- Have fprobes built on top of function graph infrastructure
The fprobe logic is an optimized kprobe that uses ftrace to attach to
functions when a probe is needed at the start or end of the function. The
fprobe and kretprobe logic implements a similar method as the function
graph tracer to trace the end of the function. That is to hijack the
return address and jump to a trampoline to do the trace when the function
exits. To do this, a shadow stack needs to be created to store the
original return address. Fprobes and function graph do this slightly
differently. Fprobes (and kretprobes) has slots per callsite that are
reserved to save the return address. This is fine when just a few points
are traced. But users of fprobes, such as BPF programs, are starting to add
many more locations, and this method does not scale.
The function graph tracer was created to trace all functions in the
kernel. In order to do this, when function graph tracing is started, every
task gets its own shadow stack to hold the return address that is going to
be traced. The function graph tracer has been updated to allow multiple
users to use its infrastructure. Now have fprobes be one of those users.
This will also allow for the fprobe and kretprobe methods to trace the
return address to become obsolete. With new technologies like CFI that
need to know about these methods of hijacking the return address, going
toward a solution that has only one method of doing this will make the
kernel less complex.
- Cleanup with guard() and free() helpers
There were several places in the code that had a lot of "goto out" in the
error paths to either unlock a lock or free some memory that was
allocated. But this is error prone. Convert the code over to use the
guard() and free() helpers that let the compiler unlock locks or free
memory when the function exits.
- Remove disabling of interrupts in the function graph tracer
When function graph tracer was first introduced, it could race with
interrupts and NMIs. To prevent that race, it would disable interrupts and
not trace NMIs. But the code has changed to allow NMIs and also
interrupts. This change was done a long time ago, but the disabling of
interrupts was never removed. Remove the disabling of interrupts in the
function graph tracer is it is not needed. This greatly improves its
performance.
- Allow the :mod: command to enable tracing module functions on the kernel
command line.
The function tracer already has a way to enable functions to be traced in
modules by writing ":mod:<module>" into set_ftrace_filter. That will
enable either all the functions for the module if it is loaded, or if it
is not, it will cache that command, and when the module is loaded that
matches <module>, its functions will be enabled. This also allows init
functions to be traced. But currently events do not have that feature.
Because enabling function tracing can be done very early at boot up
(before scheduling is enabled), the commands that can be done when
function tracing is started is limited. Having the ":mod:" command to
trace module functions as they are loaded is very useful. Update the
kernel command line function filtering to allow it.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZ42E2RQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qqXSAPwOMxuhye8tb1GYG62QD9+w7e6nOmlC
2GCPj4detnEM2QD/ciivkhespVKhHpZHRewAuSnJgHPSM45NQ3EVESzjWQ4=
=snbx
-----END PGP SIGNATURE-----
Merge tag 'ftrace-v6.14' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull ftrace updates from Steven Rostedt:
- Have fprobes built on top of function graph infrastructure
The fprobe logic is an optimized kprobe that uses ftrace to attach to
functions when a probe is needed at the start or end of the function.
The fprobe and kretprobe logic implements a similar method as the
function graph tracer to trace the end of the function. That is to
hijack the return address and jump to a trampoline to do the trace
when the function exits. To do this, a shadow stack needs to be
created to store the original return address. Fprobes and function
graph do this slightly differently. Fprobes (and kretprobes) has
slots per callsite that are reserved to save the return address. This
is fine when just a few points are traced. But users of fprobes, such
as BPF programs, are starting to add many more locations, and this
method does not scale.
The function graph tracer was created to trace all functions in the
kernel. In order to do this, when function graph tracing is started,
every task gets its own shadow stack to hold the return address that
is going to be traced. The function graph tracer has been updated to
allow multiple users to use its infrastructure. Now have fprobes be
one of those users. This will also allow for the fprobe and kretprobe
methods to trace the return address to become obsolete. With new
technologies like CFI that need to know about these methods of
hijacking the return address, going toward a solution that has only
one method of doing this will make the kernel less complex.
- Cleanup with guard() and free() helpers
There were several places in the code that had a lot of "goto out" in
the error paths to either unlock a lock or free some memory that was
allocated. But this is error prone. Convert the code over to use the
guard() and free() helpers that let the compiler unlock locks or free
memory when the function exits.
- Remove disabling of interrupts in the function graph tracer
When function graph tracer was first introduced, it could race with
interrupts and NMIs. To prevent that race, it would disable
interrupts and not trace NMIs. But the code has changed to allow NMIs
and also interrupts. This change was done a long time ago, but the
disabling of interrupts was never removed. Remove the disabling of
interrupts in the function graph tracer is it is not needed. This
greatly improves its performance.
- Allow the :mod: command to enable tracing module functions on the
kernel command line.
The function tracer already has a way to enable functions to be
traced in modules by writing ":mod:<module>" into set_ftrace_filter.
That will enable either all the functions for the module if it is
loaded, or if it is not, it will cache that command, and when the
module is loaded that matches <module>, its functions will be
enabled. This also allows init functions to be traced. But currently
events do not have that feature.
Because enabling function tracing can be done very early at boot up
(before scheduling is enabled), the commands that can be done when
function tracing is started is limited. Having the ":mod:" command to
trace module functions as they are loaded is very useful. Update the
kernel command line function filtering to allow it.
* tag 'ftrace-v6.14' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (26 commits)
ftrace: Implement :mod: cache filtering on kernel command line
tracing: Adopt __free() and guard() for trace_fprobe.c
bpf: Use ftrace_get_symaddr() for kprobe_multi probes
ftrace: Add ftrace_get_symaddr to convert fentry_ip to symaddr
Documentation: probes: Update fprobe on function-graph tracer
selftests/ftrace: Add a test case for repeating register/unregister fprobe
selftests: ftrace: Remove obsolate maxactive syntax check
tracing/fprobe: Remove nr_maxactive from fprobe
fprobe: Add fprobe_header encoding feature
fprobe: Rewrite fprobe on function-graph tracer
s390/tracing: Enable HAVE_FTRACE_GRAPH_FUNC
ftrace: Add CONFIG_HAVE_FTRACE_GRAPH_FUNC
bpf: Enable kprobe_multi feature if CONFIG_FPROBE is enabled
tracing/fprobe: Enable fprobe events with CONFIG_DYNAMIC_FTRACE_WITH_ARGS
tracing: Add ftrace_fill_perf_regs() for perf event
tracing: Add ftrace_partial_regs() for converting ftrace_regs to pt_regs
fprobe: Use ftrace_regs in fprobe exit handler
fprobe: Use ftrace_regs in fprobe entry handler
fgraph: Pass ftrace_regs to retfunc
fgraph: Replace fgraph_ret_regs with ftrace_regs
...
- Clean up the __rb_map_vma() logic
The logic of __rb_map_vma() has a error check with WARN_ON() that makes
sure that the index does not go past the end of the array of buffers. The
test in the loop pretty much guarantees that it will never happen, but
since the relation of the variables used is a little complex, the
WARN_ON() check was added. It was noticed that the array was dereferenced
before this check and if the logic does break and for some reason the
logic goes past the array, there will be an out of bounds access here.
Move the access to after the WARN_ON().
- Consolidate how the ring buffer is determined to be empty
Currently there's two ways that are used to determine if the ring buffer
is empty. One relies on the status of the commit and reader pages and what
was read, and the other is on what was written vs what was read. By using
the number of entries (written) method, it can be used for reading events
that are out of the kernel's control (what pKVM will use). Move to this
method to make it easier to implement a pKVM ring buffer that the kernel
can read.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZ42XuRQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qn3GAQCOQ94vr88FSXb/azC9281iDGYC/KbJ
7J4dGv2rXHpoVAEAtXRXSXpG0mTIJ6TtgVKgMrIFAuT/AVo4EIUr2q/CsgA=
=2G7c
-----END PGP SIGNATURE-----
Merge tag 'trace-ringbuffer-v6.14' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull trace ring-buffer updates from Steven Rostedt:
- Clean up the __rb_map_vma() logic
The logic of __rb_map_vma() has a error check with WARN_ON() that
makes sure that the index does not go past the end of the array of
buffers. The test in the loop pretty much guarantees that it will
never happen, but since the relation of the variables used is a
little complex, the WARN_ON() check was added. It was noticed that
the array was dereferenced before this check and if the logic does
break and for some reason the logic goes past the array, there will
be an out of bounds access here. Move the access to after the
WARN_ON().
- Consolidate how the ring buffer is determined to be empty
Currently there's two ways that are used to determine if the ring
buffer is empty. One relies on the status of the commit and reader
pages and what was read, and the other is on what was written vs what
was read. By using the number of entries (written) method, it can be
used for reading events that are out of the kernel's control (what
pKVM will use). Move to this method to make it easier to implement a
pKVM ring buffer that the kernel can read.
* tag 'trace-ringbuffer-v6.14' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
ring-buffer: Make reading page consistent with the code logic
ring-buffer: Check for empty ring-buffer with rb_num_of_entries()
- Seqlock optimizations that arose in a perf context and were
merged into the perf tree:
- seqlock: Add raw_seqcount_try_begin (Suren Baghdasaryan)
- mm: Convert mm_lock_seq to a proper seqcount ((Suren Baghdasaryan)
- mm: Introduce mmap_lock_speculate_{try_begin|retry} (Suren Baghdasaryan)
- mm/gup: Use raw_seqcount_try_begin() (Peter Zijlstra)
- Core perf enhancements:
- Reduce 'struct page' footprint of perf by mapping pages
in advance (Lorenzo Stoakes)
- Save raw sample data conditionally based on sample type (Yabin Cui)
- Reduce sampling overhead by checking sample_type in
perf_sample_save_callchain() and perf_sample_save_brstack() (Yabin Cui)
- Export perf_exclude_event() (Namhyung Kim)
- Uprobes scalability enhancements: (Andrii Nakryiko)
- Simplify find_active_uprobe_rcu() VMA checks
- Add speculative lockless VMA-to-inode-to-uprobe resolution
- Simplify session consumer tracking
- Decouple return_instance list traversal and freeing
- Ensure return_instance is detached from the list before freeing
- Reuse return_instances between multiple uretprobes within task
- Guard against kmemdup() failing in dup_return_instance()
- AMD core PMU driver enhancements:
- Relax privilege filter restriction on AMD IBS (Namhyung Kim)
- AMD RAPL energy counters support: (Dhananjay Ugwekar)
- Introduce topology_logical_core_id() (K Prateek Nayak)
- Remove the unused get_rapl_pmu_cpumask() function
- Remove the cpu_to_rapl_pmu() function
- Rename rapl_pmu variables
- Make rapl_model struct global
- Add arguments to the init and cleanup functions
- Modify the generic variable names to *_pkg*
- Remove the global variable rapl_msrs
- Move the cntr_mask to rapl_pmus struct
- Add core energy counter support for AMD CPUs
- Intel core PMU driver enhancements:
- Support RDPMC 'metrics clear mode' feature (Kan Liang)
- Clarify adaptive PEBS processing (Kan Liang)
- Factor out functions for PEBS records processing (Kan Liang)
- Simplify the PEBS records processing for adaptive PEBS (Kan Liang)
- Intel uncore driver enhancements: (Kan Liang)
- Convert buggy pmu->func_id use to pmu->registered
- Support more units on Granite Rapids
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmeOJdQRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1i2yQ/+MXl7yfJOgdbwjBpgGGzH4burEO7ppak+
ktzz+YjpNgjODe/xMAJGjjblouuYArCnRolc1UPvPm6M7jSY76wi42Y6c4dRtFoB
2ReSrRqnreLOcrRS9nsTjvWRHfJHqJDVSd9TfHX6ILfzbaizCZOGYk558ZxAKRqu
Lw7FOvLEe/Y3tg4z8dDg083jsasalKySP9wIPc0BkSqQTOfusd3KXju/Fux/9wkn
hZcUgF4ds+0bH7xtO1/G9ILqGyeq97X1McIR9bAjln5Mxykclen4hSjRaWWHHo9O
mzBKmd/blIATisfuuW+QLDQow3M1k3688cz7e9QOeWHHd/dJiMb9RLV90jdND/T/
uLINC5vNemzyWEfnNiYQ31LjhG3SeuDiKWzRp36MbQcCh6EBdRXWLBgtmxq1L/3o
ZCaCdtFu5+6epycdyOVZEpWDnjdx4GmLXMZi5WJfZ7fZ/IFjNkjk4OdzI1iRQ+i3
Sbi75ep59ayTUhm5AB7gCJsP3R7EsZsiPHUenQdA2n9Sj6xE+IuhlS/QDQ9g5mdY
Ijs0jHeVCGmhYoOD1xWnCZSzlnkEVU3zwfypAK+MC7pgtFMwDy5/Bu1USGxXXDy+
aKsrJRSgHbtZ1gwoHstqkV+DeCTfElCLYkvigzI5Nmyib5Zp4vkwy2ZLWQjaNjm7
mqRI7PugUkU=
=c8XB
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2025-01-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull performance events updates from Ingo Molnar:
"Seqlock optimizations that arose in a perf context and were merged
into the perf tree:
- seqlock: Add raw_seqcount_try_begin (Suren Baghdasaryan)
- mm: Convert mm_lock_seq to a proper seqcount (Suren Baghdasaryan)
- mm: Introduce mmap_lock_speculate_{try_begin|retry} (Suren
Baghdasaryan)
- mm/gup: Use raw_seqcount_try_begin() (Peter Zijlstra)
Core perf enhancements:
- Reduce 'struct page' footprint of perf by mapping pages in advance
(Lorenzo Stoakes)
- Save raw sample data conditionally based on sample type (Yabin Cui)
- Reduce sampling overhead by checking sample_type in
perf_sample_save_callchain() and perf_sample_save_brstack() (Yabin
Cui)
- Export perf_exclude_event() (Namhyung Kim)
Uprobes scalability enhancements: (Andrii Nakryiko)
- Simplify find_active_uprobe_rcu() VMA checks
- Add speculative lockless VMA-to-inode-to-uprobe resolution
- Simplify session consumer tracking
- Decouple return_instance list traversal and freeing
- Ensure return_instance is detached from the list before freeing
- Reuse return_instances between multiple uretprobes within task
- Guard against kmemdup() failing in dup_return_instance()
AMD core PMU driver enhancements:
- Relax privilege filter restriction on AMD IBS (Namhyung Kim)
AMD RAPL energy counters support: (Dhananjay Ugwekar)
- Introduce topology_logical_core_id() (K Prateek Nayak)
- Remove the unused get_rapl_pmu_cpumask() function
- Remove the cpu_to_rapl_pmu() function
- Rename rapl_pmu variables
- Make rapl_model struct global
- Add arguments to the init and cleanup functions
- Modify the generic variable names to *_pkg*
- Remove the global variable rapl_msrs
- Move the cntr_mask to rapl_pmus struct
- Add core energy counter support for AMD CPUs
Intel core PMU driver enhancements:
- Support RDPMC 'metrics clear mode' feature (Kan Liang)
- Clarify adaptive PEBS processing (Kan Liang)
- Factor out functions for PEBS records processing (Kan Liang)
- Simplify the PEBS records processing for adaptive PEBS (Kan Liang)
Intel uncore driver enhancements: (Kan Liang)
- Convert buggy pmu->func_id use to pmu->registered
- Support more units on Granite Rapids"
* tag 'perf-core-2025-01-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
perf: map pages in advance
perf/x86/intel/uncore: Support more units on Granite Rapids
perf/x86/intel/uncore: Clean up func_id
perf/x86/intel: Support RDPMC metrics clear mode
uprobes: Guard against kmemdup() failing in dup_return_instance()
perf/x86: Relax privilege filter restriction on AMD IBS
perf/core: Export perf_exclude_event()
uprobes: Reuse return_instances between multiple uretprobes within task
uprobes: Ensure return_instance is detached from the list before freeing
uprobes: Decouple return_instance list traversal and freeing
uprobes: Simplify session consumer tracking
uprobes: add speculative lockless VMA-to-inode-to-uprobe resolution
uprobes: simplify find_active_uprobe_rcu() VMA checks
mm: introduce mmap_lock_speculate_{try_begin|retry}
mm: convert mm_lock_seq to a proper seqcount
mm/gup: Use raw_seqcount_try_begin()
seqlock: add raw_seqcount_try_begin
perf/x86/rapl: Add core energy counter support for AMD CPUs
perf/x86/rapl: Move the cntr_mask to rapl_pmus struct
perf/x86/rapl: Remove the global variable rapl_msrs
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmeL6hoQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgppw2EADQV8nDgLRggZR+il4U03yKHXcQEdAX1GrB
Erowx+dasIJuh6kp3n6qRe9QD/pRqt1DKyLvXoWF8Qfuwq85j7oDnDDYxutNYT27
hDgrLJriJ3VeKYtTu+andHWt8P29b5h57UayInDOUJurEPA6rXyFZ5YVIti8n21K
uDOrQXiACG3qRWS2+p2f3UNhX0MkFNFdN/lxi13WMIJtRWF5bXAP+JOgIWCID4Ze
QuSY6rQD4dp4Q6M2erpX6tn0YZb7Hvw3rPjsd91n6jvYfTUVLH375zg8jCBpi6Wi
Syufbb8xcTtriVPTDRNu0ekjebkc8wD8ax/h86g0z9v3Ua4DlNmsx9eXrtv6r5nu
YXqDODOad6stI0+owFquW2vas0gHmfNSfyfGdlk2g24PMtP5Yx0V6FIEvwIeqnje
ghgxQvBuKUsdhqakByfNnc+XvXi3+RUJek8kvMeUSUQWT1IyMQqPOOk0yp9WdyWD
bY1f2ECP5BR1b37zYOyawewsI5xTupHUswn5a4r4qtGn3O15rGDkX98Nab5aLCnR
rW/DvX7+wT6gW9EwrRHiwjwfNDZbsJ9Ggu3lMhtUl5GUWdk58yTiVgKaHJLnlX9/
CKFKfyyIR1Vl8+gYIpemyFhhcoN+dCSf06ISkrg0jeS0/tYwydaAaCBPL5J4kxZA
h3Rtbh+Pgg==
=EXYs
-----END PGP SIGNATURE-----
Merge tag 'for-6.14/block-20250118' of git://git.kernel.dk/linux
Pull block updates from Jens Axboe:
- NVMe pull requests via Keith:
- Target support for PCI-Endpoint transport (Damien)
- TCP IO queue spreading fixes (Sagi, Chaitanya)
- Target handling for "limited retry" flags (Guixen)
- Poll type fix (Yongsoo)
- Xarray storage error handling (Keisuke)
- Host memory buffer free size fix on error (Francis)
- MD pull requests via Song:
- Reintroduce md-linear (Yu Kuai)
- md-bitmap refactor and fix (Yu Kuai)
- Replace kmap_atomic with kmap_local_page (David Reaver)
- Quite a few queue freeze and debugfs deadlock fixes
Ming introduced lockdep support for this in the 6.13 kernel, and it
has (unsurprisingly) uncovered quite a few issues
- Use const attributes for IO schedulers
- Remove bio ioprio wrappers
- Fixes for stacked device atomic write support
- Refactor queue affinity helpers, in preparation for better supporting
isolated CPUs
- Cleanups of loop O_DIRECT handling
- Cleanup of BLK_MQ_F_* flags
- Add rotational support for null_blk
- Various fixes and cleanups
* tag 'for-6.14/block-20250118' of git://git.kernel.dk/linux: (106 commits)
block: Don't trim an atomic write
block: Add common atomic writes enable flag
md/md-linear: Fix a NULL vs IS_ERR() bug in linear_add()
block: limit disk max sectors to (LLONG_MAX >> 9)
block: Change blk_stack_atomic_writes_limits() unit_min check
block: Ensure start sector is aligned for stacking atomic writes
blk-mq: Move more error handling into blk_mq_submit_bio()
block: Reorder the request allocation code in blk_mq_submit_bio()
nvme: fix bogus kzalloc() return check in nvme_init_effects_log()
md/md-bitmap: move bitmap_{start, end}write to md upper layer
md/raid5: implement pers->bitmap_sector()
md: add a new callback pers->bitmap_sector()
md/md-bitmap: remove the last parameter for bimtap_ops->endwrite()
md/md-bitmap: factor behind write counters out from bitmap_{start/end}write()
md: Replace deprecated kmap_atomic() with kmap_local_page()
md: reintroduce md-linear
partitions: ldm: remove the initial kernel-doc notation
blk-cgroup: rwstat: fix kernel-doc warnings in header file
blk-cgroup: fix kernel-doc warnings in header file
nbd: fix partial sending
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZ4pR0wAKCRCRxhvAZXjc
ojb2AQD5QfpTEX/ju1TkenTvoNl+JfnIjaVSY40Lm9DWYzmCMAEAuRvf5WRIV713
00/RVOrUvsLobzhmnk0yw53EQ5A+pA0=
=2NDA
-----END PGP SIGNATURE-----
Merge tag 'kernel-6.14-rc1.pid' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull pid_max namespacing update from Christian Brauner:
"The pid_max sysctl is a global value. For a long time the default
value has been 65535 and during the pidfd dicussions Linus proposed to
bump pid_max by default. Based on this discussion systemd started
bumping pid_max to 2^22. So all new systems now run with a very high
pid_max limit with some distros having also backported that change.
The decision to bump pid_max is obviously correct. It just doesn't
make a lot of sense nowadays to enforce such a low pid number. There's
sufficient tooling to make selecting specific processes without typing
really large pid numbers available.
In any case, there are workloads that have expections about how large
pid numbers they accept. Either for historical reasons or
architectural reasons. One concreate example is the 32-bit version of
Android's bionic libc which requires pid numbers less than 65536.
There are workloads where it is run in a 32-bit container on a 64-bit
kernel. If the host has a pid_max value greater than 65535 the libc
will abort thread creation because of size assumptions of
pthread_mutex_t.
That's a fairly specific use-case however, in general specific
workloads that are moved into containers running on a host with a new
kernel and a new systemd can run into issues with large pid_max
values. Obviously making assumptions about the size of the allocated
pid is suboptimal but we have userspace that does it.
Of course, giving containers the ability to restrict the number of
processes in their respective pid namespace indepent of the global
limit through pid_max is something desirable in itself and comes in
handy in general.
Independent of motivating use-cases the existence of pid namespaces
makes this also a good semantical extension and there have been prior
proposals pushing in a similar direction. The trick here is to
minimize the risk of regressions which I think is doable. The fact
that pid namespaces are hierarchical will help us here.
What we mostly care about is that when the host sets a low pid_max
limit, say (crazy number) 100 that no descendant pid namespace can
allocate a higher pid number in its namespace. Since pid allocation is
hierarchial this can be ensured by checking each pid allocation
against the pid namespace's pid_max limit. This means if the
allocation in the descendant pid namespace succeeds, the ancestor pid
namespace can reject it. If the ancestor pid namespace has a higher
limit than the descendant pid namespace the descendant pid namespace
will reject the pid allocation. The ancestor pid namespace will
obviously not care about this.
All in all this means pid_max continues to enforce a system wide limit
on the number of processes but allows pid namespaces sufficient leeway
in handling workloads with assumptions about pid values and allows
containers to restrict the number of processes in a pid namespace
through the pid_max interface"
* tag 'kernel-6.14-rc1.pid' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
tests/pid_namespace: add pid_max tests
pid: allow pid_max to be set per pid namespace
Module functions can be set to set_ftrace_filter before the module is
loaded.
# echo :mod:snd_hda_intel > set_ftrace_filter
This will enable all the functions for the module snd_hda_intel. If that
module is not loaded, it is "cached" in the trace array for when the
module is loaded, its functions will be traced.
But this is not implemented in the kernel command line. That's because the
kernel command line filtering is added very early in boot up as it is
needed to be done before boot time function tracing can start, which is
also available very early in boot up. The code used by the
"set_ftrace_filter" file can not be used that early as it depends on some
other initialization to occur first. But some of the functions can.
Implement the ":mod:" feature of "set_ftrace_filter" in the kernel command
line parsing. Now function tracing on just a single module that is loaded
at boot up can be done.
Adding:
ftrace=function ftrace_filter=:mod:sna_hda_intel
To the kernel command line will only enable the sna_hda_intel module
functions when the module is loaded, and it will start tracing.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20250116175832.34e39779@gandalf.local.home
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The function graph tracer has become generic so that kretprobes and BPF
can use it along with function graph tracing itself. Some of the
infrastructure was specific for function graph tracing such as recording
the calltime and return time of the functions. Calling the clock code on a
high volume function does add overhead. The calculation of the calltime
was removed from the generic code and placed into the function graph
tracer itself so that the other users did not incur this overhead as they
did not need that timestamp.
The calltime field was still kept in the generic return entry structure
and the function graph return entry callback filled it as that structure
was passed to other code.
But this broke both irqsoff and wakeup latency tracer as they still
depended on the trace structure containing the calltime when the option
display-graph is set as it used some of those same functions that the
function graph tracer used. But now the calltime was not set and was just
zero. This caused the calculation of the function time to be the absolute
value of the return timestamp and not the length of the function.
# cd /sys/kernel/tracing
# echo 1 > options/display-graph
# echo irqsoff > current_tracer
The tracers went from:
# REL TIME CPU TASK/PID |||| DURATION FUNCTION CALLS
# | | | | |||| | | | | | |
0 us | 4) <idle>-0 | d..1. | 0.000 us | irqentry_enter();
3 us | 4) <idle>-0 | d..2. | | irq_enter_rcu() {
4 us | 4) <idle>-0 | d..2. | 0.431 us | preempt_count_add();
5 us | 4) <idle>-0 | d.h2. | | tick_irq_enter() {
5 us | 4) <idle>-0 | d.h2. | 0.433 us | tick_check_oneshot_broadcast_this_cpu();
6 us | 4) <idle>-0 | d.h2. | 2.426 us | ktime_get();
9 us | 4) <idle>-0 | d.h2. | | tick_nohz_stop_idle() {
10 us | 4) <idle>-0 | d.h2. | 0.398 us | nr_iowait_cpu();
11 us | 4) <idle>-0 | d.h1. | 1.903 us | }
11 us | 4) <idle>-0 | d.h2. | | tick_do_update_jiffies64() {
12 us | 4) <idle>-0 | d.h2. | | _raw_spin_lock() {
12 us | 4) <idle>-0 | d.h2. | 0.360 us | preempt_count_add();
13 us | 4) <idle>-0 | d.h3. | 0.354 us | do_raw_spin_lock();
14 us | 4) <idle>-0 | d.h2. | 2.207 us | }
15 us | 4) <idle>-0 | d.h3. | 0.428 us | calc_global_load();
16 us | 4) <idle>-0 | d.h3. | | _raw_spin_unlock() {
16 us | 4) <idle>-0 | d.h3. | 0.380 us | do_raw_spin_unlock();
17 us | 4) <idle>-0 | d.h3. | 0.334 us | preempt_count_sub();
18 us | 4) <idle>-0 | d.h1. | 1.768 us | }
18 us | 4) <idle>-0 | d.h2. | | update_wall_time() {
[..]
To:
# REL TIME CPU TASK/PID |||| DURATION FUNCTION CALLS
# | | | | |||| | | | | | |
0 us | 5) <idle>-0 | d.s2. | 0.000 us | _raw_spin_lock_irqsave();
0 us | 5) <idle>-0 | d.s3. | 312159583 us | preempt_count_add();
2 us | 5) <idle>-0 | d.s4. | 312159585 us | do_raw_spin_lock();
3 us | 5) <idle>-0 | d.s4. | | _raw_spin_unlock() {
3 us | 5) <idle>-0 | d.s4. | 312159586 us | do_raw_spin_unlock();
4 us | 5) <idle>-0 | d.s4. | 312159587 us | preempt_count_sub();
4 us | 5) <idle>-0 | d.s2. | 312159587 us | }
5 us | 5) <idle>-0 | d.s3. | | _raw_spin_lock() {
5 us | 5) <idle>-0 | d.s3. | 312159588 us | preempt_count_add();
6 us | 5) <idle>-0 | d.s4. | 312159589 us | do_raw_spin_lock();
7 us | 5) <idle>-0 | d.s3. | 312159590 us | }
8 us | 5) <idle>-0 | d.s4. | 312159591 us | calc_wheel_index();
9 us | 5) <idle>-0 | d.s4. | | enqueue_timer() {
9 us | 5) <idle>-0 | d.s4. | | wake_up_nohz_cpu() {
11 us | 5) <idle>-0 | d.s4. | | native_smp_send_reschedule() {
11 us | 5) <idle>-0 | d.s4. | 312171987 us | default_send_IPI_single_phys();
12408 us | 5) <idle>-0 | d.s3. | 312171990 us | }
12408 us | 5) <idle>-0 | d.s3. | 312171991 us | }
12409 us | 5) <idle>-0 | d.s3. | 312171991 us | }
Where the calculation of the time for each function was the return time
minus zero and not the time of when the function returned.
Have these tracers also save the calltime in the fgraph data section and
retrieve it again on the return to get the correct timings again.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/20250113183124.61767419@gandalf.local.home
Fixes: f1f36e22be ("ftrace: Have calltime be saved in the fgraph storage")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
In the loop of __rb_map_vma(), the 's' variable is calculated from the
same logic that nr_pages is and they both come from nr_subbufs. But the
relationship is not obvious and there's a WARN_ON_ONCE() around the 's'
variable to make sure it never becomes equal to nr_subbufs within the
loop. If that happens, then the code is buggy and needs to be fixed.
The 'page' variable is calculated from cpu_buffer->subbuf_ids[s] which is
an array of 'nr_subbufs' entries. If the code becomes buggy and 's'
becomes equal to or greater than 'nr_subbufs' then this will be an out of
bounds hit before the WARN_ON() is triggered and the code exiting safely.
Make the 'page' initialization consistent with the code logic and assign
it after the out of bounds check.
Link: https://lore.kernel.org/20250110162612.13983-1-aha310510@gmail.com
Signed-off-by: Jeongjun Park <aha310510@gmail.com>
[ sdr: rewrote change log ]
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Currently there are two ways of identifying an empty ring-buffer. One
relying on the current status of the commit / reader page
(rb_per_cpu_empty()) and the other on the write and read counters
(rb_num_of_entries() used in rb_get_reader_page()).
with rb_num_of_entries(). This intends to ease later
introduction of ring-buffer writers which are out of the kernel control
and with whom, the only information available is through the meta-page
counters.
Link: https://lore.kernel.org/20250108114536.627715-2-vdonnefort@google.com
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Add ftrace_get_entry_ip() which is only for ftrace based probes, and use
it for kprobe multi probes because they are based on fprobe which uses
ftrace instead of kprobes.
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Florent Revest <revest@chromium.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: bpf <bpf@vger.kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Alan Maguire <alan.maguire@oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/173566081414.878879.10631096557346094362.stgit@devnote2
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
In __trace_kprobe_create(), if something fails it must goto error block
to free objects. But when strdup() a symbol, it returns without that.
Fix it to goto the error block to free objects correctly.
Link: https://lore.kernel.org/all/173643297743.1514810.2408159540454241947.stgit@devnote2/
Fixes: 6212dd2968 ("tracing/kprobes: Use dyn_event framework for kprobe events")
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
- Add needed READ_ONCE() around access to the fgraph array element
The updates to the fgraph array can happen when callbacks are registered
and unregistered. The __ftrace_return_to_handler() can handle reading
either the old value or the new value. But once it reads that value
it must stay consistent otherwise the check that looks to see if the
value is a stub may show false, but if the compiler decides to re-read
after that check, it can be true which can cause the code to crash
later on.
- Make function profiler use the top level ops for filtering again
When function graph became available for instances, its filter ops became
independent from the top level set_ftrace_filter. In the process the
function profiler received its own filter ops as well. But the function
profiler uses the top level set_ftrace_filter file and does not have one
of its own. In giving it its own filter ops, it lost any user interface
it once had. Make it use the top level set_ftrace_filter file again.
This fixes a regression.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZ3cR4RQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qjxfAQCPhNztdmGmEYmuBtONPHwejidWnuJ6
Rl2mQxEbp40OUgD+JvSWofhRsvtXWlymqZ9j+dKMegLqMeq834hB0LK4NAg=
=+KqV
-----END PGP SIGNATURE-----
Merge tag 'ftrace-v6.13-rc5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull ftrace fixes from Steven Rostedt:
- Add needed READ_ONCE() around access to the fgraph array element
The updates to the fgraph array can happen when callbacks are
registered and unregistered. The __ftrace_return_to_handler() can
handle reading either the old value or the new value. But once it
reads that value it must stay consistent otherwise the check that
looks to see if the value is a stub may show false, but if the
compiler decides to re-read after that check, it can be true which
can cause the code to crash later on.
- Make function profiler use the top level ops for filtering again
When function graph became available for instances, its filter ops
became independent from the top level set_ftrace_filter. In the
process the function profiler received its own filter ops as well.
But the function profiler uses the top level set_ftrace_filter file
and does not have one of its own. In giving it its own filter ops, it
lost any user interface it once had. Make it use the top level
set_ftrace_filter file again. This fixes a regression.
* tag 'ftrace-v6.13-rc5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
ftrace: Fix function profiler's filtering functionality
fgraph: Add READ_ONCE() when accessing fgraph_array[]
Commit c132be2c4f ("function_graph: Have the instances use their own
ftrace_ops for filtering"), function profiler (enabled via
function_profile_enabled) has been showing statistics for all functions,
ignoring set_ftrace_filter settings.
While tracers are instantiated, the function profiler is not. Therefore, it
should use the global set_ftrace_filter for consistency. This patch
modifies the function profiler to use the global filter, fixing the
filtering functionality.
Before (filtering not working):
```
root@localhost:~# echo 'vfs*' > /sys/kernel/tracing/set_ftrace_filter
root@localhost:~# echo 1 > /sys/kernel/tracing/function_profile_enabled
root@localhost:~# sleep 1
root@localhost:~# echo 0 > /sys/kernel/tracing/function_profile_enabled
root@localhost:~# head /sys/kernel/tracing/trace_stat/*
Function Hit Time Avg
s^2
-------- --- ---- ---
---
schedule 314 22290594 us 70989.15 us
40372231 us
x64_sys_call 1527 8762510 us 5738.382 us
3414354 us
schedule_hrtimeout_range 176 8665356 us 49234.98 us
405618876 us
__x64_sys_ppoll 324 5656635 us 17458.75 us
19203976 us
do_sys_poll 324 5653747 us 17449.83 us
19214945 us
schedule_timeout 67 5531396 us 82558.15 us
2136740827 us
__x64_sys_pselect6 12 3029540 us 252461.7 us
63296940171 us
do_pselect.constprop.0 12 3029532 us 252461.0 us
63296952931 us
```
After (filtering working):
```
root@localhost:~# echo 'vfs*' > /sys/kernel/tracing/set_ftrace_filter
root@localhost:~# echo 1 > /sys/kernel/tracing/function_profile_enabled
root@localhost:~# sleep 1
root@localhost:~# echo 0 > /sys/kernel/tracing/function_profile_enabled
root@localhost:~# head /sys/kernel/tracing/trace_stat/*
Function Hit Time Avg
s^2
-------- --- ---- ---
---
vfs_write 462 68476.43 us 148.217 us
25874.48 us
vfs_read 641 9611.356 us 14.994 us
28868.07 us
vfs_fstat 890 878.094 us 0.986 us
1.667 us
vfs_fstatat 227 757.176 us 3.335 us
18.928 us
vfs_statx 226 610.610 us 2.701 us
17.749 us
vfs_getattr_nosec 1187 460.919 us 0.388 us
0.326 us
vfs_statx_path 297 343.287 us 1.155 us
11.116 us
vfs_rename 6 291.575 us 48.595 us
9889.236 us
```
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/20250101190820.72534-1-enjuk@amazon.com
Fixes: c132be2c4f ("function_graph: Have the instances use their own ftrace_ops for filtering")
Signed-off-by: Kohei Enju <enjuk@amazon.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
In __ftrace_return_to_handler(), a loop iterates over the fgraph_array[]
elements, which are fgraph_ops. The loop checks if an element is a
fgraph_stub to prevent using a fgraph_stub afterward.
However, if the compiler reloads fgraph_array[] after this check, it might
race with an update to fgraph_array[] that introduces a fgraph_stub. This
could result in the stub being processed, but the stub contains a null
"func_hash" field, leading to a NULL pointer dereference.
To ensure that the gops compared against the fgraph_stub matches the gops
processed later, add a READ_ONCE(). A similar patch appears in commit
63a8dfb ("function_graph: Add READ_ONCE() when accessing fgraph_array[]").
Cc: stable@vger.kernel.org
Fixes: 37238abe3c ("ftrace/function_graph: Pass fgraph_ops to function graph callbacks")
Link: https://lore.kernel.org/20241231113731.277668-1-zilin@seu.edu.cn
Signed-off-by: Zilin Guan <zilin@seu.edu.cn>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
In order to catch a common bug where a TRACE_EVENT() TP_fast_assign()
assigns an address of an allocated string to the ring buffer and then
references it in TP_printk(), which can be executed hours later when the
string is free, the function test_event_printk() runs on all events as
they are registered to make sure there's no unwanted dereferencing.
It calls process_string() to handle cases in TP_printk() format that has
"%s". It returns whether or not the string is safe. But it can have some
false positives.
For instance, xe_bo_move() has:
TP_printk("move_lacks_source:%s, migrate object %p [size %zu] from %s to %s device_id:%s",
__entry->move_lacks_source ? "yes" : "no", __entry->bo, __entry->size,
xe_mem_type_to_name[__entry->old_placement],
xe_mem_type_to_name[__entry->new_placement], __get_str(device_id))
Where the "%s" references into xe_mem_type_to_name[]. This is an array of
pointers that should be safe for the event to access. Instead of flagging
this as a bad reference, if a reference points to an array, where the
record field is the index, consider it safe.
Link: https://lore.kernel.org/all/9dee19b6185d325d0e6fa5f7cbba81d007d99166.camel@sapience.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241231000646.324fb5f7@gandalf.local.home
Fixes: 65a25d9f7a ("tracing: Add "%s" check in test_event_printk()")
Reported-by: Genes Lists <lists@sapience.com>
Tested-by: Gene C <arch@sapience.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
- tracing/kprobes: Change the priority of the module callback of kprobe
events so that it is called after the jump label list on the module is
updated. This ensures the kprobe can check whether it is not on the
jump label address correctly.
-----BEGIN PGP SIGNATURE-----
iQFPBAABCgA5FiEEh7BulGwFlgAOi5DV2/sHvwUrPxsFAmduAMgbHG1hc2FtaS5o
aXJhbWF0c3VAZ21haWwuY29tAAoJENv7B78FKz8bJ6YH/2QBkWNTe3qjxdPsTxJ2
MyL2PO8tMwZbNSyYZ1yGnbguWUUKVkuiheS/qWhLNpuVEyb6Q9/Zuifh5rFqDbf0
Ug3YvsP7gQurmqDm1NGlnMic3zlmZaYDtXCKB+kiA3HO3iP92zesTJlasiok3aSd
sQphxUzmG41BQUDN5/LktGjVb5juf3Xq6i6bdCd6wunUbGWCEE+XmFrg1oVnutES
GTckUGswUBGbgkcVPc07UfKZpNzZdyZlmbVfOISCdYIAddUKftATN7SaUrM29oqC
/lkUcxeXSVXBIUkbA1p50nfjYzTWNeXG92WrvMrRZjNivyMf/nUJnxrlHsv5h2Dy
gtI=
=d3Zj
-----END PGP SIGNATURE-----
Merge tag 'probes-fixes-v6.13-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull probes fix from Masami Hiramatsu:
"Change the priority of the module callback of kprobe events so that it
is called after the jump label list on the module is updated.
This ensures the kprobe can check whether it is not on the jump label
address correctly"
* tag 'probes-fixes-v6.13-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing/kprobe: Make trace_kprobe's module callback called after jump_label update
Fprobe store its data structure address and size on the fgraph return stack
by __fprobe_header. But most 64bit architecture can combine those to
one unsigned long value because 4 MSB in the kernel address are the same.
With this encoding, fprobe can consume less space on ret_stack.
This introduces asm/fprobe.h to define arch dependent encode/decode
macros. Note that since fprobe depends on CONFIG_HAVE_FUNCTION_GRAPH_FREGS,
currently only arm64, loongarch, riscv, s390 and x86 are supported.
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Florent Revest <revest@chromium.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: bpf <bpf@vger.kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Alan Maguire <alan.maguire@oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/173519005783.391279.5307910947400277525.stgit@devnote2
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Rewrite fprobe implementation on function-graph tracer.
Major API changes are:
- 'nr_maxactive' field is deprecated.
- This depends on CONFIG_DYNAMIC_FTRACE_WITH_ARGS or
!CONFIG_HAVE_DYNAMIC_FTRACE_WITH_ARGS, and
CONFIG_HAVE_FUNCTION_GRAPH_FREGS. So currently works only
on x86_64.
- Currently the entry size is limited in 15 * sizeof(long).
- If there is too many fprobe exit handler set on the same
function, it will fail to probe.
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Florent Revest <revest@chromium.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: bpf <bpf@vger.kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Alan Maguire <alan.maguire@oracle.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Naveen N Rao <naveen@kernel.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/173519003970.391279.14406792285453830996.stgit@devnote2
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Add CONFIG_HAVE_FTRACE_GRAPH_FUNC kconfig in addition to ftrace_graph_func
macro check. This is for the other feature (e.g. FPROBE) which requires to
access ftrace_regs from fgraph_ops::entryfunc() can avoid compiling if
the fgraph can not pass the valid ftrace_regs.
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Florent Revest <revest@chromium.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: bpf <bpf@vger.kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Alan Maguire <alan.maguire@oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Naveen N Rao <naveen@kernel.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/173519001472.391279.1174901685282588467.stgit@devnote2
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Enable kprobe_multi feature if CONFIG_FPROBE is enabled. The pt_regs is
converted from ftrace_regs by ftrace_partial_regs(), thus some registers
may always returns 0. But it should be enough for function entry (access
arguments) and exit (access return value).
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: bpf <bpf@vger.kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Alan Maguire <alan.maguire@oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/173519000417.391279.14011193569589886419.stgit@devnote2
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Florent Revest <revest@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Allow fprobe events to be enabled with CONFIG_DYNAMIC_FTRACE_WITH_ARGS.
With this change, fprobe events mostly use ftrace_regs instead of pt_regs.
Note that if the arch doesn't enable HAVE_FTRACE_REGS_HAVING_PT_REGS,
fprobe events will not be able to be used from perf.
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Florent Revest <revest@chromium.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: bpf <bpf@vger.kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Alan Maguire <alan.maguire@oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/173518999352.391279.13332699755290175168.stgit@devnote2
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Change the fprobe exit handler to use ftrace_regs structure instead of
pt_regs. This also introduce HAVE_FTRACE_REGS_HAVING_PT_REGS which
means the ftrace_regs is including the pt_regs so that ftrace_regs
can provide pt_regs without memory allocation.
Fprobe introduces a new dependency with that.
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com> # s390
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Florent Revest <revest@chromium.org>
Cc: bpf <bpf@vger.kernel.org>
Cc: Alan Maguire <alan.maguire@oracle.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Song Liu <song@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: KP Singh <kpsingh@kernel.org>
Cc: Matt Bobrowski <mattbobrowski@google.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Eduard Zingerman <eddyz87@gmail.com>
Cc: Yonghong Song <yonghong.song@linux.dev>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: Stanislav Fomichev <sdf@fomichev.me>
Cc: Hao Luo <haoluo@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/173518995092.391279.6765116450352977627.stgit@devnote2
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
This allows fprobes to be available with CONFIG_DYNAMIC_FTRACE_WITH_ARGS
instead of CONFIG_DYNAMIC_FTRACE_WITH_REGS, then we can enable fprobe
on arm64.
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: bpf <bpf@vger.kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Alan Maguire <alan.maguire@oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/173518994037.391279.2786805566359674586.stgit@devnote2
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Florent Revest <revest@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Pass ftrace_regs to the fgraph_ops::retfunc(). If ftrace_regs is not
available, it passes a NULL instead. User callback function can access
some registers (including return address) via this ftrace_regs.
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Florent Revest <revest@chromium.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: bpf <bpf@vger.kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Alan Maguire <alan.maguire@oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/173518992972.391279.14055405490327765506.stgit@devnote2
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Pass ftrace_regs to the fgraph_ops::entryfunc(). If ftrace_regs is not
available, it passes a NULL instead. User callback function can access
some registers (including return address) via this ftrace_regs.
Note that the ftrace_regs can be NULL when the arch does NOT define:
HAVE_DYNAMIC_FTRACE_WITH_ARGS or HAVE_DYNAMIC_FTRACE_WITH_REGS.
More specifically, if HAVE_DYNAMIC_FTRACE_WITH_REGS is defined but
not the HAVE_DYNAMIC_FTRACE_WITH_ARGS, and the ftrace ops used to
register the function callback does not set FTRACE_OPS_FL_SAVE_REGS.
In this case, ftrace_regs can be NULL in user callback.
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Florent Revest <revest@chromium.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: bpf <bpf@vger.kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Alan Maguire <alan.maguire@oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Naveen N Rao <naveen@kernel.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/173518990044.391279.17406984900626078579.stgit@devnote2
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Get the ftrace recursion lock in the generic function_graph_enter()
instead of each architecture code.
This changes all function_graph tracer callbacks running in
non-preemptive state. On x86 and powerpc, this is by default, but
on the other architecutres, this will be new.
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Florent Revest <revest@chromium.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: bpf <bpf@vger.kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Alan Maguire <alan.maguire@oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Naveen N Rao <naveen@kernel.org>
Cc: Madhavan Srinivasan <maddy@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/173379653720.973433.18438622234884980494.stgit@devnote2
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
There are a few functions in ftrace.c that have "goto out" or equivalent
on error in order to release locks that were taken. This can be error
prone or just simply make the code more complex.
Switch every location that ends with unlocking a mutex on error over to
using the guard(mutex)() infrastructure to let the compiler worry about
releasing locks. This makes the code easier to read and understand.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/20241223184941.718001540@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
There are some goto jumps to exit a program to just return a value. The
code after the label doesn't free anything nor does it do any unlocks. It
simply returns the variable that was set before the jump.
Remove these unneeded goto jumps.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/20241223184941.544855549@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
A recent change added return 0 before an existing return statement
at the end of function blk_trace_setup. The final return is now
redundant, so remove it.
Fixes: 64d124798244 ("blktrace: move copy_[to|from]_user() out of ->debugfs_lock")
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Link: https://lore.kernel.org/r/20241204150450.399005-1-colin.i.king@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Call each handler directly and the handler do grab q->debugfs_mutex,
prepare for killing dependency between ->debug_mutex and ->mmap_lock.
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Link: https://lore.kernel.org/r/20241128125029.4152292-2-ming.lei@redhat.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Make sure the trace_kprobe's module notifer callback function is called
after jump_label's callback is called. Since the trace_kprobe's callback
eventually checks jump_label address during registering new kprobe on
the loading module, jump_label must be updated before this registration
happens.
Link: https://lore.kernel.org/all/173387585556.995044.3157941002975446119.stgit@devnote2/
Fixes: 6142431810 ("tracing/kprobes: Support module init function probing")
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
- Fix possible overflow of mmapped ring buffer with bad offset
If the mmap() to the ring buffer passes in a start address that
is passed the end of the mmapped file, it is not caught and
a slab-out-of-bounds is triggered.
Add a check to make sure the start address is within the bounds
- Do not use TP_printk() to boot mapped ring buffers
As a boot mapped ring buffer's data may have pointers that map to
the previous boot's memory map, it is unsafe to allow the TP_printk()
to be used to read the boot mapped buffer's events. If a TP_printk()
points to a static string from within the kernel it will not match
the current kernel mapping if KASLR is active, and it can fault.
Have it simply print out the raw fields.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZ2QuXRQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qncvAQDf2s2WWsy4pYp2mpRtBXvAPf6tpBdi
J9eceJQbwJVJHAEApQjEFfbUxLh2WgPU1Cn++PwDA+NLiru70+S0vtDLWwE=
=OI+v
-----END PGP SIGNATURE-----
Merge tag 'trace-ringbuffer-v6.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull ring-buffer fixes from Steven Rostedt:
- Fix possible overflow of mmapped ring buffer with bad offset
If the mmap() to the ring buffer passes in a start address that is
passed the end of the mmapped file, it is not caught and a
slab-out-of-bounds is triggered.
Add a check to make sure the start address is within the bounds
- Do not use TP_printk() to boot mapped ring buffers
As a boot mapped ring buffer's data may have pointers that map to the
previous boot's memory map, it is unsafe to allow the TP_printk() to
be used to read the boot mapped buffer's events. If a TP_printk()
points to a static string from within the kernel it will not match
the current kernel mapping if KASLR is active, and it can fault.
Have it simply print out the raw fields.
* tag 'trace-ringbuffer-v6.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
trace/ring-buffer: Do not use TP_printk() formatting for boot mapped buffers
ring-buffer: Fix overflow in __rb_map_vma
The TP_printk() of a TRACE_EVENT() is a generic printf format that any
developer can create for their event. It may include pointers to strings
and such. A boot mapped buffer may contain data from a previous kernel
where the strings addresses are different.
One solution is to copy the event content and update the pointers by the
recorded delta, but a simpler solution (for now) is to just use the
print_fields() function to print these events. The print_fields() function
just iterates the fields and prints them according to what type they are,
and ignores the TP_printk() format from the event itself.
To understand the difference, when printing via TP_printk() the output
looks like this:
4582.696626: kmem_cache_alloc: call_site=getname_flags+0x47/0x1f0 ptr=00000000e70e10e0 bytes_req=4096 bytes_alloc=4096 gfp_flags=GFP_KERNEL node=-1 accounted=false
4582.696629: kmem_cache_alloc: call_site=alloc_empty_file+0x6b/0x110 ptr=0000000095808002 bytes_req=360 bytes_alloc=384 gfp_flags=GFP_KERNEL node=-1 accounted=false
4582.696630: kmem_cache_alloc: call_site=security_file_alloc+0x24/0x100 ptr=00000000576339c3 bytes_req=16 bytes_alloc=16 gfp_flags=GFP_KERNEL|__GFP_ZERO node=-1 accounted=false
4582.696653: kmem_cache_free: call_site=do_sys_openat2+0xa7/0xd0 ptr=00000000e70e10e0 name=names_cache
But when printing via print_fields() (echo 1 > /sys/kernel/tracing/options/fields)
the same event output looks like this:
4582.696626: kmem_cache_alloc: call_site=0xffffffff92d10d97 (-1831793257) ptr=0xffff9e0e8571e000 (-107689771147264) bytes_req=0x1000 (4096) bytes_alloc=0x1000 (4096) gfp_flags=0xcc0 (3264) node=0xffffffff (-1) accounted=(0)
4582.696629: kmem_cache_alloc: call_site=0xffffffff92d0250b (-1831852789) ptr=0xffff9e0e8577f800 (-107689770747904) bytes_req=0x168 (360) bytes_alloc=0x180 (384) gfp_flags=0xcc0 (3264) node=0xffffffff (-1) accounted=(0)
4582.696630: kmem_cache_alloc: call_site=0xffffffff92efca74 (-1829778828) ptr=0xffff9e0e8d35d3b0 (-107689640864848) bytes_req=0x10 (16) bytes_alloc=0x10 (16) gfp_flags=0xdc0 (3520) node=0xffffffff (-1) accounted=(0)
4582.696653: kmem_cache_free: call_site=0xffffffff92cfbea7 (-1831879001) ptr=0xffff9e0e8571e000 (-107689771147264) name=names_cache
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241218141507.28389a1d@gandalf.local.home
Fixes: 07714b4bb3 ("tracing: Handle old buffer mappings for event strings and functions")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
- Replace trace_check_vprintf() with test_event_printk() and ignore_event()
The function test_event_printk() checks on boot up if the trace event
printf() formats dereference any pointers, and if they do, it then looks
at the arguments to make sure that the pointers they dereference will
exist in the event on the ring buffer. If they do not, it issues a
WARN_ON() as it is a likely bug.
But this isn't the case for the strings that can be dereferenced with
"%s", as some trace events (notably RCU and some IPI events) save
a pointer to a static string in the ring buffer. As the string it
points to lives as long as the kernel is running, it is not a bug
to reference it, as it is guaranteed to be there when the event is read.
But it is also possible (and a common bug) to point to some allocated
string that could be freed before the trace event is read and the
dereference is to bad memory. This case requires a run time check.
The previous way to handle this was with trace_check_vprintf() that would
process the printf format piece by piece and send what it didn't care
about to vsnprintf() to handle arguments that were not strings. This
kept it from having to reimplement vsnprintf(). But it relied on va_list
implementation and for architectures that copied the va_list and did
not pass it by reference, it wasn't even possible to do this check and
it would be skipped. As 64bit x86 passed va_list by reference, most
events were tested and this kept out bugs where strings would have been
dereferenced after being freed.
Instead of relying on the implementation of va_list, extend the boot up
test_event_printk() function to validate all the "%s" strings that
can be validated at boot, and for the few events that point to strings
outside the ring buffer, flag both the event and the field that is
dereferenced as "needs_test". Then before the event is printed, a call
to ignore_event() is made, and if the event has the flag set, it iterates
all its fields and for every field that is to be tested, it will read
the pointer directly from the event in the ring buffer and make sure
that it is valid. If the pointer is not valid, it will print a WARN_ON(),
print out to the trace that the event has unsafe memory and ignore
the print format.
With this new update, the trace_check_vprintf() can be safely removed
and now all events can be verified regardless of architecture.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZ2IqiRQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qlfgAP9hJFl6zhA5GGRo905G9JWFHkbNNjgp
WfQ0oMU2Eo1q+AEAmb5d3wWfWJAa+AxiiDNeZ28En/+ZbmjhSe6fPpR4egU=
=LRKi
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing fixes from Steven Rostedt:
"Replace trace_check_vprintf() with test_event_printk() and
ignore_event()
The function test_event_printk() checks on boot up if the trace event
printf() formats dereference any pointers, and if they do, it then
looks at the arguments to make sure that the pointers they dereference
will exist in the event on the ring buffer. If they do not, it issues
a WARN_ON() as it is a likely bug.
But this isn't the case for the strings that can be dereferenced with
"%s", as some trace events (notably RCU and some IPI events) save a
pointer to a static string in the ring buffer. As the string it points
to lives as long as the kernel is running, it is not a bug to
reference it, as it is guaranteed to be there when the event is read.
But it is also possible (and a common bug) to point to some allocated
string that could be freed before the trace event is read and the
dereference is to bad memory. This case requires a run time check.
The previous way to handle this was with trace_check_vprintf() that
would process the printf format piece by piece and send what it didn't
care about to vsnprintf() to handle arguments that were not strings.
This kept it from having to reimplement vsnprintf(). But it relied on
va_list implementation and for architectures that copied the va_list
and did not pass it by reference, it wasn't even possible to do this
check and it would be skipped. As 64bit x86 passed va_list by
reference, most events were tested and this kept out bugs where
strings would have been dereferenced after being freed.
Instead of relying on the implementation of va_list, extend the boot
up test_event_printk() function to validate all the "%s" strings that
can be validated at boot, and for the few events that point to strings
outside the ring buffer, flag both the event and the field that is
dereferenced as "needs_test". Then before the event is printed, a call
to ignore_event() is made, and if the event has the flag set, it
iterates all its fields and for every field that is to be tested, it
will read the pointer directly from the event in the ring buffer and
make sure that it is valid. If the pointer is not valid, it will print
a WARN_ON(), print out to the trace that the event has unsafe memory
and ignore the print format.
With this new update, the trace_check_vprintf() can be safely removed
and now all events can be verified regardless of architecture"
* tag 'trace-v6.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing: Check "%s" dereference via the field and not the TP_printk format
tracing: Add "%s" check in test_event_printk()
tracing: Add missing helper functions in event pointer dereference check
tracing: Fix test_event_printk() to process entire print argument
The TP_printk() portion of a trace event is executed at the time a event
is read from the trace. This can happen seconds, minutes, hours, days,
months, years possibly later since the event was recorded. If the print
format contains a dereference to a string via "%s", and that string was
allocated, there's a chance that string could be freed before it is read
by the trace file.
To protect against such bugs, there are two functions that verify the
event. The first one is test_event_printk(), which is called when the
event is created. It reads the TP_printk() format as well as its arguments
to make sure nothing may be dereferencing a pointer that was not copied
into the ring buffer along with the event. If it is, it will trigger a
WARN_ON().
For strings that use "%s", it is not so easy. The string may not reside in
the ring buffer but may still be valid. Strings that are static and part
of the kernel proper which will not be freed for the life of the running
system, are safe to dereference. But to know if it is a pointer to a
static string or to something on the heap can not be determined until the
event is triggered.
This brings us to the second function that tests for the bad dereferencing
of strings, trace_check_vprintf(). It would walk through the printf format
looking for "%s", and when it finds it, it would validate that the pointer
is safe to read. If not, it would produces a WARN_ON() as well and write
into the ring buffer "[UNSAFE-MEMORY]".
The problem with this is how it used va_list to have vsnprintf() handle
all the cases that it didn't need to check. Instead of re-implementing
vsnprintf(), it would make a copy of the format up to the %s part, and
call vsnprintf() with the current va_list ap variable, where the ap would
then be ready to point at the string in question.
For architectures that passed va_list by reference this was possible. For
architectures that passed it by copy it was not. A test_can_verify()
function was used to differentiate between the two, and if it wasn't
possible, it would disable it.
Even for architectures where this was feasible, it was a stretch to rely
on such a method that is undocumented, and could cause issues later on
with new optimizations of the compiler.
Instead, the first function test_event_printk() was updated to look at
"%s" as well. If the "%s" argument is a pointer outside the event in the
ring buffer, it would find the field type of the event that is the problem
and mark the structure with a new flag called "needs_test". The event
itself will be marked by TRACE_EVENT_FL_TEST_STR to let it be known that
this event has a field that needs to be verified before the event can be
printed using the printf format.
When the event fields are created from the field type structure, the
fields would copy the field type's "needs_test" value.
Finally, before being printed, a new function ignore_event() is called
which will check if the event has the TEST_STR flag set (if not, it
returns false). If the flag is set, it then iterates through the events
fields looking for the ones that have the "needs_test" flag set.
Then it uses the offset field from the field structure to find the pointer
in the ring buffer event. It runs the tests to make sure that pointer is
safe to print and if not, it triggers the WARN_ON() and also adds to the
trace output that the event in question has an unsafe memory access.
The ignore_event() makes the trace_check_vprintf() obsolete so it is
removed.
Link: https://lore.kernel.org/all/CAHk-=wh3uOnqnZPpR0PeLZZtyWbZLboZ7cHLCKRWsocvs9Y7hQ@mail.gmail.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241217024720.848621576@goodmis.org
Fixes: 5013f454a3 ("tracing: Add check of trace event print fmts for dereferencing pointers")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The test_event_printk() code makes sure that when a trace event is
registered, any dereferenced pointers in from the event's TP_printk() are
pointing to content in the ring buffer. But currently it does not handle
"%s", as there's cases where the string pointer saved in the ring buffer
points to a static string in the kernel that will never be freed. As that
is a valid case, the pointer needs to be checked at runtime.
Currently the runtime check is done via trace_check_vprintf(), but to not
have to replicate everything in vsnprintf() it does some logic with the
va_list that may not be reliable across architectures. In order to get rid
of that logic, more work in the test_event_printk() needs to be done. Some
of the strings can be validated at this time when it is obvious the string
is valid because the string will be saved in the ring buffer content.
Do all the validation of strings in the ring buffer at boot in
test_event_printk(), and make sure that the field of the strings that
point into the kernel are accessible. This will allow adding checks at
runtime that will validate the fields themselves and not rely on paring
the TP_printk() format at runtime.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241217024720.685917008@goodmis.org
Fixes: 5013f454a3 ("tracing: Add check of trace event print fmts for dereferencing pointers")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The process_pointer() helper function looks to see if various trace event
macros are used. These macros are for storing data in the event. This
makes it safe to dereference as the dereference will then point into the
event on the ring buffer where the content of the data stays with the
event itself.
A few helper functions were missing. Those were:
__get_rel_dynamic_array()
__get_dynamic_array_len()
__get_rel_dynamic_array_len()
__get_rel_sockaddr()
Also add a helper function find_print_string() to not need to use a middle
man variable to test if the string exists.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241217024720.521836792@goodmis.org
Fixes: 5013f454a3 ("tracing: Add check of trace event print fmts for dereferencing pointers")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The test_event_printk() analyzes print formats of trace events looking for
cases where it may dereference a pointer that is not in the ring buffer
which can possibly be a bug when the trace event is read from the ring
buffer and the content of that pointer no longer exists.
The function needs to accurately go from one print format argument to the
next. It handles quotes and parenthesis that may be included in an
argument. When it finds the start of the next argument, it uses a simple
"c = strstr(fmt + i, ',')" to find the end of that argument!
In order to include "%s" dereferencing, it needs to process the entire
content of the print format argument and not just the content of the first
',' it finds. As there may be content like:
({ const char *saved_ptr = trace_seq_buffer_ptr(p); static const char
*access_str[] = { "---", "--x", "w--", "w-x", "-u-", "-ux", "wu-", "wux"
}; union kvm_mmu_page_role role; role.word = REC->role;
trace_seq_printf(p, "sp gen %u gfn %llx l%u %u-byte q%u%s %s%s" " %snxe
%sad root %u %s%c", REC->mmu_valid_gen, REC->gfn, role.level,
role.has_4_byte_gpte ? 4 : 8, role.quadrant, role.direct ? " direct" : "",
access_str[role.access], role.invalid ? " invalid" : "", role.efer_nx ? ""
: "!", role.ad_disabled ? "!" : "", REC->root_count, REC->unsync ?
"unsync" : "sync", 0); saved_ptr; })
Which is an example of a full argument of an existing event. As the code
already handles finding the next print format argument, process the
argument at the end of it and not the start of it. This way it has both
the start of the argument as well as the end of it.
Add a helper function "process_pointer()" that will do the processing during
the loop as well as at the end. It also makes the code cleaner and easier
to read.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241217024720.362271189@goodmis.org
Fixes: 5013f454a3 ("tracing: Add check of trace event print fmts for dereferencing pointers")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
When function tracing and function graph tracing are both enabled (in
different instances) the "parent" of some of the function tracing events
is "return_to_handler" which is the trampoline used by function graph
tracing. To fix this, ftrace_get_true_parent_ip() was introduced that
returns the "true" parent ip instead of the trampoline.
To do this, the ftrace_regs_get_stack_pointer() is used, which uses
kernel_stack_pointer(). The problem is that microblaze does not implement
kerenl_stack_pointer() so when function graph tracing is enabled, the
build fails. But microblaze also does not enabled HAVE_DYNAMIC_FTRACE_WITH_ARGS.
That option has to be enabled by the architecture to reliably get the
values from the fregs parameter passed in. When that config is not set,
the architecture can also pass in NULL, which is not tested for in that
function and could cause the kernel to crash.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Jeff Xie <jeff.xie@linux.dev>
Link: https://lore.kernel.org/20241216164633.6df18e87@gandalf.local.home
Fixes: 60b1f578b5 ("ftrace: Get the true parent ip for function tracer")
Reported-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
A bug was discovered where the idle shadow stacks were not initialized
for offline CPUs when starting function graph tracer, and when they came
online they were not traced due to the missing shadow stack. To fix
this, the idle task shadow stack initialization was moved to using the
CPU hotplug callbacks. But it removed the initialization when the
function graph was enabled. The problem here is that the hotplug
callbacks are called when the CPUs come online, but the idle shadow
stack initialization only happens if function graph is currently
active. This caused the online CPUs to not get their shadow stack
initialized.
The idle shadow stack initialization still needs to be done when the
function graph is registered, as they will not be allocated if function
graph is not registered.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Link: https://lore.kernel.org/20241211135335.094ba282@batman.local.home
Fixes: 2c02f7375e ("fgraph: Use CPU hotplug mechanism to initialize idle shadow stacks")
Reported-by: Linus Walleij <linus.walleij@linaro.org>
Tested-by: Linus Walleij <linus.walleij@linaro.org>
Closes: https://lore.kernel.org/all/CACRpkdaTBrHwRbbrphVy-=SeDz6MSsXhTKypOtLrTQ+DgGAOcQ@mail.gmail.com/
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
- Fix a bug in the BPF verifier to track changes to packet data
property for global functions (Eduard Zingerman)
- Fix a theoretical BPF prog_array use-after-free in RCU handling
of __uprobe_perf_func (Jann Horn)
- Fix BPF tracing to have an explicit list of tracepoints and
their arguments which need to be annotated as PTR_MAYBE_NULL
(Kumar Kartikeya Dwivedi)
- Fix a logic bug in the bpf_remove_insns code where a potential
error would have been wrongly propagated (Anton Protopopov)
- Avoid deadlock scenarios caused by nested kprobe and fentry
BPF programs (Priya Bala Govindasamy)
- Fix a bug in BPF verifier which was missing a size check for
BTF-based context access (Kumar Kartikeya Dwivedi)
- Fix a crash found by syzbot through an invalid BPF prog_array
access in perf_event_detach_bpf_prog (Jiri Olsa)
- Fix several BPF sockmap bugs including a race causing a
refcount imbalance upon element replace (Michal Luczaj)
- Fix a use-after-free from mismatching BPF program/attachment
RCU flavors (Jann Horn)
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
-----BEGIN PGP SIGNATURE-----
iIsEABYKADMWIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZ13rdhUcZGFuaWVsQGlv
Z2VhcmJveC5uZXQACgkQ2yufC7HISINfqAD7B2vX6EgTFrgy7QDepQnZsmu2qjdW
fFUzPatFXXp2S3MA/16vOEoHJ4rRhBkcUK/vw3gyY5j5bYZNUTTaam5l4BcM
=gkfb
-----END PGP SIGNATURE-----
Merge tag 'bpf-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Pull bpf fixes from Daniel Borkmann:
- Fix a bug in the BPF verifier to track changes to packet data
property for global functions (Eduard Zingerman)
- Fix a theoretical BPF prog_array use-after-free in RCU handling of
__uprobe_perf_func (Jann Horn)
- Fix BPF tracing to have an explicit list of tracepoints and their
arguments which need to be annotated as PTR_MAYBE_NULL (Kumar
Kartikeya Dwivedi)
- Fix a logic bug in the bpf_remove_insns code where a potential error
would have been wrongly propagated (Anton Protopopov)
- Avoid deadlock scenarios caused by nested kprobe and fentry BPF
programs (Priya Bala Govindasamy)
- Fix a bug in BPF verifier which was missing a size check for
BTF-based context access (Kumar Kartikeya Dwivedi)
- Fix a crash found by syzbot through an invalid BPF prog_array access
in perf_event_detach_bpf_prog (Jiri Olsa)
- Fix several BPF sockmap bugs including a race causing a refcount
imbalance upon element replace (Michal Luczaj)
- Fix a use-after-free from mismatching BPF program/attachment RCU
flavors (Jann Horn)
* tag 'bpf-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf: (23 commits)
bpf: Avoid deadlock caused by nested kprobe and fentry bpf programs
selftests/bpf: Add tests for raw_tp NULL args
bpf: Augment raw_tp arguments with PTR_MAYBE_NULL
bpf: Revert "bpf: Mark raw_tp arguments with PTR_MAYBE_NULL"
selftests/bpf: Add test for narrow ctx load for pointer args
bpf: Check size for BTF-based ctx access of pointer members
selftests/bpf: extend changes_pkt_data with cases w/o subprograms
bpf: fix null dereference when computing changes_pkt_data of prog w/o subprogs
bpf: Fix theoretical prog_array UAF in __uprobe_perf_func()
bpf: fix potential error return
selftests/bpf: validate that tail call invalidates packet pointers
bpf: consider that tail calls invalidate packet pointers
selftests/bpf: freplace tests for tracking of changes_packet_data
bpf: check changes_pkt_data property for extension programs
selftests/bpf: test for changing packet data from global functions
bpf: track changes_pkt_data property for global functions
bpf: refactor bpf_helper_changes_pkt_data to use helper number
bpf: add find_containing_subprog() utility function
bpf,perf: Fix invalid prog_array access in perf_event_detach_bpf_prog
bpf: Fix UAF via mismatching bpf_prog/attachment RCU flavors
...