migratetype requests, with resulting improvements in compaction
efficiency.
- In the series "make the hugetlb migration strategy consistent"
Baolin Wang has fixed a hugetlb migration issue, which should
improve hugetlb allocation reliability.
- Liu Shixin has hit an I/O meltdown caused by readahead in a
memory-tight memcg. Addressed in the series "Fix I/O high when
memory almost met memcg limit".
- In the series "mm/filemap: optimize folio adding and splitting"
Kairui Song has optimized pagecache insertion, yielding ~10%
performance improvement in one test.
- Baoquan He has cleaned up and consolidated the early zone
initialization code in the series "mm/mm_init.c: refactor
free_area_init_core()".
- Baoquan has also redone some MM initializatio code in the series
"mm/init: minor clean up and improvement".
- MM helper cleanups from Christoph Hellwig in his series "remove
follow_pfn".
- More cleanups from Matthew Wilcox in the series "Various
page->flags cleanups".
- Vlastimil Babka has contributed maintainability improvements in the
series "memcg_kmem hooks refactoring".
- More folio conversions and cleanups in Matthew Wilcox's series:
"Convert huge_zero_page to huge_zero_folio"
"khugepaged folio conversions"
"Remove page_idle and page_young wrappers"
"Use folio APIs in procfs"
"Clean up __folio_put()"
"Some cleanups for memory-failure"
"Remove page_mapping()"
"More folio compat code removal"
- David Hildenbrand chipped in with "fs/proc/task_mmu: convert
hugetlb functions to work on folis".
- Code consolidation and cleanup work related to GUP's handling of
hugetlbs in Peter Xu's series "mm/gup: Unify hugetlb, part 2".
- Rick Edgecombe has developed some fixes to stack guard gaps in the
series "Cover a guard gap corner case".
- Jinjiang Tu has fixed KSM's behaviour after a fork+exec in the
series "mm/ksm: fix ksm exec support for prctl".
- Baolin Wang has implemented NUMA balancing for multi-size THPs.
This is a simple first-cut implementation for now. The series is
"support multi-size THP numa balancing".
- Cleanups to vma handling helper functions from Matthew Wilcox in
the series "Unify vma_address and vma_pgoff_address".
- Some selftests maintenance work from Dev Jain in the series
"selftests/mm: mremap_test: Optimizations and style fixes".
- Improvements to the swapping of multi-size THPs from Ryan Roberts
in the series "Swap-out mTHP without splitting".
- Kefeng Wang has significantly optimized the handling of arm64's
permission page faults in the series
"arch/mm/fault: accelerate pagefault when badaccess"
"mm: remove arch's private VM_FAULT_BADMAP/BADACCESS"
- GUP cleanups from David Hildenbrand in "mm/gup: consistently call
it GUP-fast".
- hugetlb fault code cleanups from Vishal Moola in "Hugetlb fault
path to use struct vm_fault".
- selftests build fixes from John Hubbard in the series "Fix
selftests/mm build without requiring "make headers"".
- Memory tiering fixes/improvements from Ho-Ren (Jack) Chuang in the
series "Improved Memory Tier Creation for CPUless NUMA Nodes".
Fixes the initialization code so that migration between different
memory types works as intended.
- David Hildenbrand has improved follow_pte() and fixed an errant
driver in the series "mm: follow_pte() improvements and acrn
follow_pte() fixes".
- David also did some cleanup work on large folio mapcounts in his
series "mm: mapcount for large folios + page_mapcount() cleanups".
- Folio conversions in KSM in Alex Shi's series "transfer page to
folio in KSM".
- Barry Song has added some sysfs stats for monitoring multi-size
THP's in the series "mm: add per-order mTHP alloc and swpout
counters".
- Some zswap cleanups from Yosry Ahmed in the series "zswap
same-filled and limit checking cleanups".
- Matthew Wilcox has been looking at buffer_head code and found the
documentation to be lacking. The series is "Improve buffer head
documentation".
- Multi-size THPs get more work, this time from Lance Yang. His
series "mm/madvise: enhance lazyfreeing with mTHP in madvise_free"
optimizes the freeing of these things.
- Kemeng Shi has added more userspace-visible writeback
instrumentation in the series "Improve visibility of writeback".
- Kemeng Shi then sent some maintenance work on top in the series
"Fix and cleanups to page-writeback".
- Matthew Wilcox reduces mmap_lock traffic in the anon vma code in
the series "Improve anon_vma scalability for anon VMAs". Intel's
test bot reported an improbable 3x improvement in one test.
- SeongJae Park adds some DAMON feature work in the series
"mm/damon: add a DAMOS filter type for page granularity access recheck"
"selftests/damon: add DAMOS quota goal test"
- Also some maintenance work in the series
"mm/damon/paddr: simplify page level access re-check for pageout"
"mm/damon: misc fixes and improvements"
- David Hildenbrand has disabled some known-to-fail selftests ni the
series "selftests: mm: cow: flag vmsplice() hugetlb tests as
XFAIL".
- memcg metadata storage optimizations from Shakeel Butt in "memcg:
reduce memory consumption by memcg stats".
- DAX fixes and maintenance work from Vishal Verma in the series
"dax/bus.c: Fixups for dax-bus locking""
* tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (426 commits)
memcg, oom: cleanup unused memcg_oom_gfp_mask and memcg_oom_order
selftests/mm: hugetlb_madv_vs_map: avoid test skipping by querying hugepage size at runtime
mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_wp
mm/hugetlb: add missing VM_FAULT_SET_HINDEX in hugetlb_fault
selftests: cgroup: add tests to verify the zswap writeback path
mm: memcg: make alloc_mem_cgroup_per_node_info() return bool
mm/damon/core: fix return value from damos_wmark_metric_value
mm: do not update memcg stats for NR_{FILE/SHMEM}_PMDMAPPED
selftests: cgroup: remove redundant enabling of memory controller
Docs/mm/damon/maintainer-profile: allow posting patches based on damon/next tree
Docs/mm/damon/maintainer-profile: change the maintainer's timezone from PST to PT
Docs/mm/damon/design: use a list for supported filters
Docs/admin-guide/mm/damon/usage: fix wrong schemes effective quota update command
Docs/admin-guide/mm/damon/usage: fix wrong example of DAMOS filter matching sysfs file
selftests/damon: classify tests for functionalities and regressions
selftests/damon/_damon_sysfs: use 'is' instead of '==' for 'None'
selftests/damon/_damon_sysfs: find sysfs mount point from /proc/mounts
selftests/damon/_damon_sysfs: check errors from nr_schemes file reads
mm/damon/core: initialize ->esz_bp from damos_quota_init_priv()
selftests/damon: add a test for DAMOS quota goal
...
mod_memcg_lruvec_state() is never called from outside of memcontrol.c and
with always irq disabled. So, replace it with the irq disabled version
and add an assert that irq is disabled in the caller.
Similarly mod_objcg_state() is not called from outside of memcontrol.c, so
simply make it static and change it's name to __mod_objcg_state().
Link: https://lkml.kernel.org/r/20240420232505.2768428-1-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: T.J. Mercier <tjmercier@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The hooks make multiple calls to functions in mm/memcontrol.c, including
to th current_obj_cgroup() marked __always_inline. It might be faster to
make a single call to the hook in mm/memcontrol.c instead. The hooks also
don't use almost anything from mm/slub.c. obj_full_size() can move with
the hooks and cache_vmstat_idx() to the internal mm/slab.h
Link: https://lkml.kernel.org/r/20240326-slab-memcg-v3-2-d85d2563287a@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Kees Cook <kees@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reclaim the Slab page flag by using a spare bit in PageType. We are
perennially short of page flags for various purposes, and now that the
original SLAB allocator has been retired, SLUB does not use the
mapcount/page_type field. This lets us remove a number of special cases
for ignoring mapcount on Slab pages.
[willy@infradead.org: update vmcoreinfo]
Link: https://lkml.kernel.org/r/ZgGV-O8WYQ_83kxp@casper.infradead.org
Link: https://lkml.kernel.org/r/20240321142448.1645400-8-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently slab pages can store only vectors of obj_cgroup pointers in
page->memcg_data. Introduce slabobj_ext structure to allow more data to
be stored for each slab object. Wrap obj_cgroup into slabobj_ext to
support current functionality while allowing to extend slabobj_ext in the
future.
Link: https://lkml.kernel.org/r/20240321163705.3067592-7-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alex Gaynor <alex.gaynor@gmail.com>
Cc: Alice Ryhl <aliceryhl@google.com>
Cc: Andreas Hindborg <a.hindborg@samsung.com>
Cc: Benno Lossin <benno.lossin@proton.me>
Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Gary Guo <gary@garyguo.net>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wedson Almeida Filho <wedsonaf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The SLAB implementation has been removed since 6.8, so there is no
other version of slabinfo_show_stats() and slabinfo_write(), then we
can remove these two dummy functions.
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Merge a series from myself that replaces hardcoded SLAB_ cache flag
values with an enum, and explicitly deprecates the SLAB_MEM_SPREAD flag
that is a no-op sine SLAB removal.
The PARTIAL_NODE slab_state has gone with SLAB removed, so just
remove it.
Signed-off-by: Chengming Zhou <chengming.zhou@linux.dev>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
The SLAB_MEM_SPREAD flag used to be implemented in SLAB, which was
removed. SLUB instead relies on the page allocator's NUMA policies.
Change the flag's value to 0 to free up the value it had, and mark it
for full removal once all users are gone.
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Closes: https://lore.kernel.org/all/20240131172027.10f64405@gandalf.local.home/
Reviewed-and-tested-by: Xiongwei Song <xiongwei.song@windriver.com>
Reviewed-by: Chengming Zhou <chengming.zhou@linux.dev>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
We don't use the object_size parameter in kmem_cache_flags(), so just
remove it.
Signed-off-by: Chengming Zhou <chengming.zhou@linux.dev>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
After commit 16a1d96835 ("mm/slab: remove mm/slab.c and slab_def.h"),
parameter 'flags' is only passed as 0 in create_kmalloc_caches(), and
then it is only passed to new_kmalloc_cache().
So we can change parameter 'flags' to be a local variable with
initial value 0 in new_kmalloc_cache() and remove parameter 'flags'
in create_kmalloc_caches(). Also make new_kmalloc_cache() static
due to it is only used in mm/slab_common.c.
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Since the SLAB allocator has been removed, so we can clean up the
sl[au]b_$params. With only one slab allocator left, it's better to use the
generic "slab" term instead of "slub" which is an implementation detail,
which is pointed out by Vlastimil Babka. For more information please see
[1]. Hence, we are going to use "slab_$param" as the primary prefix.
This patch is changing the following slab parameters
- slub_max_order
- slub_min_order
- slub_min_objects
- slub_debug
to
- slab_max_order
- slab_min_order
- slab_min_objects
- slab_debug
as the primary slab parameters for all references of them in docs and
comments. But this patch won't change variables and functions inside
slub as we will have wider slub/slab change.
Meanwhile, "slub_$params" can also be passed by command line, which is
to keep backward compatibility. Also mark all "slub_$params" as legacy.
Remove the separate descriptions for slub_[no]merge, append legacy tip
for them at the end of descriptions of slab_[no]merge.
[1] https://lore.kernel.org/linux-mm/7512b350-4317-21a0-fab3-4101bc4d8f7a@suse.cz/
Signed-off-by: Xiongwei Song <xiongwei.song@windriver.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
This will eliminate a call between compilation units through
__kmem_cache_alloc_node() and allow better inlining of the allocation
fast path.
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
In preparation for the next patch, move the kmalloc_slab() function to
the header, as it will have callers from two files, and make it inline.
To avoid unnecessary bloat, remove all size checks/warnings from
kmalloc_slab() as they just duplicate those in callers, especially after
recent changes to kmalloc_size_roundup(). We just need to adjust handling
of zero size in __do_kmalloc_node(). Also we can stop handling NULL
result from kmalloc_slab() there as that now cannot happen (unless
called too early during boot).
The size_index array becomes visible so rename it to a more specific
kmalloc_size_index.
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
This should result in better code. Currently kfree() makes a function
call between compilation units to __kmem_cache_free() which does its own
virt_to_slab(), throwing away the struct slab pointer we already had in
kfree(). Now it can be reused. Additionally kfree() can now inline the
whole SLUB freeing fastpath.
Also move over free_large_kmalloc() as the only callsites are now in
slub.c, and make it static.
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
The declaration and associated helpers are not used anywhere else
anymore.
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
We don't share those between SLAB and SLUB anymore, so most memcg
related functions can be moved to slub.c proper.
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>