random32.c has two random number generators in it: one that is meant to
be used deterministically, with some predefined seed, and one that does
the same exact thing as random.c, except does it poorly. The first one
has some use cases. The second one no longer does and can be replaced
with calls to random.c's proper random number generator.
The relatively recent siphash-based bad random32.c code was added in
response to concerns that the prior random32.c was too deterministic.
Out of fears that random.c was (at the time) too slow, this code was
anonymously contributed. Then out of that emerged a kind of shadow
entropy gathering system, with its own tentacles throughout various net
code, added willy nilly.
Stop👏making👏bespoke👏random👏number👏generators👏.
Fortunately, recent advances in random.c mean that we can stop playing
with this sketchiness, and just use get_random_u32(), which is now fast
enough. In micro benchmarks using RDPMC, I'm seeing the same median
cycle count between the two functions, with the mean being _slightly_
higher due to batches refilling (which we can optimize further need be).
However, when doing *real* benchmarks of the net functions that actually
use these random numbers, the mean cycles actually *decreased* slightly
(with the median still staying the same), likely because the additional
prandom code means icache misses and complexity, whereas random.c is
generally already being used by something else nearby.
The biggest benefit of this is that there are many users of prandom who
probably should be using cryptographically secure random numbers. This
makes all of those accidental cases become secure by just flipping a
switch. Later on, we can do a tree-wide cleanup to remove the static
inline wrapper functions that this commit adds.
There are also some low-ish hanging fruits for making this even faster
in the future: a get_random_u16() function for use in the networking
stack will give a 2x performance boost there, using SIMD for ChaCha20
will let us compute 4 or 8 or 16 blocks of output in parallel, instead
of just one, giving us large buffers for cheap, and introducing a
get_random_*_bh() function that assumes irqs are already disabled will
shave off a few cycles for ordinary calls. These are things we can chip
away at down the road.
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
With debugobjects enabled the timer hint for freeing of active timers
embedded inside delayed works is always the same, i.e. the hint is
delayed_work_timer_fn, even though the function the delayed work is going
to run can be wildly different depending on what work was queued. Enabling
workqueue debugobjects doesn't help either because the delayed work isn't
considered active until it is actually queued to run on a workqueue. If the
work is freed while the timer is pending the work isn't considered active
so there is no information from workqueue debugobjects.
Special case delayed works in the timer debugobjects hint logic so that the
delayed work function is returned instead of the delayed_work_timer_fn.
This will help to understand which delayed work was pending that got
freed.
Apply the same treatment for kthread_delayed_work because it follows the
same pattern.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220511201951.42408-1-swboyd@chromium.org
The addition of random_get_entropy_fallback() provides access to
whichever time source has the highest frequency, which is useful for
gathering entropy on platforms without available cycle counters. It's
not necessarily as good as being able to quickly access a cycle counter
that the CPU has, but it's still something, even when it falls back to
being jiffies-based.
In the event that a given arch does not define get_cycles(), falling
back to the get_cycles() default implementation that returns 0 is really
not the best we can do. Instead, at least calling
random_get_entropy_fallback() would be preferable, because that always
needs to return _something_, even falling back to jiffies eventually.
It's not as though random_get_entropy_fallback() is super high precision
or guaranteed to be entropic, but basically anything that's not zero all
the time is better than returning zero all the time.
Finally, since random_get_entropy_fallback() is used during extremely
early boot when randomizing freelists in mm_init(), it can be called
before timekeeping has been initialized. In that case there really is
nothing we can do; jiffies hasn't even started ticking yet. So just give
up and return 0.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Theodore Ts'o <tytso@mit.edu>
The function __group_send_sig_info is just a light wrapper around
send_signal_locked with one parameter fixed to a constant value. As
the wrapper adds no real value update the code to directly call the
wrapped function.
Tested-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lkml.kernel.org/r/20220505182645.497868-2-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Use flat rather than nested indentation for chained else/if clauses as
per coding-style.rst:
if (x == y) {
..
} else if (x > y) {
...
} else {
....
}
This also improves readability.
Signed-off-by: Maciej W. Rozycki <macro@orcam.me.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/alpine.DEB.2.21.2204240148220.9383@angie.orcam.me.uk
The kernel uses kHz as the unit for clock rates reported between 1MHz
(inclusive) and 4MHz (exclusive), e.g.:
sched_clock: 64 bits at 1000kHz, resolution 1000ns, wraps every 2199023255500ns
This reduces the amount of data lost due to rounding, but hasn't been
replicated for the kHz range when support was added for proper reporting of
sub-kHz clock rates. Take the same approach for rates between 1kHz
(inclusive) and 4kHz (exclusive), which makes it consistent.
Signed-off-by: Maciej W. Rozycki <macro@orcam.me.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/alpine.DEB.2.21.2204240106380.9383@angie.orcam.me.uk
The frequency reported for clock sources are rounded down, which gives
misleading figures, e.g.:
I/O ASIC clock frequency 24999480Hz
sched_clock: 32 bits at 24MHz, resolution 40ns, wraps every 85901132779ns
MIPS counter frequency 59998512Hz
sched_clock: 32 bits at 59MHz, resolution 16ns, wraps every 35792281591ns
Rounding to nearest is more adequate:
I/O ASIC clock frequency 24999664Hz
sched_clock: 32 bits at 25MHz, resolution 40ns, wraps every 85900499947ns
MIPS counter frequency 59999728Hz
sched_clock: 32 bits at 60MHz, resolution 16ns, wraps every 35791556599ns
Signed-off-by: Maciej W. Rozycki <macro@orcam.me.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/alpine.DEB.2.21.2204240055590.9383@angie.orcam.me.uk
Accessing timekeeper::offset_boot in ktime_get_boot_fast_ns() is an
intended data race as the reader side cannot synchronize with a writer and
there is no space in struct tk_read_base of the NMI safe timekeeper.
Mark it so.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220415091920.956045162@linutronix.de
When tick_nohz_stop_tick() stops the tick and high resolution timers are
disabled, then the clock event device is not put into ONESHOT_STOPPED
mode. This can lead to spurious timer interrupts with some clock event
device drivers that don't shut down entirely after firing.
Eliminate these by putting the device into ONESHOT_STOPPED mode at points
where it is not being reprogrammed. When there are no timers active, then
tick_program_event() with KTIME_MAX can be used to stop the device. When
there is a timer active, the device can be stopped at the next tick (any
new timer added by timers will reprogram the tick).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220422141446.915024-1-npiggin@gmail.com
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmJYLboTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoW94D/wPA3Pf3Dk5MBILSSd9RFwHQK9z+X2l
Np60Cuh0aetlwNILGafJ6VG34zwjR4Z5eutAM1zy14ehRXmQSEoE5OG5ixLOg83o
8IPZRKwdG7C3WnLn+s0OdTEpgGaDTxHPOrJOXsgG9G5NwVzUEad+srePSxhDSnLn
LCKWaLnGWGC2ymbz/0TTZkhzkVyOEElY7SubF6qn8J4T9XPjdYUsZ/r1cNGBSfFD
uViQYZpjUpNFmalwNldpgIZidDBHvTnlaE610jZHQKEczs9mg2EpmAPyb/e5MKcs
tMmFcFQoNX3o0MAdRmRQD46fDAD0RKb9mP2LF+52/QqI6V8Pvk5OV/RXl/WGR/1B
KxZ6qQFXasoXujfaELAnRSRve+k2xrsyEY6yikg3G/JmrMgCSVgvfSr0CTFbbdnG
pAXC4eO94SqyCYdVU9DJZO7fhwREGF8P7qI01PYGF1B4GseQ8gaNuXCTBrkYsio2
60Nv7GFiajRjUOdPNvhnWAMvnLRpnItgV3yB7nXAt15io9AkdCXsqPq3x69cxYYU
X+CQZPG0l+tG/BERYdjAjr7/Ij0NCqteKz7UqHIF0747DLQHagms7dmk/UWsKRfU
bFyCKvLttAFYRU5lPEqjTIDfPJcqoePreqB1xRRmeerV4id26If59a9yMkFcUuF/
ZQAkAZGCc82YJA==
=mALw
-----END PGP SIGNATURE-----
Merge tag 'tai-for-tracing' into timers/core
Pull in the NMI safe TAI accessor which was provided for the tracing tree
to prepare for further changes in this area.
Introduce fast/NMI safe accessor to clock tai for tracing. The Linux kernel
tracing infrastructure has support for using different clocks to generate
timestamps for trace events. Especially in TSN networks it's useful to have TAI
as trace clock, because the application scheduling is done in accordance to the
network time, which is based on TAI. With a tai trace_clock in place, it becomes
very convenient to correlate network activity with Linux kernel application
traces.
Use the same implementation as ktime_get_boot_fast_ns() does by reading the
monotonic time and adding the TAI offset. The same limitations as for the fast
boot implementation apply. The TAI offset may change at run time e.g., by
setting the time or using adjtimex() with an offset. However, these kind of
offset changes are rare events. Nevertheless, the user has to be aware and deal
with it in post processing.
An alternative approach would be to use the same implementation as
ktime_get_real_fast_ns() does. However, this requires to add an additional u64
member to the tk_read_base struct. This struct together with a seqcount is
designed to fit into a single cache line on 64 bit architectures. Adding a new
member would violate this constraint.
Signed-off-by: Kurt Kanzenbach <kurt@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20220414091805.89667-2-kurt@linutronix.de
clocksource_verify_percpu() calls cpumask_weight() to check if any bit of a
given cpumask is set.
This can be done more efficiently with cpumask_empty() because
cpumask_empty() stops traversing the cpumask as soon as it finds first set
bit, while cpumask_weight() counts all bits unconditionally.
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220210224933.379149-24-yury.norov@gmail.com
Fixes the following W=1 kernel build warning:
kernel/time/tick-sched.c:1563: warning: This comment starts with '/**',
but isn't a kernel-doc comment.
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Jiapeng Chong <jiapeng.chong@linux.alibaba.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220214084739.63228-1-jiapeng.chong@linux.alibaba.com
While running some testing on code that happened to allow the variable
tick_nohz_full_running to get set but with no "possible" NOHZ cores to
back up that setting, this warning triggered:
if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
WARN_ON(tick_nohz_full_running);
The console was overwhemled with an endless stream of one WARN per tick
per core and there was no way to even see what was going on w/o using a
serial console to capture it and then trace it back to this.
Change it to WARN_ON_ONCE().
Fixes: 08ae95f4fd ("nohz_full: Allow the boot CPU to be nohz_full")
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20211206145950.10927-3-paul.gortmaker@windriver.com
The level granularity round up of calc_index() does:
(x + (1 << n)) >> n
which is obviously equivalent to
(x >> n) + 1
but compilers can't figure that out despite the fact that the input range
is known to not cause an overflow. It's neither intuitive to read.
Just write out the obvious.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/87h778j46c.ffs@tglx
When base::next_expiry_recalc is not initialized to false during cpu
bringup in HOTPLUG_CPU and is accidently true and no timer is queued in the
meantime, the loop through the wheel to find __next_timer_interrupt() might
be done for nothing.
Therefore initialize base::next_expiry_recalc to false in
timers_prepare_cpu().
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220405191732.7438-2-anna-maria@linutronix.de
When the timer base is empty, base::next_expiry is set to base::clk +
NEXT_TIMER_MAX_DELTA and base::next_expiry_recalc is false. When no timer
is queued until jiffies reaches base::next_expiry value, the warning for
not finding any expired timer and base::next_expiry_recalc is false in
__run_timers() triggers.
To prevent triggering the warning in this valid scenario
base::timers_pending needs to be added to the warning condition.
Fixes: 31cd0e119d ("timers: Recalculate next timer interrupt only when necessary")
Reported-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220405191732.7438-3-anna-maria@linutronix.de
This set of changes removes tracehook.h, moves modification of all of
the ptrace fields inside of siglock to remove races, adds a missing
permission check to ptrace.c
The removal of tracehook.h is quite significant as it has been a major
source of confusion in recent years. Much of that confusion was
around task_work and TIF_NOTIFY_SIGNAL (which I have now decoupled
making the semantics clearer).
For people who don't know tracehook.h is a vestiage of an attempt to
implement uprobes like functionality that was never fully merged, and
was later superseeded by uprobes when uprobes was merged. For many
years now we have been removing what tracehook functionaly a little
bit at a time. To the point where now anything left in tracehook.h is
some weird strange thing that is difficult to understand.
Eric W. Biederman (15):
ptrace: Move ptrace_report_syscall into ptrace.h
ptrace/arm: Rename tracehook_report_syscall report_syscall
ptrace: Create ptrace_report_syscall_{entry,exit} in ptrace.h
ptrace: Remove arch_syscall_{enter,exit}_tracehook
ptrace: Remove tracehook_signal_handler
task_work: Remove unnecessary include from posix_timers.h
task_work: Introduce task_work_pending
task_work: Call tracehook_notify_signal from get_signal on all architectures
task_work: Decouple TIF_NOTIFY_SIGNAL and task_work
signal: Move set_notify_signal and clear_notify_signal into sched/signal.h
resume_user_mode: Remove #ifdef TIF_NOTIFY_RESUME in set_notify_resume
resume_user_mode: Move to resume_user_mode.h
tracehook: Remove tracehook.h
ptrace: Move setting/clearing ptrace_message into ptrace_stop
ptrace: Return the signal to continue with from ptrace_stop
Jann Horn (1):
ptrace: Check PTRACE_O_SUSPEND_SECCOMP permission on PTRACE_SEIZE
Yang Li (1):
ptrace: Remove duplicated include in ptrace.c
MAINTAINERS | 1 -
arch/Kconfig | 5 +-
arch/alpha/kernel/ptrace.c | 5 +-
arch/alpha/kernel/signal.c | 4 +-
arch/arc/kernel/ptrace.c | 5 +-
arch/arc/kernel/signal.c | 4 +-
arch/arm/kernel/ptrace.c | 12 +-
arch/arm/kernel/signal.c | 4 +-
arch/arm64/kernel/ptrace.c | 14 +--
arch/arm64/kernel/signal.c | 4 +-
arch/csky/kernel/ptrace.c | 5 +-
arch/csky/kernel/signal.c | 4 +-
arch/h8300/kernel/ptrace.c | 5 +-
arch/h8300/kernel/signal.c | 4 +-
arch/hexagon/kernel/process.c | 4 +-
arch/hexagon/kernel/signal.c | 1 -
arch/hexagon/kernel/traps.c | 6 +-
arch/ia64/kernel/process.c | 4 +-
arch/ia64/kernel/ptrace.c | 6 +-
arch/ia64/kernel/signal.c | 1 -
arch/m68k/kernel/ptrace.c | 5 +-
arch/m68k/kernel/signal.c | 4 +-
arch/microblaze/kernel/ptrace.c | 5 +-
arch/microblaze/kernel/signal.c | 4 +-
arch/mips/kernel/ptrace.c | 5 +-
arch/mips/kernel/signal.c | 4 +-
arch/nds32/include/asm/syscall.h | 2 +-
arch/nds32/kernel/ptrace.c | 5 +-
arch/nds32/kernel/signal.c | 4 +-
arch/nios2/kernel/ptrace.c | 5 +-
arch/nios2/kernel/signal.c | 4 +-
arch/openrisc/kernel/ptrace.c | 5 +-
arch/openrisc/kernel/signal.c | 4 +-
arch/parisc/kernel/ptrace.c | 7 +-
arch/parisc/kernel/signal.c | 4 +-
arch/powerpc/kernel/ptrace/ptrace.c | 8 +-
arch/powerpc/kernel/signal.c | 4 +-
arch/riscv/kernel/ptrace.c | 5 +-
arch/riscv/kernel/signal.c | 4 +-
arch/s390/include/asm/entry-common.h | 1 -
arch/s390/kernel/ptrace.c | 1 -
arch/s390/kernel/signal.c | 5 +-
arch/sh/kernel/ptrace_32.c | 5 +-
arch/sh/kernel/signal_32.c | 4 +-
arch/sparc/kernel/ptrace_32.c | 5 +-
arch/sparc/kernel/ptrace_64.c | 5 +-
arch/sparc/kernel/signal32.c | 1 -
arch/sparc/kernel/signal_32.c | 4 +-
arch/sparc/kernel/signal_64.c | 4 +-
arch/um/kernel/process.c | 4 +-
arch/um/kernel/ptrace.c | 5 +-
arch/x86/kernel/ptrace.c | 1 -
arch/x86/kernel/signal.c | 5 +-
arch/x86/mm/tlb.c | 1 +
arch/xtensa/kernel/ptrace.c | 5 +-
arch/xtensa/kernel/signal.c | 4 +-
block/blk-cgroup.c | 2 +-
fs/coredump.c | 1 -
fs/exec.c | 1 -
fs/io-wq.c | 6 +-
fs/io_uring.c | 11 +-
fs/proc/array.c | 1 -
fs/proc/base.c | 1 -
include/asm-generic/syscall.h | 2 +-
include/linux/entry-common.h | 47 +-------
include/linux/entry-kvm.h | 2 +-
include/linux/posix-timers.h | 1 -
include/linux/ptrace.h | 81 ++++++++++++-
include/linux/resume_user_mode.h | 64 ++++++++++
include/linux/sched/signal.h | 17 +++
include/linux/task_work.h | 5 +
include/linux/tracehook.h | 226 -----------------------------------
include/uapi/linux/ptrace.h | 2 +-
kernel/entry/common.c | 19 +--
kernel/entry/kvm.c | 9 +-
kernel/exit.c | 3 +-
kernel/livepatch/transition.c | 1 -
kernel/ptrace.c | 47 +++++---
kernel/seccomp.c | 1 -
kernel/signal.c | 62 +++++-----
kernel/task_work.c | 4 +-
kernel/time/posix-cpu-timers.c | 1 +
mm/memcontrol.c | 2 +-
security/apparmor/domain.c | 1 -
security/selinux/hooks.c | 1 -
85 files changed, 372 insertions(+), 495 deletions(-)
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEgjlraLDcwBA2B+6cC/v6Eiajj0AFAmJCQkoACgkQC/v6Eiaj
j0DCWQ/5AZVFU+hX32obUNCLackHTwgcCtSOs3JNBmNA/zL/htPiYYG0ghkvtlDR
Dw5J5DnxC6P7PVAdAqrpvx2uX2FebHYU0bRlyLx8LYUEP5dhyNicxX9jA882Z+vw
Ud0Ue9EojwGWS76dC9YoKUj3slThMATbhA2r4GVEoof8fSNJaBxQIqath44t0FwU
DinWa+tIOvZANGBZr6CUUINNIgqBIZCH/R4h6ArBhMlJpuQ5Ufk2kAaiWFwZCkX4
0LuuAwbKsCKkF8eap5I2KrIg/7zZVgxAg9O3cHOzzm8OPbKzRnNnQClcDe8perqp
S6e/f3MgpE+eavd1EiLxevZ660cJChnmikXVVh8ZYYoefaMKGqBaBSsB38bNcLjY
3+f2dB+TNBFRnZs1aCujK3tWBT9QyjZDKtCBfzxDNWBpXGLhHH6j6lA5Lj+Cef5K
/HNHFb+FuqedlFZh5m1Y+piFQ70hTgCa2u8b+FSOubI2hW9Zd+WzINV0ANaZ2LvZ
4YGtcyDNk1q1+c87lxP9xMRl/xi6rNg+B9T2MCo4IUnHgpSVP6VEB3osgUmrrrN0
eQlUI154G/AaDlqXLgmn1xhRmlPGfmenkxpok1AuzxvNJsfLKnpEwQSc13g3oiZr
disZQxNY0kBO2Nv3G323Z6PLinhbiIIFez6cJzK5v0YJ2WtO3pY=
=uEro
-----END PGP SIGNATURE-----
Merge tag 'ptrace-cleanups-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull ptrace cleanups from Eric Biederman:
"This set of changes removes tracehook.h, moves modification of all of
the ptrace fields inside of siglock to remove races, adds a missing
permission check to ptrace.c
The removal of tracehook.h is quite significant as it has been a major
source of confusion in recent years. Much of that confusion was around
task_work and TIF_NOTIFY_SIGNAL (which I have now decoupled making the
semantics clearer).
For people who don't know tracehook.h is a vestiage of an attempt to
implement uprobes like functionality that was never fully merged, and
was later superseeded by uprobes when uprobes was merged. For many
years now we have been removing what tracehook functionaly a little
bit at a time. To the point where anything left in tracehook.h was
some weird strange thing that was difficult to understand"
* tag 'ptrace-cleanups-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
ptrace: Remove duplicated include in ptrace.c
ptrace: Check PTRACE_O_SUSPEND_SECCOMP permission on PTRACE_SEIZE
ptrace: Return the signal to continue with from ptrace_stop
ptrace: Move setting/clearing ptrace_message into ptrace_stop
tracehook: Remove tracehook.h
resume_user_mode: Move to resume_user_mode.h
resume_user_mode: Remove #ifdef TIF_NOTIFY_RESUME in set_notify_resume
signal: Move set_notify_signal and clear_notify_signal into sched/signal.h
task_work: Decouple TIF_NOTIFY_SIGNAL and task_work
task_work: Call tracehook_notify_signal from get_signal on all architectures
task_work: Introduce task_work_pending
task_work: Remove unnecessary include from posix_timers.h
ptrace: Remove tracehook_signal_handler
ptrace: Remove arch_syscall_{enter,exit}_tracehook
ptrace: Create ptrace_report_syscall_{entry,exit} in ptrace.h
ptrace/arm: Rename tracehook_report_syscall report_syscall
ptrace: Move ptrace_report_syscall into ptrace.h
The tasklist_lock popped up as a scalability bottleneck on some testing
workloads. The readlocks in do_prlimit and set/getpriority are not
necessary in all cases.
Based on a cycles profile, it looked like ~87% of the time was spent in
the kernel, ~42% of which was just trying to get *some* spinlock
(queued_spin_lock_slowpath, not necessarily the tasklist_lock).
The big offenders (with rough percentages in cycles of the overall trace):
- do_wait 11%
- setpriority 8% (this patchset)
- kill 8%
- do_exit 5%
- clone 3%
- prlimit64 2% (this patchset)
- getrlimit 1% (this patchset)
I can't easily test this patchset on the original workload for various
reasons. Instead, I used the microbenchmark below to at least verify
there was some improvement. This patchset had a 28% speedup (12% from
baseline to set/getprio, then another 14% for prlimit).
One interesting thing is that my libc's getrlimit() was calling
prlimit64, so hoisting the read_lock(tasklist_lock) into sys_prlimit64
had no effect - it essentially optimized the older syscalls only. I
didn't do that in this patchset, but figured I'd mention it since it was
an option from the previous patch's discussion.
v3: https://lkml.kernel.org/r/20220106172041.522167-1-brho@google.com
v2: https://lore.kernel.org/lkml/20220105212828.197013-1-brho@google.com/
- update_rlimit_cpu on the group_leader instead of for_each_thread.
- update_rlimit_cpu still returns 0 or -ESRCH, even though we don't care
about the error here. it felt safer that way in case someone uses
that function again.
v1: https://lore.kernel.org/lkml/20211213220401.1039578-1-brho@google.com/
int main(int argc, char **argv)
{
pid_t child;
struct rlimit rlim[1];
fork(); fork(); fork(); fork(); fork(); fork();
for (int i = 0; i < 5000; i++) {
child = fork();
if (child < 0)
exit(1);
if (child > 0) {
usleep(1000);
kill(child, SIGTERM);
waitpid(child, NULL, 0);
} else {
for (;;) {
setpriority(PRIO_PROCESS, 0,
getpriority(PRIO_PROCESS, 0));
getrlimit(RLIMIT_CPU, rlim);
}
}
}
return 0;
}
Barret Rhoden (3):
setpriority: only grab the tasklist_lock for PRIO_PGRP
prlimit: make do_prlimit() static
prlimit: do not grab the tasklist_lock
include/linux/posix-timers.h | 2 +-
include/linux/resource.h | 2 -
kernel/sys.c | 127 +++++++++++++++++----------------
kernel/time/posix-cpu-timers.c | 12 +++-
4 files changed, 76 insertions(+), 67 deletions(-)
I have dropped the first change in this series as an almost identical
change was merged as commit 7f8ca0edfe ("kernel/sys.c: only take
tasklist_lock for get/setpriority(PRIO_PGRP)").
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEgjlraLDcwBA2B+6cC/v6Eiajj0AFAmI7eCAACgkQC/v6Eiaj
j0CN8w/+MEol1+sB/mDKgDgqbNE0sIXHTjQF37KPrsqB51aas9LSX7E7CBzvxF3M
Y0MSk0VzSt4oGpmrNQOAEueeMeaMucPxI5JejGHEhtdHFBMqYXKpWuhqewIHx1pc
lUcYpDeUOOBjwLO/VT5hfAKzIEMUl6tEDfzexl9IvpVwd661nVjDe+z12mDplJTi
tjO8ZiSHkjkLE3cAYaTCajsaqpj7NLuIYB1d4CbbpU3vO5LYoffj/vtQ1e+7UxMB
jhgaP/ylo0Ab8udYJ0PFIDmmQG/6s7csc3I1wtMgf8mqv88z4xspXNZBwYvf2hxa
lBpSo+zD8Q88XipC+w63iBUa7YElLaai9xpLInO/Ir42G03/H/8TS9me1OLG+1Cz
vloOid6CqH7KkNQ842txXeyj3xjW1DGR7U0QOrSxFQuWc6WZ2Q/l8KIZsuXuyt9G
EwTjtoQvr1R+FNMtT/4g5WZ8sTYooIaHFvFQ745T6FzBp8mCVjINg4SUbVV3Wvck
JRMxuHSFFBXj8IIJi9Bv6UE/j5APwa209KthvFCQayniNZU3XPKVa/bDWVoBk+SK
Hch3M//QdAjKYmRf5gmDaBbRyqzaeiFjvX1MSnkbFryBX4/yIoEfo0/QsDRzSrJV
vSSSU79h/XDI080gILOzNX4HiI4cpNcpOIB63Pmajyr6MxhrMqE=
=VVGP
-----END PGP SIGNATURE-----
Merge tag 'prlimit-tasklist_lock-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull tasklist_lock optimizations from Eric Biederman:
"prlimit and getpriority tasklist_lock optimizations
The tasklist_lock popped up as a scalability bottleneck on some
testing workloads. The readlocks in do_prlimit and set/getpriority are
not necessary in all cases.
Based on a cycles profile, it looked like ~87% of the time was spent
in the kernel, ~42% of which was just trying to get *some* spinlock
(queued_spin_lock_slowpath, not necessarily the tasklist_lock).
The big offenders (with rough percentages in cycles of the overall
trace):
- do_wait 11%
- setpriority 8% (done previously in commit 7f8ca0edfe)
- kill 8%
- do_exit 5%
- clone 3%
- prlimit64 2% (this patchset)
- getrlimit 1% (this patchset)
I can't easily test this patchset on the original workload for various
reasons. Instead, I used the microbenchmark below to at least verify
there was some improvement. This patchset had a 28% speedup (12% from
baseline to set/getprio, then another 14% for prlimit).
This series used to do the setpriority case, but an almost identical
change was merged as commit 7f8ca0edfe ("kernel/sys.c: only take
tasklist_lock for get/setpriority(PRIO_PGRP)") so that has been
dropped from here.
One interesting thing is that my libc's getrlimit() was calling
prlimit64, so hoisting the read_lock(tasklist_lock) into sys_prlimit64
had no effect - it essentially optimized the older syscalls only. I
didn't do that in this patchset, but figured I'd mention it since it
was an option from the previous patch's discussion"
micobenchmark.c:
---------------
int main(int argc, char **argv)
{
pid_t child;
struct rlimit rlim[1];
fork(); fork(); fork(); fork(); fork(); fork();
for (int i = 0; i < 5000; i++) {
child = fork();
if (child < 0)
exit(1);
if (child > 0) {
usleep(1000);
kill(child, SIGTERM);
waitpid(child, NULL, 0);
} else {
for (;;) {
setpriority(PRIO_PROCESS, 0,
getpriority(PRIO_PROCESS, 0));
getrlimit(RLIMIT_CPU, rlim);
}
}
}
return 0;
}
Link: https://lore.kernel.org/lkml/20211213220401.1039578-1-brho@google.com/ [v1]
Link: https://lore.kernel.org/lkml/20220105212828.197013-1-brho@google.com/ [v2]
Link: https://lore.kernel.org/lkml/20220106172041.522167-1-brho@google.com/ [v3]
* tag 'prlimit-tasklist_lock-for-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
prlimit: do not grab the tasklist_lock
prlimit: make do_prlimit() static
Break a header file circular dependency by removing the unnecessary
include of task_work.h from posix_timers.h.
sched.h -> posix-timers.h
posix-timers.h -> task_work.h
task_work.h -> sched.h
Add missing includes of task_work.h to:
arch/x86/mm/tlb.c
kernel/time/posix-cpu-timers.c
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20220309162454.123006-6-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Unnecessarily grabbing the tasklist_lock can be a scalability bottleneck
for workloads that also must grab the tasklist_lock for waiting,
killing, and cloning.
The tasklist_lock was grabbed to protect tsk->sighand from disappearing
(becoming NULL). tsk->signal was already protected by holding a
reference to tsk.
update_rlimit_cpu() assumed tsk->sighand != NULL. With this commit, it
attempts to lock_task_sighand(). However, this means that
update_rlimit_cpu() can fail. This only happens when a task is exiting.
Note that during exec, sighand may *change*, but it will not be NULL.
Prior to this commit, the do_prlimit() ensured that update_rlimit_cpu()
would not fail by read locking the tasklist_lock and checking tsk->sighand
!= NULL.
If update_rlimit_cpu() fails, there may be other tasks that are not
exiting that share tsk->signal. However, the group_leader is the last
task to be released, so if we cannot update_rlimit_cpu(group_leader),
then the entire process is exiting.
The only other caller of update_rlimit_cpu() is
selinux_bprm_committing_creds(). It has tsk == current, so
update_rlimit_cpu() cannot fail (current->sighand cannot disappear
until current exits).
This change resulted in a 14% speedup on a microbenchmark where parents
kill and wait on their children, and children getpriority, setpriority,
and getrlimit.
Signed-off-by: Barret Rhoden <brho@google.com>
Link: https://lkml.kernel.org/r/20220106172041.522167-4-brho@google.com
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
RCU_SOFTIRQ used to be special in that it could be raised on purpose
within the idle path to prevent from stopping the tick. Some code still
prevents from unnecessary warnings related to this specific behaviour
while entering in dynticks-idle mode.
However the nohz layout has changed quite a bit in ten years, and the
removal of CONFIG_RCU_FAST_NO_HZ has been the final straw to this
safe-conduct. Now the RCU_SOFTIRQ vector is expected to be raised from
sane places.
A remaining corner case is admitted though when the vector is invoked
in fragile hotplug path.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Paul Menzel <pmenzel@molgen.mpg.de>
With the removal of CONFIG_RCU_FAST_NO_HZ, the parameters in
rcu_needs_cpu() are not necessary anymore. Simply remove them.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Paul Menzel <pmenzel@molgen.mpg.de>
On some rare cases, the timekeeper CPU may be delaying its jiffies
update duty for a while. Known causes include:
* The timekeeper is waiting on stop_machine in a MULTI_STOP_DISABLE_IRQ
or MULTI_STOP_RUN state. Disabled interrupts prevent from timekeeping
updates while waiting for the target CPU to complete its
stop_machine() callback.
* The timekeeper vcpu has VMEXIT'ed for a long while due to some overload
on the host.
Detect and fix these situations with emergency timekeeping catchups.
Original-patch-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
A watchdog maximum skew of 100us may still be too small for
some systems or archs. It may also be too small when some kernel
debug config options are enabled. So add a new Kconfig option
CLOCKSOURCE_WATCHDOG_MAX_SKEW_US to allow kernel builders to have more
control on the threshold for marking clocksource as unstable.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQHJBAABCgAzFiEEi8GdvG6xMhdgpu/4sUSA/TofvsgFAmHi+xgVHHl1cnkubm9y
b3ZAZ21haWwuY29tAAoJELFEgP06H77IxdoMAMf3E+L51Ys/4iAiyJQNVoT3aIBC
A8ZVOB9he1OA3o3wBNIRKmICHk+ovnfCWcXTr9fG/Ade2wJz88NAsGPQ1Phywb+s
iGlpySllFN72RT9ZqtJhLEzgoHHOL0CzTW07TN9GJy4gQA2h2G9CTP+OmsQdnVqE
m9Fn3PSlJ5lhzePlKfnln8rGZFgrriJakfEFPC79n/7an4+2Hvkb5rWigo7KQc4Z
9YNqYUcHWZFUgq80adxEb9LlbMXdD+Z/8fCjOrAatuwVkD4RDt6iKD0mFGjHXGL7
MZ9KRS8AfZXawmetk3jjtsV+/QkeS+Deuu7k0FoO0Th2QV7BGSDhsLXAS5By/MOC
nfSyHhnXHzCsBMyVNrJHmNhEZoN29+tRwI84JX9lWcf/OLANcCofnP6f2UIX7tZY
CAZAgVELp+0YQXdybrfzTQ8BT3TinjS/aZtCrYijRendI1GwUXcyl69vdOKqAHuk
5jy8k/xHyp+ZWu6v+PyAAAEGowY++qhL0fmszA==
=RKW4
-----END PGP SIGNATURE-----
Merge tag 'bitmap-5.17-rc1' of git://github.com/norov/linux
Pull bitmap updates from Yury Norov:
- introduce for_each_set_bitrange()
- use find_first_*_bit() instead of find_next_*_bit() where possible
- unify for_each_bit() macros
* tag 'bitmap-5.17-rc1' of git://github.com/norov/linux:
vsprintf: rework bitmap_list_string
lib: bitmap: add performance test for bitmap_print_to_pagebuf
bitmap: unify find_bit operations
mm/percpu: micro-optimize pcpu_is_populated()
Replace for_each_*_bit_from() with for_each_*_bit() where appropriate
find: micro-optimize for_each_{set,clear}_bit()
include/linux: move for_each_bit() macros from bitops.h to find.h
cpumask: replace cpumask_next_* with cpumask_first_* where appropriate
tools: sync tools/bitmap with mother linux
all: replace find_next{,_zero}_bit with find_first{,_zero}_bit where appropriate
cpumask: use find_first_and_bit()
lib: add find_first_and_bit()
arch: remove GENERIC_FIND_FIRST_BIT entirely
include: move find.h from asm_generic to linux
bitops: move find_bit_*_le functions from le.h to find.h
bitops: protect find_first_{,zero}_bit properly
cpumask_first() is a more effective analogue of 'next' version if n == -1
(which means start == 0). This patch replaces 'next' with 'first' where
things look trivial.
There's no cpumask_first_zero() function, so create it.
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Tested-by: Wolfram Sang <wsa+renesas@sang-engineering.com>
Core:
- Make the clocksource watchdog more robust by better validation checks
of the measurement.
Drivers:
- New drivers for MStar and SSD20xd SOCs
- The usual cleanups and improvements all over the place
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmHf+n0THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoQ2lD/9WCp+fGTmOt5zb8dOyuyLFjDljStPZ
zNi4d4Iu3gcBIRcjACtbSI2rAPK5gQyM38c9nlmtFv3zihfmz5bQkMTQ1N7O84Nu
c1iEuTW69l/ZvykSJWApsGIY8zgA41efoLYzhg/dCpQGE2fINiRDyU5ZxbJXmwMW
ipjBCf3F9/WLWoTgvl3cTayd/l+7fnpeM6w9MfujHLyCXCwz484KW/7UIMkTCcxF
b7Y3bTLxP4a/iT/ltFDqvLUjUuJWdmCh6gihcEL+9PD/h6KmQnND+p9KB7tbMRy/
DUOBTCi5gY66RQeGRJPVe+Cx/Wi+8vCiyfXUuSoQGqE39HVYOUzMwWOjOncjLad4
fXSzzCIKRwsB3qKw+2GnDeEx1hIw1/K88V2tA+OgQjdWIginOClzy0jb0dkBRbo5
H1U6mPxb+CTKAl1hXAkfDDCenLTiiGBFbvJUydiJYMcFEZYM166e/jA53xIKHNAz
WEphVRAPA269uIxYBXJU7pA6M5bYqbHhhmrxyWOBbhhZGGj3x685PA1wioeNayMp
SMA7s7kZaOBDuTtjRY/dFDkd/27HKWDkxjZCbbslRRKKO0Zz7qixzspV5LETnABO
NzR5TcNimCyvfKEzSG1PFmzx9P/cnspyLvWj560xL0Z9x1MnsHtiUpibJ8a/Gb45
riPKWGedog8BgQ==
=7vCU
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2022-01-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"Updates for the time(r) subsystem:
Core:
- Make the clocksource watchdog more robust by better validation
checks of the measurement.
Drivers:
- New drivers for MStar and SSD20xd SOCs
- The usual cleanups and improvements all over the place"
* tag 'timers-core-2022-01-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
dt-bindings: timer: Add Mstar MSC313e timer devicetree bindings documentation
clocksource/drivers/msc313e: Add support for ssd20xd-based platforms
clocksource/drivers: Add MStar MSC313e timer support
clocksource/drivers/pistachio: Fix -Wunused-but-set-variable warning
clocksource/drivers/timer-imx-sysctr: Set cpumask to cpu_possible_mask
clocksource/drivers/imx-sysctr: Mark two variable with __ro_after_init
clocksource/drivers/renesas,ostm: Make RENESAS_OSTM symbol visible
clocksource/drivers/renesas-ostm: Add RZ/G2L OSTM support
dt-bindings: timer: renesas: ostm: Document Renesas RZ/G2L OSTM
clocksource/drivers/exynos_mct: Fix silly typo resulting in checkpatch warning
clocksource: Reduce the default clocksource_watchdog() retries to 2
clocksource: Avoid accidental unstable marking of clocksources
dt-bindings: timer: tpm-timer: Add imx8ulp compatible string
reset: Add of_reset_control_get_optional_exclusive()
clocksource/drivers/exynos_mct: Refactor resources allocation
dt-bindings: timer: remove rockchip,rk3066-timer compatible string from rockchip,rk-timer.yaml
dt-bindings: timer: cadence_ttc: Add power-domains
Pull clocksource watchdog updates from Paul McKenney:
- Avoid accidental unstable marking of clocksources by rejecting
clocksource measurements where the source of the skew is the delay
reading reference clocksource itself. This change avoids many of the
current false positives caused by epic cache-thrashing workloads.
- Reduce the default clocksource_watchdog() retries to 2, thus offsetting
the increased overhead due to #1 above rereading the reference
clocksource.
Link: https://lore.kernel.org/lkml/20220105001723.GA536708@paulmck-ThinkPad-P17-Gen-1
Even after commit e1d7ba8735 ("time: Always make sure wall_to_monotonic
isn't positive") it is still possible to make wall_to_monotonic positive
by running the following code:
int main(void)
{
struct timespec time;
clock_gettime(CLOCK_MONOTONIC, &time);
time.tv_nsec = 0;
clock_settime(CLOCK_REALTIME, &time);
return 0;
}
The reason is that the second parameter of timespec64_compare(), ts_delta,
may be unnormalized because the delta is calculated with an open coded
substraction which causes the comparison of tv_sec to yield the wrong
result:
wall_to_monotonic = { .tv_sec = -10, .tv_nsec = 900000000 }
ts_delta = { .tv_sec = -9, .tv_nsec = -900000000 }
That makes timespec64_compare() claim that wall_to_monotonic < ts_delta,
but actually the result should be wall_to_monotonic > ts_delta.
After normalization, the result of timespec64_compare() is correct because
the tv_sec comparison is not longer misleading:
wall_to_monotonic = { .tv_sec = -10, .tv_nsec = 900000000 }
ts_delta = { .tv_sec = -10, .tv_nsec = 100000000 }
Use timespec64_sub() to ensure that ts_delta is normalized, which fixes the
issue.
Fixes: e1d7ba8735 ("time: Always make sure wall_to_monotonic isn't positive")
Signed-off-by: Yu Liao <liaoyu15@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20211213135727.1656662-1-liaoyu15@huawei.com
Patch series "mm/damon: Fix fake /proc/loadavg reports", v3.
This patchset fixes DAMON's fake load report issue. The first patch
makes yet another variant of usleep_range() for this fix, and the second
patch fixes the issue of DAMON by making it using the newly introduced
function.
This patch (of 2):
Some kernel threads such as DAMON could need to repeatedly sleep in
micro seconds level. Because usleep_range() sleeps in uninterruptible
state, however, such threads would make /proc/loadavg reports fake load.
To help such cases, this commit implements a variant of usleep_range()
called usleep_idle_range(). It is same to usleep_range() but sets the
state of the current task as TASK_IDLE while sleeping.
Link: https://lkml.kernel.org/r/20211126145015.15862-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20211126145015.15862-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Cc: John Stultz <john.stultz@linaro.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When at least one CPU runs in nohz_full mode, a dedicated timekeeper CPU
is guaranteed to stay online and to never stop its tick.
Meanwhile on some rare case, the dedicated timekeeper may be running
with interrupts disabled for a while, such as in stop_machine.
If jiffies stop being updated, a nohz_full CPU may end up endlessly
programming the next tick in the past, taking the last jiffies update
monotonic timestamp as a stale base, resulting in an tick storm.
Here is a scenario where it matters:
0) CPU 0 is the timekeeper and CPU 1 a nohz_full CPU.
1) A stop machine callback is queued to execute somewhere.
2) CPU 0 reaches MULTI_STOP_DISABLE_IRQ while CPU 1 is still in
MULTI_STOP_PREPARE. Hence CPU 0 can't do its timekeeping duty. CPU 1
can still take IRQs.
3) CPU 1 receives an IRQ which queues a timer callback one jiffy forward.
4) On IRQ exit, CPU 1 schedules the tick one jiffy forward, taking
last_jiffies_update as a base. But last_jiffies_update hasn't been
updated for 2 jiffies since the timekeeper has interrupts disabled.
5) clockevents_program_event(), which relies on ktime_get(), observes
that the expiration is in the past and therefore programs the min
delta event on the clock.
6) The tick fires immediately, goto 3)
7) Tick storm, the nohz_full CPU is drown and takes ages to reach
MULTI_STOP_DISABLE_IRQ, which is the only way out of this situation.
Solve this with unconditionally updating jiffies if the value is stale
on nohz_full IRQ entry. IRQs and other disturbances are expected to be
rare enough on nohz_full for the unconditional call to ktime_get() to
actually matter.
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20211026141055.57358-2-frederic@kernel.org
With the previous patch, there is an extra watchdog read in each retry.
Now the total number of clocksource reads is increased to 4 per iteration.
In order to avoid increasing the clock skew check overhead, the default
maximum number of retries is reduced from 3 to 2 to maintain the same 12
clocksource reads in the worst case.
Suggested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Since commit db3a34e174 ("clocksource: Retry clock read if long delays
detected") and commit 2e27e793e2 ("clocksource: Reduce clocksource-skew
threshold"), it is found that tsc clocksource fallback to hpet can
sometimes happen on both Intel and AMD systems especially when they are
running stressful benchmarking workloads. Of the 23 systems tested with
a v5.14 kernel, 10 of them have switched to hpet clock source during
the test run.
The result of falling back to hpet is a drastic reduction of performance
when running benchmarks. For example, the fio performance tests can
drop up to 70% whereas the iperf3 performance can drop up to 80%.
4 hpet fallbacks happened during bootup. They were:
[ 8.749399] clocksource: timekeeping watchdog on CPU13: hpet read-back delay of 263750ns, attempt 4, marking unstable
[ 12.044610] clocksource: timekeeping watchdog on CPU19: hpet read-back delay of 186166ns, attempt 4, marking unstable
[ 17.336941] clocksource: timekeeping watchdog on CPU28: hpet read-back delay of 182291ns, attempt 4, marking unstable
[ 17.518565] clocksource: timekeeping watchdog on CPU34: hpet read-back delay of 252196ns, attempt 4, marking unstable
Other fallbacks happen when the systems were running stressful
benchmarks. For example:
[ 2685.867873] clocksource: timekeeping watchdog on CPU117: hpet read-back delay of 57269ns, attempt 4, marking unstable
[46215.471228] clocksource: timekeeping watchdog on CPU8: hpet read-back delay of 61460ns, attempt 4, marking unstable
Commit 2e27e793e2 ("clocksource: Reduce clocksource-skew threshold"),
changed the skew margin from 100us to 50us. I think this is too small
and can easily be exceeded when running some stressful workloads on a
thermally stressed system. So it is switched back to 100us.
Even a maximum skew margin of 100us may be too small in for some systems
when booting up especially if those systems are under thermal stress. To
eliminate the case that the large skew is due to the system being too
busy slowing down the reading of both the watchdog and the clocksource,
an extra consecutive read of watchdog clock is being done to check this.
The consecutive watchdog read delay is compared against
WATCHDOG_MAX_SKEW/2. If the delay exceeds the limit, we assume that
the system is just too busy. A warning will be printed to the console
and the clock skew check is skipped for this round.
Fixes: db3a34e174 ("clocksource: Retry clock read if long delays detected")
Fixes: 2e27e793e2 ("clocksource: Reduce clocksource-skew threshold")
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
copy_process currently copies task_struct.posix_cputimers_work as-is. If a
timer interrupt arrives while handling clone and before dup_task_struct
completes then the child task will have:
1. posix_cputimers_work.scheduled = true
2. posix_cputimers_work.work queued.
copy_process clears task_struct.task_works, so (2) will have no effect and
posix_cpu_timers_work will never run (not to mention it doesn't make sense
for two tasks to share a common linked list).
Since posix_cpu_timers_work never runs, posix_cputimers_work.scheduled is
never cleared. Since scheduled is set, future timer interrupts will skip
scheduling work, with the ultimate result that the task will never receive
timer expirations.
Together, the complete flow is:
1. Task 1 calls clone(), enters kernel.
2. Timer interrupt fires, schedules task work on Task 1.
2a. task_struct.posix_cputimers_work.scheduled = true
2b. task_struct.posix_cputimers_work.work added to
task_struct.task_works.
3. dup_task_struct() copies Task 1 to Task 2.
4. copy_process() clears task_struct.task_works for Task 2.
5. Future timer interrupts on Task 2 see
task_struct.posix_cputimers_work.scheduled = true and skip scheduling
work.
Fix this by explicitly clearing contents of task_struct.posix_cputimers_work
in copy_process(). This was never meant to be shared or inherited across
tasks in the first place.
Fixes: 1fb497dd00 ("posix-cpu-timers: Provide mechanisms to defer timer handling to task_work")
Reported-by: Rhys Hiltner <rhys@justin.tv>
Signed-off-by: Michael Pratt <mpratt@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20211101210615.716522-1-mpratt@google.com
Resetting/stopping an itimer eventually leads to it being reprogrammed
with an actual "0" value. As a result the itimer expires on the next
tick, triggering an unexpected signal.
To fix this, make sure that
struct signal_struct::it[CPUCLOCK_PROF/VIRT]::expires is set to 0 when
setitimer() passes a 0 it_value, indicating that the timer must stop.
Fixes: 406dd42bd1 ("posix-cpu-timers: Force next expiration recalc after itimer reset")
Reported-by: Victor Stinner <vstinner@redhat.com>
Reported-by: Chris Hixon <linux-kernel-bugs@hixontech.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210913145332.232023-1-frederic@kernel.org
Merge misc updates from Andrew Morton:
"173 patches.
Subsystems affected by this series: ia64, ocfs2, block, and mm (debug,
pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap,
bootmem, sparsemem, vmalloc, kasan, pagealloc, memory-failure,
hugetlb, userfaultfd, vmscan, compaction, mempolicy, memblock,
oom-kill, migration, ksm, percpu, vmstat, and madvise)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (173 commits)
mm/madvise: add MADV_WILLNEED to process_madvise()
mm/vmstat: remove unneeded return value
mm/vmstat: simplify the array size calculation
mm/vmstat: correct some wrong comments
mm/percpu,c: remove obsolete comments of pcpu_chunk_populated()
selftests: vm: add COW time test for KSM pages
selftests: vm: add KSM merging time test
mm: KSM: fix data type
selftests: vm: add KSM merging across nodes test
selftests: vm: add KSM zero page merging test
selftests: vm: add KSM unmerge test
selftests: vm: add KSM merge test
mm/migrate: correct kernel-doc notation
mm: wire up syscall process_mrelease
mm: introduce process_mrelease system call
memblock: make memblock_find_in_range method private
mm/mempolicy.c: use in_task() in mempolicy_slab_node()
mm/mempolicy: unify the create() func for bind/interleave/prefer-many policies
mm/mempolicy: advertise new MPOL_PREFERRED_MANY
mm/hugetlb: add support for mempolicy MPOL_PREFERRED_MANY
...
A program may create multiple interval timers using timer_create(). For
each timer the kernel preallocates a "queued real-time signal",
Consequently, the number of timers is limited by the RLIMIT_SIGPENDING
resource limit. The allocated object is quite small, ~250 bytes, but even
the default signal limits allow to consume up to 100 megabytes per user.
It makes sense to account for them to limit the host's memory consumption
from inside the memcg-limited container.
Link: https://lkml.kernel.org/r/57795560-025c-267c-6b1a-dea852d95530@virtuozzo.com
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jiri Slaby <jirislaby@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Serge Hallyn <serge@hallyn.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yutian Yang <nglaive@gmail.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Container admin can create new namespaces and force kernel to allocate up
to several pages of memory for the namespaces and its associated
structures.
Net and uts namespaces have enabled accounting for such allocations. It
makes sense to account for rest ones to restrict the host's memory
consumption from inside the memcg-limited container.
Link: https://lkml.kernel.org/r/5525bcbf-533e-da27-79b7-158686c64e13@virtuozzo.com
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jiri Slaby <jirislaby@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yutian Yang <nglaive@gmail.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The clocksource watchdog test sets a local JIFFIES_SHIFT macro and assumes
that HZ is >= 100. For smaller HZ values this shift value is too large and
causes undefined behaviour.
Move the HZ-based definitions of JIFFIES_SHIFT from kernel/time/jiffies.c
to kernel/time/tick-internal.h so the clocksource watchdog test can utilize
them, which makes it work correctly with all HZ values.
[ tglx: Resolved conflicts and massaged changelog ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/lkml/20210812000133.GA402890@paulmck-ThinkPad-P17-Gen-1/
Since the recent consoliation of reprogramming functions,
hrtimer_force_reprogram() is affected by a check whether the new expiry
time is past the current expiry time.
This breaks the NOHZ logic as that relies on the fact that the tick hrtimer
is moved into the future. That means cpu_base->expires_next becomes stale
and subsequent reprogramming attempts fail as well until the situation is
cleaned up by an hrtimer interrupts.
For some yet unknown reason this leads to a complete stall, so for now
partially revert the offending commit to a known working state. The root
cause for the stall is still investigated and will be fixed in a subsequent
commit.
Fixes: b14bca97c9 ("hrtimer: Consolidate reprogramming code")
Reported-by: Mike Galbraith <efault@gmx.de>
Reported-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Mike Galbraith <efault@gmx.de>
Link: https://lore.kernel.org/r/8735recskh.ffs@tglx
clock_was_set() can be invoked from preemptible context. Use raw_cpu_ptr()
to check whether high resolution mode is active or not. It does not matter
whether the task migrates after acquiring the pointer.
Fixes: e71a4153b7 ("hrtimer: Force clock_was_set() handling for the HIGHRES=n, NOHZ=y case")
Reported-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/875ywacsmb.ffs@tglx
By unconditionally updating the offsets there are more indicators
whether the SMP function calls on clock_was_set() can be avoided:
- When the offset update already happened on the remote CPU then the
remote update attempt will yield the same seqeuence number and no
IPI is required.
- When the remote CPU is currently handling hrtimer_interrupt(). In
that case the remote CPU will reevaluate the timer bases before
reprogramming anyway, so nothing to do.
- After updating it can be checked whether the first expiring timer in
the affected clock bases moves before the first expiring (softirq)
timer of the CPU. If that's not the case then sending the IPI is not
required.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.887322464@linutronix.de
Setting of clocks triggers an unconditional SMP function call on all online
CPUs to reprogram the clock event device.
However, only some clocks have their offsets updated and therefore
potentially require a reprogram. That's CLOCK_REALTIME and CLOCK_TAI and in
the case of resume (delayed sleep time injection) also CLOCK_BOOTTIME.
Instead of sending an IPI unconditionally, check each per CPU hrtimer base
whether it has active timers in the affected clock bases which are
indicated by the caller in the @bases argument of clock_was_set().
If that's not the case, skip the IPI and update the offsets remotely which
ensures that any subsequently armed timers on the affected clocks are
evaluated with the correct offsets.
[ tglx: Adopted to the new bases argument, removed the softirq_active
check, added comment, fixed up stale comment ]
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.787536542@linutronix.de
clock_was_set() unconditionaly invokes retrigger_next_event() on all online
CPUs. This was necessary because that mechanism was also used for resume
from suspend to idle which is not longer the case.
The bases arguments allows the callers of clock_was_set() to hand in a mask
which tells clock_was_set() which of the hrtimer clock bases are affected
by the clock setting. This mask will be used in the next step to check
whether a CPU base has timers queued on a clock base affected by the event
and avoid the SMP function call if there are none.
Add a @bases argument, provide defines for the active bases masking and
fixup all callsites.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.691083465@linutronix.de
do_adjtimex() might end up scheduling a delayed clock_was_set() via
timekeeping_advance() and then invoke clock_was_set() directly which is
pointless.
Make timekeeping_advance() return whether an invocation of clock_was_set()
is required and handle it at the call sites which allows do_adjtimex() to
issue a single direct call if required.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.580966888@linutronix.de
Resuming timekeeping is a clock-was-set event and uses the clock-was-set
notification mechanism. This is in the way of making the clock-was-set
update for hrtimers selective so unnecessary IPIs are avoided when a CPU
base does not have timers queued which are affected by the clock setting.
Distangle it by invoking hrtimer_resume() on each unfreezing CPU and invoke
the new timerfd_resume() function from timekeeping_resume() which is the
only place where this is needed.
Rename hrtimer_resume() to hrtimer_resume_local() to reflect the change.
With this the clock_was_set*() functions are not longer required to IPI all
CPUs unconditionally and can get some smarts to avoid them.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.488853478@linutronix.de
When CONFIG_HIGH_RES_TIMERS is disabled, but NOHZ is enabled then
clock_was_set() is not doing anything. With HIGHRES=n the kernel relies on
the periodic tick to update the clock offsets, but when NOHZ is enabled and
active then CPUs which are in a deep idle sleep do not have a periodic tick
which means the expiry of timers affected by clock_was_set() can be
arbitrarily delayed up to the point where the CPUs are brought out of idle
again.
Make the clock_was_set() logic unconditionaly available so that idle CPUs
are kicked out of idle to handle the update.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.288697903@linutronix.de
If high resolution timers are disabled the timerfd notification about a
clock was set event is not happening for all cases which use
clock_was_set_delayed() because that's a NOP for HIGHRES=n, which is wrong.
Make clock_was_set_delayed() unconditially available to fix that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.196661266@linutronix.de
This code is mostly duplicated. The redudant store in the force reprogram
case does no harm and the in hrtimer interrupt condition cannot be true for
the force reprogram invocations.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135158.054424875@linutronix.de
If __hrtimer_start_range_ns() is invoked with an already armed hrtimer then
the timer has to be canceled first and then added back. If the timer is the
first expiring timer then on removal the clockevent device is reprogrammed
to the next expiring timer to avoid that the pending expiry fires needlessly.
If the new expiry time ends up to be the first expiry again then the clock
event device has to reprogrammed again.
Avoid this by checking whether the timer is the first to expire and in that
case, keep the timer on the current CPU and delay the reprogramming up to
the point where the timer has been enqueued again.
Reported-by: Lorenzo Colitti <lorenzo@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210713135157.873137732@linutronix.de
There are several scenarios that can result in posix_cpu_timer_set()
not queueing the timer but still leaving the threadgroup cputime counter
running or keeping the tick dependency around for a random amount of time.
1) If timer_settime() is called with a 0 expiration on a timer that is
already disabled, the process wide cputime counter will be started
and won't ever get a chance to be stopped by stop_process_timer()
since no timer is actually armed to be processed.
The following snippet is enough to trigger the issue.
void trigger_process_counter(void)
{
timer_t id;
struct itimerspec val = { };
timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id);
timer_settime(id, TIMER_ABSTIME, &val, NULL);
timer_delete(id);
}
2) If timer_settime() is called with a 0 expiration on a timer that is
already armed, the timer is dequeued but not really disarmed. So the
process wide cputime counter and the tick dependency may still remain
a while around.
The following code snippet keeps this overhead around for one week after
the timer deletion:
void trigger_process_counter(void)
{
timer_t id;
struct itimerspec val = { };
val.it_value.tv_sec = 604800;
timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id);
timer_settime(id, 0, &val, NULL);
timer_delete(id);
}
3) If the timer was initially deactivated, this call to timer_settime()
with an early expiration may have started the process wide cputime
counter even though the timer hasn't been queued and armed because it
has fired early and inline within posix_cpu_timer_set() itself. As a
result the process wide cputime counter may never stop until a new
timer is ever armed in the future.
The following code snippet can reproduce this:
void trigger_process_counter(void)
{
timer_t id;
struct itimerspec val = { };
signal(SIGALRM, SIG_IGN);
timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id);
val.it_value.tv_nsec = 1;
timer_settime(id, TIMER_ABSTIME, &val, NULL);
}
4) If the timer was initially armed with a former expiration value
before this call to timer_settime() and the current call sets an
early deadline that has already expired, the timer fires inline
within posix_cpu_timer_set(). In this case it must have been dequeued
before firing inline with its new expiration value, yet it hasn't
been disarmed in this case. So the process wide cputime counter and
the tick dependency may still be around for a while even after the
timer fired.
The following code snippet can reproduce this:
void trigger_process_counter(void)
{
timer_t id;
struct itimerspec val = { };
signal(SIGALRM, SIG_IGN);
timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id);
val.it_value.tv_sec = 100;
timer_settime(id, TIMER_ABSTIME, &val, NULL);
val.it_value.tv_sec = 0;
val.it_value.tv_nsec = 1;
timer_settime(id, TIMER_ABSTIME, &val, NULL);
}
Fix all these issues with triggering the related base next expiration
recalculation on the next tick. This also implies to re-evaluate the need
to keep around the process wide cputime counter and the tick dependency, in
a similar fashion to disarm_timer().
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-7-frederic@kernel.org
Remove the ad-hoc timer base accessors and provide a consolidated one.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-6-frederic@kernel.org
The end of the function cannot be reached with an error in variable
ret. Unconfuse reviewers about that.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-5-frederic@kernel.org
When an itimer deactivates a previously armed expiration, it simply doesn't
do anything. As a result the process wide cputime counter keeps running and
the tick dependency stays set until it reaches the old ghost expiration
value.
This can be reproduced with the following snippet:
void trigger_process_counter(void)
{
struct itimerval n = {};
n.it_value.tv_sec = 100;
setitimer(ITIMER_VIRTUAL, &n, NULL);
n.it_value.tv_sec = 0;
setitimer(ITIMER_VIRTUAL, &n, NULL);
}
Fix this with resetting the relevant base expiration. This is similar to
disarming a timer.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-4-frederic@kernel.org
A timer deletion only dequeues the timer but it doesn't shutdown
the related costly process wide cputimer counter and the tick dependency.
The following code snippet keeps this overhead around for one week after
the timer deletion:
void trigger_process_counter(void)
{
timer_t id;
struct itimerspec val = { };
val.it_value.tv_sec = 604800;
timer_create(CLOCK_PROCESS_CPUTIME_ID, NULL, &id);
timer_settime(id, 0, &val, NULL);
timer_delete(id);
}
Make sure the next target's tick recalculates the nearest expiration and
clears the process wide counter and tick dependency if necessary.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-3-frederic@kernel.org
Starting the process wide cputime counter needs to be done in the same
sighand locking sequence than actually arming the related timer otherwise
this races against concurrent timers setting/expiring in the same
threadgroup.
Detecting that the cputime counter is started without holding the sighand
lock is a first step toward debugging such situations.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-2-frederic@kernel.org
The variable ret is being initialized with a value that is never read, it
is being updated later on. The assignment is redundant and can be removed.
Addresses-Coverity: ("Unused value")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210721120147.109570-1-colin.king@canonical.com
The functions get_online_cpus() and put_online_cpus() have been
deprecated during the CPU hotplug rework. They map directly to
cpus_read_lock() and cpus_read_unlock().
Replace deprecated CPU-hotplug functions with the official version.
The behavior remains unchanged.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210803141621.780504-35-bigeasy@linutronix.de
syzbot reported KCSAN data races vs. timer_base::timer_running being set to
NULL without holding base::lock in expire_timers().
This looks innocent and most reads are clearly not problematic, but
Frederic identified an issue which is:
int data = 0;
void timer_func(struct timer_list *t)
{
data = 1;
}
CPU 0 CPU 1
------------------------------ --------------------------
base = lock_timer_base(timer, &flags); raw_spin_unlock(&base->lock);
if (base->running_timer != timer) call_timer_fn(timer, fn, baseclk);
ret = detach_if_pending(timer, base, true); base->running_timer = NULL;
raw_spin_unlock_irqrestore(&base->lock, flags); raw_spin_lock(&base->lock);
x = data;
If the timer has previously executed on CPU 1 and then CPU 0 can observe
base->running_timer == NULL and returns, assuming the timer has completed,
but it's not guaranteed on all architectures. The comment for
del_timer_sync() makes that guarantee. Moving the assignment under
base->lock prevents this.
For non-RT kernel it's performance wise completely irrelevant whether the
store happens before or after taking the lock. For an RT kernel moving the
store under the lock requires an extra unlock/lock pair in the case that
there is a waiter for the timer, but that's not the end of the world.
Reported-by: syzbot+aa7c2385d46c5eba0b89@syzkaller.appspotmail.com
Reported-by: syzbot+abea4558531bae1ba9fe@syzkaller.appspotmail.com
Fixes: 030dcdd197 ("timers: Prepare support for PREEMPT_RT")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lore.kernel.org/r/87lfea7gw8.fsf@nanos.tec.linutronix.de
Cc: stable@vger.kernel.org
31cd0e119d ("timers: Recalculate next timer interrupt only when
necessary") subtly altered get_next_timer_interrupt()'s behaviour. The
function no longer consistently returns KTIME_MAX with no timers
pending.
In order to decide if there are any timers pending we check whether the
next expiry will happen NEXT_TIMER_MAX_DELTA jiffies from now.
Unfortunately, the next expiry time and the timer base clock are no
longer updated in unison. The former changes upon certain timer
operations (enqueue, expire, detach), whereas the latter keeps track of
jiffies as they move forward. Ultimately breaking the logic above.
A simplified example:
- Upon entering get_next_timer_interrupt() with:
jiffies = 1
base->clk = 0;
base->next_expiry = NEXT_TIMER_MAX_DELTA;
'base->next_expiry == base->clk + NEXT_TIMER_MAX_DELTA', the function
returns KTIME_MAX.
- 'base->clk' is updated to the jiffies value.
- The next time we enter get_next_timer_interrupt(), taking into account
no timer operations happened:
base->clk = 1;
base->next_expiry = NEXT_TIMER_MAX_DELTA;
'base->next_expiry != base->clk + NEXT_TIMER_MAX_DELTA', the function
returns a valid expire time, which is incorrect.
This ultimately might unnecessarily rearm sched's timer on nohz_full
setups, and add latency to the system[1].
So, introduce 'base->timers_pending'[2], update it every time
'base->next_expiry' changes, and use it in get_next_timer_interrupt().
[1] See tick_nohz_stop_tick().
[2] A quick pahole check on x86_64 and arm64 shows it doesn't make
'struct timer_base' any bigger.
Fixes: 31cd0e119d ("timers: Recalculate next timer interrupt only when necessary")
Signed-off-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Since the process wide cputime counter is started locklessly from
posix_cpu_timer_rearm(), it can be concurrently stopped by operations
on other timers from the same thread group, such as in the following
unlucky scenario:
CPU 0 CPU 1
----- -----
timer_settime(TIMER B)
posix_cpu_timer_rearm(TIMER A)
cpu_clock_sample_group()
(pct->timers_active already true)
handle_posix_cpu_timers()
check_process_timers()
stop_process_timers()
pct->timers_active = false
arm_timer(TIMER A)
tick -> run_posix_cpu_timers()
// sees !pct->timers_active, ignore
// our TIMER A
Fix this with simply locking process wide cputime counting start and
timer arm in the same block.
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Fixes: 60f2ceaa81 ("posix-cpu-timers: Remove unnecessary locking around cpu_clock_sample_group")
Cc: stable@vger.kernel.org
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Pull RCU updates from Paul McKenney:
- Bitmap parsing support for "all" as an alias for all bits
- Documentation updates
- Miscellaneous fixes, including some that overlap into mm and lockdep
- kvfree_rcu() updates
- mem_dump_obj() updates, with acks from one of the slab-allocator
maintainers
- RCU NOCB CPU updates, including limited deoffloading
- SRCU updates
- Tasks-RCU updates
- Torture-test updates
* 'core-rcu-2021.07.04' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (78 commits)
tasks-rcu: Make show_rcu_tasks_gp_kthreads() be static inline
rcu-tasks: Make ksoftirqd provide RCU Tasks quiescent states
rcu: Add missing __releases() annotation
rcu: Remove obsolete rcu_read_unlock() deadlock commentary
rcu: Improve comments describing RCU read-side critical sections
rcu: Create an unrcu_pointer() to remove __rcu from a pointer
srcu: Early test SRCU polling start
rcu: Fix various typos in comments
rcu/nocb: Unify timers
rcu/nocb: Prepare for fine-grained deferred wakeup
rcu/nocb: Only cancel nocb timer if not polling
rcu/nocb: Delete bypass_timer upon nocb_gp wakeup
rcu/nocb: Cancel nocb_timer upon nocb_gp wakeup
rcu/nocb: Allow de-offloading rdp leader
rcu/nocb: Directly call __wake_nocb_gp() from bypass timer
rcu: Don't penalize priority boosting when there is nothing to boost
rcu: Point to documentation of ordering guarantees
rcu: Make rcu_gp_cleanup() be noinline for tracing
rcu: Restrict RCU_STRICT_GRACE_PERIOD to at most four CPUs
rcu: Make show_rcu_gp_kthreads() dump rcu_node structures blocking GP
...
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmDbLo4THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoZFyD/4icyCNaeV2R8fufdQGWjPwZfpc8JiQ
pqEKWlIGaImG3NgbL953/or8pDZe3LCk+p0hJOwYKtPP0LGjgZvPp6glOofAzvC8
sM5RCsJoDOI7mrc23JRXy8z78C/9tmth5UFw1RlXXuiE4hVr2Gc31YpoyvJLQWn0
XcrkSx2J3Cn7WFpjZCZkeC+Wr34+AVXhAY9t8S3WMn2bPj8Bw5vkxmnR2zbZ0PQI
KZcbYI6r/dJv8ov2AXfkD+EJIe5dzjdRVSX5UZYXWIQMB/vMkt8HinHPm+hFuHWn
Swz7ldBznFDTasoEUVMpn2mObjIuEs0jOYIxlXHYEgl1elRmBbgzQhMY5UGnAUnU
na4RHgZ0WOygwXcZIYYrl7aDuSvt4BvlVz17wNQ4P85QsOcGINSH3c0At0JdEeIg
WPJuBIq02A9bHXg+fvVtZMCvnyTYe7DRVL+J7eVopGIka8b07nUcP5UB+nRJGjxI
uOzdA2oFtucWRAxqtQh8FKVYR9vrIeSMfKhqaIQmzlBgbAzSo1OPX23O8gwkLSab
bzjPb5XOw23w20Oqh7SkTTIMR2m633IZBqnd5gPL4nUZTmB40EEYhwH6vfopeCS+
q4+1tzHmTkAvrnjhN9QTr2bGGGhPeehiYVdQ8QwvB10nF3Lca47hopSoJa5fKIeC
nWb2ZXUN1YwUMQ==
=5Hb8
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2021-06-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"Time and clocksource/clockevent related updates:
Core changes:
- Infrastructure to support per CPU "broadcast" devices for per CPU
clockevent devices which stop in deep idle states. This allows us
to utilize the more efficient architected timer on certain ARM SoCs
for normal operation instead of permanentely using the slow to
access SoC specific clockevent device.
- Print the name of the broadcast/wakeup device in /proc/timer_list
- Make the clocksource watchdog more robust against delays between
reading the current active clocksource and the watchdog
clocksource. Such delays can be caused by NMIs, SMIs and vCPU
preemption.
Handle this by reading the watchdog clocksource twice, i.e. before
and after reading the current active clocksource. In case that the
two watchdog reads shows an excessive time delta, the read sequence
is repeated up to 3 times.
- Improve the debug output and add a test module for the watchdog
mechanism.
- Reimplementation of the venerable time64_to_tm() function with a
faster and significantly smaller version. Straight from the source,
i.e. the author of the related research paper contributed this!
Driver changes:
- No new drivers, not even new device tree bindings!
- Fixes, improvements and cleanups and all over the place"
* tag 'timers-core-2021-06-29' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (30 commits)
time/kunit: Add missing MODULE_LICENSE()
time: Improve performance of time64_to_tm()
clockevents: Use list_move() instead of list_del()/list_add()
clocksource: Print deviation in nanoseconds when a clocksource becomes unstable
clocksource: Provide kernel module to test clocksource watchdog
clocksource: Reduce clocksource-skew threshold
clocksource: Limit number of CPUs checked for clock synchronization
clocksource: Check per-CPU clock synchronization when marked unstable
clocksource: Retry clock read if long delays detected
clockevents: Add missing parameter documentation
clocksource/drivers/timer-ti-dm: Drop unnecessary restore
clocksource/arm_arch_timer: Improve Allwinner A64 timer workaround
clocksource/drivers/arm_global_timer: Remove duplicated argument in arm_global_timer
clocksource/drivers/arm_global_timer: Make symbol 'gt_clk_rate_change_nb' static
arm: zynq: don't disable CONFIG_ARM_GLOBAL_TIMER due to CONFIG_CPU_FREQ anymore
clocksource/drivers/arm_global_timer: Implement rate compensation whenever source clock changes
clocksource/drivers/ingenic: Rename unreasonable array names
clocksource/drivers/timer-ti-dm: Save and restore timer TIOCP_CFG
clocksource/drivers/mediatek: Ack and disable interrupts on suspend
clocksource/drivers/samsung_pwm: Constify source IO memory
...
- Micro-optimize tick_nohz_full_cpu()
- Optimize idle exit tick restarts to be less eager
- Optimize tick_nohz_dep_set_task() to only wake up
a single CPU. This reduces IPIs and interruptions
on nohz_full CPUs.
- Optimize tick_nohz_dep_set_signal() in a similar
fashion.
- Skip IPIs in tick_nohz_kick_task() when trying
to kick a non-running task.
- Micro-optimize tick_nohz_task_switch() IRQ flags
handling to reduce context switching costs.
- Misc cleanups and fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZcycRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jItRAAn1/vI0+pWQWjyWQ+CL8AMNNWTbtBpC7W
ZUR+IEtEoYEufYXH9RgcweIgopBExVlC9CWzUX5o7AuVdN2YyzcBuQbza4vlYeIm
azcdIlKCwjdgODJBTgHNH7IR0QKF/Gq+fVCGX3Xc37BlyD389CQ33HXC7X2JZLB3
Mb5wxAJoZ2HQzGGJoz4JyA0rl6lY3jYzLMK7mqxkUqIqT45xLpgw5+imRM2J1ddV
d/73P4TwFY+E8KXSLctUfgmkmCzJYISGSlH49jX3CkwAktwTY17JjWjxT9Z5b2D8
6TTpsDoLtI4tXg0U2KsBxBoDHK/a4hAwo+GnE/RMT6ghqaX5IrANrgtTVPBN9dvh
qUGVAMHVDN3Ed7wwFvCm4tPUz/iXzBsP8xPl28WPHsyV9BE9tcrk2ynzSWy47Twd
z1GVZDNTwCfdvH62WS/HvbPdGl2hHH5/oe3HaF1ROLPHq8UzaxwKEX+A0rwLJrBp
ZU8Lnvu3rPVa5cHc4z1AE7sbX7OkTTNjxY/qQzDhNKwVwfkaPcBiok9VgEIEGS7A
n3U/yuQCn307sr7SlJ6z4yu3YCw3aEJ3pTxUprmNTh3+x4yF5ZaOimqPyvzBaUVM
Hm3LYrxHIScisFJio4FiC2dghZryM37RFonvqrCAOuA+afMU2GOFnaoDruXU27SE
tqxR6c/hw+4=
=18pN
-----END PGP SIGNATURE-----
Merge tag 'timers-nohz-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timers/nohz updates from Ingo Molnar:
- Micro-optimize tick_nohz_full_cpu()
- Optimize idle exit tick restarts to be less eager
- Optimize tick_nohz_dep_set_task() to only wake up a single CPU.
This reduces IPIs and interruptions on nohz_full CPUs.
- Optimize tick_nohz_dep_set_signal() in a similar fashion.
- Skip IPIs in tick_nohz_kick_task() when trying to kick a
non-running task.
- Micro-optimize tick_nohz_task_switch() IRQ flags handling to
reduce context switching costs.
- Misc cleanups and fixes
* tag 'timers-nohz-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
MAINTAINERS: Add myself as context tracking maintainer
tick/nohz: Call tick_nohz_task_switch() with interrupts disabled
tick/nohz: Kick only _queued_ task whose tick dependency is updated
tick/nohz: Change signal tick dependency to wake up CPUs of member tasks
tick/nohz: Only wake up a single target cpu when kicking a task
tick/nohz: Update nohz_full Kconfig help
tick/nohz: Update idle_exittime on actual idle exit
tick/nohz: Remove superflous check for CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
tick/nohz: Conditionally restart tick on idle exit
tick/nohz: Evaluate the CPU expression after the static key
The current implementation of time64_to_tm() contains unnecessary loops,
branches and look-up tables. The new one uses an arithmetic-based algorithm
appeared in [1] and is approximately 3x faster (YMMV).
The drawback is that the new code isn't intuitive and contains many 'magic
numbers' (not unusual for this type of algorithm). However, [1] justifies
all those numbers and, given this function's history, the code is unlikely
to need much maintenance, if any at all.
Add a KUnit test for it which checks every day in a 160,000 years interval
centered at 1970-01-01 against the expected result.
[1] Neri, Schneider, "Euclidean Affine Functions and Applications to
Calendar Algorithms". https://arxiv.org/abs/2102.06959
Signed-off-by: Cassio Neri <cassio.neri@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210622213616.313046-1-cassio.neri@gmail.com
Currently when an unstable clocksource is detected, the raw counters of
that clocksource and watchdog will be printed, which can only be understood
after some math calculation.
So print the delta in nanoseconds as well to make it easier for humans to
check the results.
[ paulmck: Fix typo. ]
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210527190124.440372-6-paulmck@kernel.org
When the clocksource watchdog marks a clock as unstable, this might
be due to that clock being unstable or it might be due to delays that
happen to occur between the reads of the two clocks. It would be good
to have a way of testing the clocksource watchdog's ability to
distinguish between these two causes of clock skew and instability.
Therefore, provide a new clocksource-wdtest module selected by a new
TEST_CLOCKSOURCE_WATCHDOG Kconfig option. This module has a single module
parameter named "holdoff" that provides the number of seconds of delay
before testing should start, which defaults to zero when built as a module
and to 10 seconds when built directly into the kernel. Very large systems
that boot slowly may need to increase the value of this module parameter.
This module uses hand-crafted clocksource structures to do its testing,
thus avoiding messing up timing for the rest of the kernel and for user
applications. This module first verifies that the ->uncertainty_margin
field of the clocksource structures are set sanely. It then tests the
delay-detection capability of the clocksource watchdog, increasing the
number of consecutive delays injected, first provoking console messages
complaining about the delays and finally forcing a clock-skew event.
Unexpected test results cause at least one WARN_ON_ONCE() console splat.
If there are no splats, the test has passed. Finally, it fuzzes the
value returned from a clocksource to test the clocksource watchdog's
ability to detect time skew.
This module checks the state of its clocksource after each test, and
uses WARN_ON_ONCE() to emit a console splat if there are any failures.
This should enable all types of test frameworks to detect any such
failures.
This facility is intended for diagnostic use only, and should be avoided
on production systems.
Reported-by: Chris Mason <clm@fb.com>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Feng Tang <feng.tang@intel.com>
Link: https://lore.kernel.org/r/20210527190124.440372-5-paulmck@kernel.org
Currently, WATCHDOG_THRESHOLD is set to detect a 62.5-millisecond skew in
a 500-millisecond WATCHDOG_INTERVAL. This requires that clocks be skewed
by more than 12.5% in order to be marked unstable. Except that a clock
that is skewed by that much is probably destroying unsuspecting software
right and left. And given that there are now checks for false-positive
skews due to delays between reading the two clocks, it should be possible
to greatly decrease WATCHDOG_THRESHOLD, at least for fine-grained clocks
such as TSC.
Therefore, add a new uncertainty_margin field to the clocksource structure
that contains the maximum uncertainty in nanoseconds for the corresponding
clock. This field may be initialized manually, as it is for
clocksource_tsc_early and clocksource_jiffies, which is copied to
refined_jiffies. If the field is not initialized manually, it will be
computed at clock-registry time as the period of the clock in question
based on the scale and freq parameters to __clocksource_update_freq_scale()
function. If either of those two parameters are zero, the
tens-of-milliseconds WATCHDOG_THRESHOLD is used as a cowardly alternative
to dividing by zero. No matter how the uncertainty_margin field is
calculated, it is bounded below by twice WATCHDOG_MAX_SKEW, that is, by 100
microseconds.
Note that manually initialized uncertainty_margin fields are not adjusted,
but there is a WARN_ON_ONCE() that triggers if any such field is less than
twice WATCHDOG_MAX_SKEW. This WARN_ON_ONCE() is intended to discourage
production use of the one-nanosecond uncertainty_margin values that are
used to test the clock-skew code itself.
The actual clock-skew check uses the sum of the uncertainty_margin fields
of the two clocksource structures being compared. Integer overflow is
avoided because the largest computed value of the uncertainty_margin
fields is one billion (10^9), and double that value fits into an
unsigned int. However, if someone manually specifies (say) UINT_MAX,
they will get what they deserve.
Note that the refined_jiffies uncertainty_margin field is initialized to
TICK_NSEC, which means that skew checks involving this clocksource will
be sufficently forgiving. In a similar vein, the clocksource_tsc_early
uncertainty_margin field is initialized to 32*NSEC_PER_MSEC, which
replicates the current behavior and allows custom setting if needed
in order to address the rare skews detected for this clocksource in
current mainline.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Feng Tang <feng.tang@intel.com>
Link: https://lore.kernel.org/r/20210527190124.440372-4-paulmck@kernel.org
Currently, if skew is detected on a clock marked CLOCK_SOURCE_VERIFY_PERCPU,
that clock is checked on all CPUs. This is thorough, but might not be
what you want on a system with a few tens of CPUs, let alone a few hundred
of them.
Therefore, by default check only up to eight randomly chosen CPUs. Also
provide a new clocksource.verify_n_cpus kernel boot parameter. A value of
-1 says to check all of the CPUs, and a non-negative value says to randomly
select that number of CPUs, without concern about selecting the same CPU
multiple times. However, make use of a cpumask so that a given CPU will be
checked at most once.
Suggested-by: Thomas Gleixner <tglx@linutronix.de> # For verify_n_cpus=1.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Feng Tang <feng.tang@intel.com>
Link: https://lore.kernel.org/r/20210527190124.440372-3-paulmck@kernel.org
Some sorts of per-CPU clock sources have a history of going out of
synchronization with each other. However, this problem has purportedy been
solved in the past ten years. Except that it is all too possible that the
problem has instead simply been made less likely, which might mean that
some of the occasional "Marking clocksource 'tsc' as unstable" messages
might be due to desynchronization. How would anyone know?
Therefore apply CPU-to-CPU synchronization checking to newly unstable
clocksource that are marked with the new CLOCK_SOURCE_VERIFY_PERCPU flag.
Lists of desynchronized CPUs are printed, with the caveat that if it
is the reporting CPU that is itself desynchronized, it will appear that
all the other clocks are wrong. Just like in real life.
Reported-by: Chris Mason <clm@fb.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Feng Tang <feng.tang@intel.com>
Link: https://lore.kernel.org/r/20210527190124.440372-2-paulmck@kernel.org
When the clocksource watchdog marks a clock as unstable, this might be due
to that clock being unstable or it might be due to delays that happen to
occur between the reads of the two clocks. Yes, interrupts are disabled
across those two reads, but there are no shortage of things that can delay
interrupts-disabled regions of code ranging from SMI handlers to vCPU
preemption. It would be good to have some indication as to why the clock
was marked unstable.
Therefore, re-read the watchdog clock on either side of the read from the
clock under test. If the watchdog clock shows an excessive time delta
between its pair of reads, the reads are retried.
The maximum number of retries is specified by a new kernel boot parameter
clocksource.max_cswd_read_retries, which defaults to three, that is, up to
four reads, one initial and up to three retries. If more than one retry
was required, a message is printed on the console (the occasional single
retry is expected behavior, especially in guest OSes). If the maximum
number of retries is exceeded, the clock under test will be marked
unstable. However, the probability of this happening due to various sorts
of delays is quite small. In addition, the reason (clock-read delays) for
the unstable marking will be apparent.
Reported-by: Chris Mason <clm@fb.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Feng Tang <feng.tang@intel.com>
Link: https://lore.kernel.org/r/20210527190124.440372-1-paulmck@kernel.org
There's an existing helper for setting TASK_RUNNING; must've gotten
lost last time we did this cleanup.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Davidlohr Bueso <dbueso@suse.de>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210611082838.409696194@infradead.org
With the introduction of per-cpu wakeup devices that can be used in
preference to the broadcast timer, print the name of such devices when
they are available.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210524221818.15850-6-will@kernel.org
When configuring the broadcast timer on entry to and exit from deep idle
states, prefer a per-CPU wakeup timer if one exists.
On entry to idle, stop the tick device and transfer the next event into
the oneshot wakeup device, which will serve as the wakeup from idle. To
avoid the overhead of additional hardware accesses on exit from idle,
leave the timer armed and treat the inevitable interrupt as a (possibly
spurious) tick event.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210524221818.15850-5-will@kernel.org
Some SoCs have two per-cpu timer implementations where the timer with the
higher rating stops in deep idle (i.e. suffers from CLOCK_EVT_FEAT_C3STOP)
but is otherwise preferable to the timer with the lower rating. In such a
design, selecting the higher rated devices relies on a global broadcast
timer and IPIs to wake up from deep idle states.
To avoid the reliance on a global broadcast timer and also to reduce the
overhead associated with the IPI wakeups, extend
tick_install_broadcast_device() to manage per-cpu wakeup timers separately
from the broadcast device.
For now, these timers remain unused.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210524221818.15850-4-will@kernel.org
In preparation for adding support for per-cpu wakeup timers, split
_tick_broadcast_oneshot_control() into a helper function which deals
only with the broadcast timer management across idle transitions.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210524221818.15850-3-will@kernel.org
tick-broadcast.o is only built if CONFIG_GENERIC_CLOCKEVENTS_BROADCAST=y
so remove the redundant #ifdef guards around the definition of
tick_receive_broadcast().
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210524221818.15850-2-will@kernel.org
Use the DEVICE_ATTR_[RO|WO] helpers instead of plain DEVICE_ATTR, which
makes the code a bit shorter and easier to read.
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210523065825.19684-1-yuehaibing@huawei.com
Checking for and processing RCU-nocb deferred wakeup upon user/guest
entry is only relevant when nohz_full runs on the local CPU, otherwise
the periodic tick should take care of it.
Make sure we don't needlessly pollute these fast-paths as a -3%
performance regression on a will-it-scale.per_process_ops has been
reported so far.
Fixes: 47b8ff194c (entry: Explicitly flush pending rcuog wakeup before last rescheduling point)
Fixes: 4ae7dc97f7 (entry/kvm: Explicitly flush pending rcuog wakeup before last rescheduling point)
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20210527113441.465489-1-frederic@kernel.org
Call tick_nohz_task_switch() slightly earlier after the context switch
to benefit from disabled IRQs. This way the function doesn't need to
disable them once more.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210512232924.150322-10-frederic@kernel.org
When the tick dependency of a task is updated, we want it to aknowledge
the new state and restart the tick if needed. If the task is not
running, we don't need to kick it because it will observe the new
dependency upon scheduling in. But if the task is running, we may need
to send an IPI to it so that it gets notified.
Unfortunately we don't have the means to check if a task is running
in a race free way. Checking p->on_cpu in a synchronized way against
p->tick_dep_mask would imply adding a full barrier between
prepare_task_switch() and tick_nohz_task_switch(), which we want to
avoid in this fast-path.
Therefore we blindly fire an IPI to the task's CPU.
Meanwhile we can check if the task is queued on the CPU rq because
p->on_rq is always set to TASK_ON_RQ_QUEUED _before_ schedule() and its
full barrier that precedes tick_nohz_task_switch(). And if the task is
queued on a nohz_full CPU, it also has fair chances to be running as the
isolation constraints prescribe running single tasks on full dynticks
CPUs.
So use this as a trick to check if we can spare an IPI toward a
non-running task.
NOTE: For the ordering to be correct, it is assumed that we never
deactivate a task while it is running, the only exception being the task
deactivating itself while scheduling out.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512232924.150322-9-frederic@kernel.org
Rather than waking up all nohz_full CPUs on the system, only wake up
the target CPUs of member threads of the signal.
Reduces interruptions to nohz_full CPUs.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512232924.150322-8-frederic@kernel.org
When adding a tick dependency to a task, its necessary to
wake up the CPU where the task resides to reevaluate tick
dependencies on that CPU.
However the current code wakes up all nohz_full CPUs, which
is unnecessary.
Switch to waking up a single CPU, by using ordering of writes
to task->cpu and task->tick_dep_mask.
[ mingo: Minor readability edit. ]
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512232924.150322-7-frederic@kernel.org
CONFIG_NO_HZ_FULL behaves just like CONFIG_NO_HZ_IDLE by default.
Reassure distros about it.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512232924.150322-6-frederic@kernel.org
The idle_exittime field of tick_sched is used to record the time when
the idle state was left. but currently the idle_exittime is updated in
the function tick_nohz_restart_sched_tick(), which is not always in idle
state when nohz_full is configured:
tick_irq_exit
tick_nohz_irq_exit
tick_nohz_full_update_tick
tick_nohz_restart_sched_tick
ts->idle_exittime = now;
It's thus overwritten by mistake on nohz_full tick restart. Move the
update to the appropriate idle exit path instead.
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512232924.150322-5-frederic@kernel.org
The vtime_accounting_enabled_this_cpu() early check already makes what
follows as dead code in the case of CONFIG_VIRT_CPU_ACCOUNTING_NATIVE.
No need to keep the ifdeferry around.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512232924.150322-4-frederic@kernel.org
In nohz_full mode, switching from idle to a task will unconditionally
issue a tick restart. If the task is alone in the runqueue or is the
highest priority, the tick will fire once then eventually stop. But that
alone is still undesired noise.
Therefore, only restart the tick on idle exit when it's strictly
necessary.
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210512232924.150322-3-frederic@kernel.org
RTC drivers used to leave .set_alarm() NULL in order to signal the RTC
device doesn't support alarms. The drivers are now clearing the
RTC_FEATURE_ALARM bit for that purpose in order to keep the rtc_class_ops
structure const. So now, .set_alarm() is set unconditionally and this
possibly causes the alarmtimer code to select an RTC device that doesn't
support alarms.
Test RTC_FEATURE_ALARM instead of relying on ops->set_alarm to determine
whether alarms are available.
Fixes: 7ae41220ef ("rtc: introduce features bitfield")
Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20210511014516.563031-1-alexandre.belloni@bootlin.com
This reverts commit dcd42591eb.
The only user was RCU/nocb.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Neeraj Upadhyay <neeraju@codeaurora.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
- Stage-2 isolation for the host kernel when running in protected mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
x86:
- Optimizations and cleanup of nested SVM code
- AMD: Support for virtual SPEC_CTRL
- Optimizations of the new MMU code: fast invalidation,
zap under read lock, enable/disably dirty page logging under
read lock
- /dev/kvm API for AMD SEV live migration (guest API coming soon)
- support SEV virtual machines sharing the same encryption context
- support SGX in virtual machines
- add a few more statistics
- improved directed yield heuristics
- Lots and lots of cleanups
Generic:
- Rework of MMU notifier interface, simplifying and optimizing
the architecture-specific code
- Some selftests improvements
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmCJ13kUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroM1HAgAqzPxEtiTPTFeFJV5cnPPJ3dFoFDK
y/juZJUQ1AOtvuWzzwuf175ewkv9vfmtG6rVohpNSkUlJYeoc6tw7n8BTTzCVC1b
c/4Dnrjeycr6cskYlzaPyV6MSgjSv5gfyj1LA5UEM16LDyekmaynosVWY5wJhju+
Bnyid8l8Utgz+TLLYogfQJQECCrsU0Wm//n+8TWQgLf1uuiwshU5JJe7b43diJrY
+2DX+8p9yWXCTz62sCeDWNahUv8AbXpMeJ8uqZPYcN1P0gSEUGu8xKmLOFf9kR7b
M4U1Gyz8QQbjd2lqnwiWIkvRLX6gyGVbq2zH0QbhUe5gg3qGUX7JjrhdDQ==
=AXUi
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"This is a large update by KVM standards, including AMD PSP (Platform
Security Processor, aka "AMD Secure Technology") and ARM CoreSight
(debug and trace) changes.
ARM:
- CoreSight: Add support for ETE and TRBE
- Stage-2 isolation for the host kernel when running in protected
mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
x86:
- AMD PSP driver changes
- Optimizations and cleanup of nested SVM code
- AMD: Support for virtual SPEC_CTRL
- Optimizations of the new MMU code: fast invalidation, zap under
read lock, enable/disably dirty page logging under read lock
- /dev/kvm API for AMD SEV live migration (guest API coming soon)
- support SEV virtual machines sharing the same encryption context
- support SGX in virtual machines
- add a few more statistics
- improved directed yield heuristics
- Lots and lots of cleanups
Generic:
- Rework of MMU notifier interface, simplifying and optimizing the
architecture-specific code
- a handful of "Get rid of oprofile leftovers" patches
- Some selftests improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (379 commits)
KVM: selftests: Speed up set_memory_region_test
selftests: kvm: Fix the check of return value
KVM: x86: Take advantage of kvm_arch_dy_has_pending_interrupt()
KVM: SVM: Skip SEV cache flush if no ASIDs have been used
KVM: SVM: Remove an unnecessary prototype declaration of sev_flush_asids()
KVM: SVM: Drop redundant svm_sev_enabled() helper
KVM: SVM: Move SEV VMCB tracking allocation to sev.c
KVM: SVM: Explicitly check max SEV ASID during sev_hardware_setup()
KVM: SVM: Unconditionally invoke sev_hardware_teardown()
KVM: SVM: Enable SEV/SEV-ES functionality by default (when supported)
KVM: SVM: Condition sev_enabled and sev_es_enabled on CONFIG_KVM_AMD_SEV=y
KVM: SVM: Append "_enabled" to module-scoped SEV/SEV-ES control variables
KVM: SEV: Mask CPUID[0x8000001F].eax according to supported features
KVM: SVM: Move SEV module params/variables to sev.c
KVM: SVM: Disable SEV/SEV-ES if NPT is disabled
KVM: SVM: Free sev_asid_bitmap during init if SEV setup fails
KVM: SVM: Zero out the VMCB array used to track SEV ASID association
x86/sev: Drop redundant and potentially misleading 'sev_enabled'
KVM: x86: Move reverse CPUID helpers to separate header file
KVM: x86: Rename GPR accessors to make mode-aware variants the defaults
...
- Add idle states table for IceLake-D to the intel_idle driver and
update IceLake-X C6 data in it (Artem Bityutskiy).
- Fix the C7 idle state on Tegra114 in the tegra cpuidle driver and
drop the unused do_idle() firmware call from it (Dmitry Osipenko).
- Fix cpuidle-qcom-spm Kconfig entry (He Ying).
- Fix handling of possible negative tick_nohz_get_next_hrtimer()
return values of in cpuidle governors (Rafael Wysocki).
- Add support for frequency-invariance to the ACPI CPPC cpufreq
driver and update the frequency-invariance engine (FIE) to use it
as needed (Viresh Kumar).
- Simplify the default delay_us setting in the ACPI CPPC cpufreq
driver (Tom Saeger).
- Clean up frequency-related computations in the intel_pstate
cpufreq driver (Rafael Wysocki).
- Fix TBG parent setting for load levels in the armada-37xx
cpufreq driver and drop the CPU PM clock .set_parent method for
armada-37xx (Marek Behún).
- Fix multiple issues in the armada-37xx cpufreq driver (Pali Rohár).
- Fix handling of dev_pm_opp_of_cpumask_add_table() return values
in cpufreq-dt to take the -EPROBE_DEFER one into acconut as
appropriate (Quanyang Wang).
- Fix format string in ia64-acpi-cpufreq (Sergei Trofimovich).
- Drop the unused for_each_policy() macro from cpufreq (Shaokun
Zhang).
- Simplify computations in the schedutil cpufreq governor to avoid
unnecessary overhead (Yue Hu).
- Fix typos in the s5pv210 cpufreq driver (Bhaskar Chowdhury).
- Fix cpufreq documentation links in Kconfig (Alexander Monakov).
- Fix PCI device power state handling in pci_enable_device_flags()
to avoid issuse in some cases when the device depends on an ACPI
power resource (Rafael Wysocki).
- Add missing documentation of pm_runtime_resume_and_get() (Alan
Stern).
- Add missing static inline stub for pm_runtime_has_no_callbacks()
to pm_runtime.h and drop the unused try_to_freeze_nowarn()
definition (YueHaibing).
- Drop duplicate struct device declaration from pm.h and fix a
structure type declaration in intel_rapl.h (Wan Jiabing).
- Use dev_set_name() instead of an open-coded equivalent of it in
the wakeup sources code and drop a redundant local variable
initialization from it (Andy Shevchenko, Colin Ian King).
- Use crc32 instead of md5 for e820 memory map integrity check
during resume from hibernation on x86 (Chris von Recklinghausen).
- Fix typos in comments in the system-wide and hibernation support
code (Lu Jialin).
- Modify the generic power domains (genpd) code to avoid resuming
devices in the "prepare" phase of system-wide suspend and
hibernation (Ulf Hansson).
- Add Hygon Fam18h RAPL support to the intel_rapl power capping
driver (Pu Wen).
- Add MAINTAINERS entry for the dynamic thermal power management
(DTPM) code (Daniel Lezcano).
- Add devm variants of operating performance points (OPP) API
functions and switch over some users of the OPP framework to
the new resource-managed API (Yangtao Li and Dmitry Osipenko).
- Update devfreq core:
* Register devfreq devices as cooling devices on demand (Daniel
Lezcano).
* Add missing unlock opeation in devfreq_add_device() (Lukasz
Luba).
* Use the next frequency as resume_freq instead of the previous
frequency when using the opp-suspend property (Dong Aisheng).
* Check get_dev_status in devfreq_update_stats() (Dong Aisheng).
* Fix set_freq path for the userspace governor in Kconfig (Dong
Aisheng).
* Remove invalid description of get_target_freq() (Dong Aisheng).
- Update devfreq drivers:
* imx8m-ddrc: Remove imx8m_ddrc_get_dev_status() and unneeded
of_match_ptr() (Dong Aisheng, Fabio Estevam).
* rk3399_dmc: dt-bindings: Add rockchip,pmu phandle and drop
references to undefined symbols (Enric Balletbo i Serra, Gaël
PORTAY).
* rk3399_dmc: Use dev_err_probe() to simplify the code (Krzysztof
Kozlowski).
* imx-bus: Remove unneeded of_match_ptr() (Fabio Estevam).
- Fix kernel-doc warnings in three places (Pierre-Louis Bossart).
- Fix typo in the pm-graph utility code (Ricardo Ribalda).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmCHAUISHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxAxMP/0tFjgxeaJ3chYaiqoPlk2QX/XdwqJvm
8OOu2qBMWbt2bubcIlAPpdlCNaERI4itF7E8za7t9alswdq7YPWGmNR9snCXUKhD
BzERuicZTeOcCk2P3DTgzLVc4EzF6wutA3lTdYYZIpf+LuuB+guG8zgMzScRHIsM
N3I83O+iLTA9ifIqN0/wH//a0ISvo6rSWtcbx+48d5bYvYixW7CsBmoxWHhGiYsw
4PJ4AzbdNJEhQp91SBYPIAmqwV88FZUPoYnRazXMxOSevMewhP9JuCHXAujC3gLV
l5d2TBaBV4EBYLD5tfCpJvHMXhv/yBpg6KRivjri+zEnY1TAqIlfR4vYiL7puVvQ
PdwjyvNFDNGyUSX/AAwYF6F4WCtIhw8hCahw6Dw2zcDz0plFdRZmWAiTdmIjECJK
8EvwJNlmdl27G1y+EBc6NnwzEFZQwiu9F5bUHUkmc3fF1M1aFTza8WDNDo30TC94
94c+uVBRL2fBePl4FfGZATfJbOMb8+vDIkroQxrIjQDT/7Ha3Mz75JZDRHItZo92
+4fES2eFdfZISCLIQMBY5TeXox3O8qsirC1k4qELwy71gPUE9CpP3FkxKIvyZLlv
+6fS9ttpUfyFBF7gqrEy+ziVk1Rm4oorLmWCtthz4xyerzj5+vtZQqKzcySk0GA5
hYkseZkedR6y
=t+SG
-----END PGP SIGNATURE-----
Merge tag 'pm-5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These add some new hardware support (for example, IceLake-D idle
states in intel_idle), fix some issues (for example, the handling of
negative "sleep length" values in cpuidle governors), add new
functionality to the existing drivers (for example, scale-invariance
support in the ACPI CPPC cpufreq driver) and clean up code all over.
Specifics:
- Add idle states table for IceLake-D to the intel_idle driver and
update IceLake-X C6 data in it (Artem Bityutskiy).
- Fix the C7 idle state on Tegra114 in the tegra cpuidle driver and
drop the unused do_idle() firmware call from it (Dmitry Osipenko).
- Fix cpuidle-qcom-spm Kconfig entry (He Ying).
- Fix handling of possible negative tick_nohz_get_next_hrtimer()
return values of in cpuidle governors (Rafael Wysocki).
- Add support for frequency-invariance to the ACPI CPPC cpufreq
driver and update the frequency-invariance engine (FIE) to use it
as needed (Viresh Kumar).
- Simplify the default delay_us setting in the ACPI CPPC cpufreq
driver (Tom Saeger).
- Clean up frequency-related computations in the intel_pstate cpufreq
driver (Rafael Wysocki).
- Fix TBG parent setting for load levels in the armada-37xx cpufreq
driver and drop the CPU PM clock .set_parent method for armada-37xx
(Marek Behún).
- Fix multiple issues in the armada-37xx cpufreq driver (Pali Rohár).
- Fix handling of dev_pm_opp_of_cpumask_add_table() return values in
cpufreq-dt to take the -EPROBE_DEFER one into acconut as
appropriate (Quanyang Wang).
- Fix format string in ia64-acpi-cpufreq (Sergei Trofimovich).
- Drop the unused for_each_policy() macro from cpufreq (Shaokun
Zhang).
- Simplify computations in the schedutil cpufreq governor to avoid
unnecessary overhead (Yue Hu).
- Fix typos in the s5pv210 cpufreq driver (Bhaskar Chowdhury).
- Fix cpufreq documentation links in Kconfig (Alexander Monakov).
- Fix PCI device power state handling in pci_enable_device_flags() to
avoid issuse in some cases when the device depends on an ACPI power
resource (Rafael Wysocki).
- Add missing documentation of pm_runtime_resume_and_get() (Alan
Stern).
- Add missing static inline stub for pm_runtime_has_no_callbacks() to
pm_runtime.h and drop the unused try_to_freeze_nowarn() definition
(YueHaibing).
- Drop duplicate struct device declaration from pm.h and fix a
structure type declaration in intel_rapl.h (Wan Jiabing).
- Use dev_set_name() instead of an open-coded equivalent of it in the
wakeup sources code and drop a redundant local variable
initialization from it (Andy Shevchenko, Colin Ian King).
- Use crc32 instead of md5 for e820 memory map integrity check during
resume from hibernation on x86 (Chris von Recklinghausen).
- Fix typos in comments in the system-wide and hibernation support
code (Lu Jialin).
- Modify the generic power domains (genpd) code to avoid resuming
devices in the "prepare" phase of system-wide suspend and
hibernation (Ulf Hansson).
- Add Hygon Fam18h RAPL support to the intel_rapl power capping
driver (Pu Wen).
- Add MAINTAINERS entry for the dynamic thermal power management
(DTPM) code (Daniel Lezcano).
- Add devm variants of operating performance points (OPP) API
functions and switch over some users of the OPP framework to the
new resource-managed API (Yangtao Li and Dmitry Osipenko).
- Update devfreq core:
* Register devfreq devices as cooling devices on demand (Daniel
Lezcano).
* Add missing unlock opeation in devfreq_add_device() (Lukasz
Luba).
* Use the next frequency as resume_freq instead of the previous
frequency when using the opp-suspend property (Dong Aisheng).
* Check get_dev_status in devfreq_update_stats() (Dong Aisheng).
* Fix set_freq path for the userspace governor in Kconfig (Dong
Aisheng).
* Remove invalid description of get_target_freq() (Dong Aisheng).
- Update devfreq drivers:
* imx8m-ddrc: Remove imx8m_ddrc_get_dev_status() and unneeded
of_match_ptr() (Dong Aisheng, Fabio Estevam).
* rk3399_dmc: dt-bindings: Add rockchip,pmu phandle and drop
references to undefined symbols (Enric Balletbo i Serra, Gaël
PORTAY).
* rk3399_dmc: Use dev_err_probe() to simplify the code (Krzysztof
Kozlowski).
* imx-bus: Remove unneeded of_match_ptr() (Fabio Estevam).
- Fix kernel-doc warnings in three places (Pierre-Louis Bossart).
- Fix typo in the pm-graph utility code (Ricardo Ribalda)"
* tag 'pm-5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (74 commits)
PM: wakeup: remove redundant assignment to variable retval
PM: hibernate: x86: Use crc32 instead of md5 for hibernation e820 integrity check
cpufreq: Kconfig: fix documentation links
PM: wakeup: use dev_set_name() directly
PM: runtime: Add documentation for pm_runtime_resume_and_get()
cpufreq: intel_pstate: Simplify intel_pstate_update_perf_limits()
cpufreq: armada-37xx: Fix module unloading
cpufreq: armada-37xx: Remove cur_frequency variable
cpufreq: armada-37xx: Fix determining base CPU frequency
cpufreq: armada-37xx: Fix driver cleanup when registration failed
clk: mvebu: armada-37xx-periph: Fix workaround for switching from L1 to L0
clk: mvebu: armada-37xx-periph: Fix switching CPU freq from 250 Mhz to 1 GHz
cpufreq: armada-37xx: Fix the AVS value for load L1
clk: mvebu: armada-37xx-periph: remove .set_parent method for CPU PM clock
cpufreq: armada-37xx: Fix setting TBG parent for load levels
cpuidle: Fix ARM_QCOM_SPM_CPUIDLE configuration
cpuidle: tegra: Remove do_idle firmware call
cpuidle: tegra: Fix C7 idling state on Tegra114
PM: sleep: fix typos in comments
cpufreq: Remove unused for_each_policy macro
...
Core changes:
- Allow runtime power management when the clocksource is changed.
- A correctness fix for clock_adjtime32() so that the return value
on success is not overwritten by the result of the copy to user.
- Allow late installment of broadcast clockevent devices which was
broken because nothing switched them over to oneshot mode. This went
unnoticed so far because clockevent devices used to be built in, but
now people started to make them modular.
- Debugfs related simplifications
- Small cleanups and improvements here and there
Driver changes:
- The usual set of device tree binding updates for a wide range
of drivers/devices.
- The usual updates and improvements for drivers all over the place but
nothing outstanding.
- No new clocksource/event drivers. They'll come back next time.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmCGieYTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYobRJEACNCtecUXdyt/u+ViDgHwG1XOHSZUkG
zBO6E/uZ3G6ZUkr6FogAaY2eMMrSdSUyqbiNBSYBJki2ptMJWF5Li5VzqINmrBuD
VyjK3FEDV0bXW9EJOm4d+95pMyFQ/pYv9VPcByj7VW21t+IDE/4pLeZ8M8shNDHa
pmMnR/tgX4ZZtSrX2NqCUNoTrkycaz8d5NOuso5HjKvPkJ5BU2kSxULTGmvaeTil
8d+70AetApDgzAWpCnJFPlLlOHIPyhnMxS5edvsMIbMIkRLsnI+b3LsPZe+CqVZ0
zaP6KYvG+iqU8nKdz7OweV1fLgBD52GKgHlpTkhhYs3GW4XBEXDrsyoEyeIiZ22u
YUkTzFvZ4JG/+80UUaKpLDIGYWUj1h+xe/EtWS0s8lj108RsNLghd/0YjFMikspT
fYC2WpaXJDz3URbSV57OXGbwhg2zOYI5Supg6wNrmFfcld3k6CSitG4idDpIGjJE
8WIcZmeZSelDufskiY8RmsiTumqNOf5P33F71r9JRI6QU9RsyYb3fJN71AFKnLq2
31YEAShpzPYG5EGRinPymJRi3icdmcEQECz/pWUb6ua0s/HG1+HD9emLwHzvPdul
hcWRq19GaK1YBzOfV60+8cdxW8ZEOROvRVdYJO8FoYcnueUJmOSM+boqSkRtDw3o
RywO8BetxukPJg==
=F6Du
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"The time and timers updates contain:
Core changes:
- Allow runtime power management when the clocksource is changed.
- A correctness fix for clock_adjtime32() so that the return value on
success is not overwritten by the result of the copy to user.
- Allow late installment of broadcast clockevent devices which was
broken because nothing switched them over to oneshot mode. This
went unnoticed so far because clockevent devices used to be built
in, but now people started to make them modular.
- Debugfs related simplifications
- Small cleanups and improvements here and there
Driver changes:
- The usual set of device tree binding updates for a wide range of
drivers/devices.
- The usual updates and improvements for drivers all over the place
but nothing outstanding.
- No new clocksource/event drivers. They'll come back next time"
* tag 'timers-core-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
posix-timers: Preserve return value in clock_adjtime32()
tick/broadcast: Allow late registered device to enter oneshot mode
tick: Use tick_check_replacement() instead of open coding it
time/timecounter: Mark 1st argument of timecounter_cyc2time() as const
dt-bindings: timer: nuvoton,npcm7xx: Add wpcm450-timer
clocksource/drivers/arm_arch_timer: Add __ro_after_init and __init
clocksource/drivers/timer-ti-dm: Handle dra7 timer wrap errata i940
clocksource/drivers/timer-ti-dm: Prepare to handle dra7 timer wrap issue
clocksource/drivers/dw_apb_timer_of: Add handling for potential memory leak
clocksource/drivers/npcm: Add support for WPCM450
clocksource/drivers/sh_cmt: Don't use CMTOUT_IE with R-Car Gen2/3
clocksource/drivers/pistachio: Fix trivial typo
clocksource/drivers/ingenic_ost: Fix return value check in ingenic_ost_probe()
clocksource/drivers/timer-ti-dm: Add missing set_state_oneshot_stopped
clocksource/drivers/timer-ti-dm: Fix posted mode status check order
dt-bindings: timer: renesas,cmt: Document R8A77961
dt-bindings: timer: renesas,cmt: Add r8a779a0 CMT support
clocksource/drivers/ingenic-ost: Add support for the JZ4760B
clocksource/drivers/ingenic: Add support for the JZ4760
dt-bindings: timer: ingenic: Add compatible strings for JZ4760(B)
...