This commit uses rtp->name instead of __func__ and outputs the value
of rcu_task_cb_adjust, thus reducing console-log output.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The ->lazy_len is only checked locklessly. Recheck again under the
->nocb_lock to avoid spending more time on flushing/waking if not
necessary. The ->lazy_len can still increment concurrently (from 1 to
infinity) but under the ->nocb_lock we at least know for sure if there
are lazy callbacks at all (->lazy_len > 0).
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The shrinker resets the lazy callbacks counter in order to trigger the
pending lazy queue flush though the rcuog kthread. The counter reset is
protected by the ->nocb_lock against concurrent accesses...except
for one of them. Here is a list of existing synchronized readers/writer:
1) The first lazy enqueuer (incrementing ->lazy_len to 1) does so under
->nocb_lock and ->nocb_bypass_lock.
2) The further lazy enqueuers (incrementing ->lazy_len above 1) do so
under ->nocb_bypass_lock _only_.
3) The lazy flush checks and resets to 0 under ->nocb_lock and
->nocb_bypass_lock.
The shrinker protects its ->lazy_len reset against cases 1) and 3) but
not against 2). As such, setting ->lazy_len to 0 under the ->nocb_lock
may be cancelled right away by an overwrite from an enqueuer, leading
rcuog to ignore the flush.
To avoid that, use the proper bypass flush API which takes care of all
those details.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The shrinker may run concurrently with callbacks (de-)offloading. As
such, calling rcu_nocb_lock() is very dangerous because it does a
conditional locking. The worst outcome is that rcu_nocb_lock() doesn't
lock but rcu_nocb_unlock() eventually unlocks, or the reverse, creating
an imbalance.
Fix this with protecting against (de-)offloading using the barrier mutex.
Although if the barrier mutex is contended, which should be rare, then
step aside so as not to trigger a mutex VS allocation
dependency chain.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
If the rcutree.rcu_min_cached_objs kernel boot parameter is set to zero,
then krcp->page_cache_work will never be triggered to fill page cache.
In addition, the put_cached_bnode() will not fill page cache. As a
result krcp->bkvcache will always be empty, so there is no need to acquire
krcp->lock to get page from krcp->bkvcache. This commit therefore makes
drain_page_cache() return immediately if the rcu_min_cached_objs is zero.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
When the fill_page_cache_func() function is invoked, it assumes that
the cache of pages is completely empty. However, there can be some time
between triggering execution of this function and its actual invocation.
During this time, kfree_rcu_work() might run, and might fill in part or
all of this cache of pages, thus invalidating the fill_page_cache_func()
function's assumption.
This will not overfill the cache because put_cached_bnode() will reject
the extra page. However, it will result in a needless allocation and
freeing of one extra page, which might not be helpful under lowish-memory
conditions.
This commit therefore causes the fill_page_cache_func() to explicitly
account for pages that have been placed into the cache shortly before
it starts running.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
By default the cache size is 5 pages per CPU, but it can be disabled at
boot time by setting the rcu_min_cached_objs to zero. When that happens,
the current code will uselessly set an hrtimer to schedule refilling this
cache with zero pages. This commit therefore streamlines this process
by simply refusing the set the hrtimer when rcu_min_cached_objs is zero.
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The add_ptr_to_bulk_krc_lock() function is invoked to allocate a new
kfree_rcu() page, also known as a kvfree_rcu_bulk_data structure.
The kfree_rcu_cpu structure's lock is used to protect this operation,
except that this lock must be momentarily dropped when allocating memory.
It is clearly important that the lock that is reacquired be the same
lock that was acquired initially via krc_this_cpu_lock().
Unfortunately, this same krc_this_cpu_lock() function is used to
re-acquire this lock, and if the task migrated to some other CPU during
the memory allocation, this will result in the kvfree_rcu_bulk_data
structure being added to the wrong CPU's kfree_rcu_cpu structure.
This commit therefore replaces that second call to krc_this_cpu_lock()
with raw_spin_lock_irqsave() in order to explicitly acquire the lock on
the correct kfree_rcu_cpu structure, thus keeping things straight even
when the task migrates.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
If kvfree_rcu_bulk() sees that the required grace period has failed to
elapse, it leaks the memory because readers might still be using it.
But in that case, the debug-objects subsystem still marks the relevant
structures as having been freed, even though they are instead being
leaked.
This commit fixes this mismatch by invoking debug_rcu_bhead_unqueue()
only when we are actually going to free the objects.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Under low-memory conditions, kvfree_rcu() will use each object's
rcu_head structure to queue objects in a singly linked list headed by
the kfree_rcu_cpu structure's ->head field. This list is passed to
call_rcu() as a unit, but there is no indication of which grace period
this list needs to wait for. This in turn prevents adding debug checks
in the kfree_rcu_work() as was done for the two page-of-pointers channels
in the kfree_rcu_cpu structure.
This commit therefore adds a ->head_free_gp_snap field to the
kfree_rcu_cpu_work structure to record this grace-period number. It also
adds a WARN_ON_ONCE() to kfree_rcu_monitor() that checks to make sure
that the required grace period has in fact elapsed.
[ paulmck: Fix kerneldoc issue raised by Stephen Rothwell. ]
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit adds debugging checks to verify that the required RCU
grace period has elapsed for each kvfree_rcu_bulk_data structure that
arrives at the kvfree_rcu_bulk() function. These checks make use
of that structure's ->gp_snap field, which has been upgraded from an
unsigned long to an rcu_gp_oldstate structure. This upgrade reduces
the chances of false positives to nearly zero, even on 32-bit systems,
for which this structure carries 64 bits of state.
Cc: Ziwei Dai <ziwei.dai@unisoc.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This reverts the following commits:
4cd13c21b2 ("softirq: Let ksoftirqd do its job")
3c53776e29 ("Mark HI and TASKLET softirq synchronous")
1342d8080f ("softirq: Don't skip softirq execution when softirq thread is parking")
in a single change to avoid known bad intermediate states introduced by a
patch series reverting them individually.
Due to the mentioned commit, when the ksoftirqd threads take charge of
softirq processing, the system can experience high latencies.
In the past a few workarounds have been implemented for specific
side-effects of the initial ksoftirqd enforcement commit:
commit 1ff688209e ("watchdog: core: make sure the watchdog_worker is not deferred")
commit 8d5755b3f7 ("watchdog: softdog: fire watchdog even if softirqs do not get to run")
commit 217f697436 ("net: busy-poll: allow preemption in sk_busy_loop()")
commit 3c53776e29 ("Mark HI and TASKLET softirq synchronous")
But the latency problem still exists in real-life workloads, see the link
below.
The reverted commit intended to solve a live-lock scenario that can now be
addressed with the NAPI threaded mode, introduced with commit 29863d41bb
("net: implement threaded-able napi poll loop support"), which is nowadays
in a pretty stable status.
While a complete solution to put softirq processing under nice resource
control would be preferable, that has proven to be a very hard task. In
the short term, remove the main pain point, and also simplify a bit the
current softirq implementation.
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jason Xing <kerneljasonxing@gmail.com>
Reviewed-by: Jakub Kicinski <kuba@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: netdev@vger.kernel.org
Link: https://lore.kernel.org/netdev/305d7742212cbe98621b16be782b0562f1012cb6.camel@redhat.com
Link: https://lore.kernel.org/r/57e66b364f1b6f09c9bc0316742c3b14f4ce83bd.1683526542.git.pabeni@redhat.com
The current queue_work_on() docbook comment says that the caller must
ensure that the specified CPU can't go away, and further says that the
penalty for failing to nail down the specified CPU is that the workqueue
handler might find itself executing on some other CPU. This is true
as far as it goes, but fails to note what happens if the specified CPU
never was online. Therefore, further expand this comment to say that
specifying a CPU that was never online will result in a splat.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
cpuset_can_attach() can fail. Postpone DL BW allocation until all tasks
have been checked. DL BW is not allocated per-task but as a sum over
all DL tasks migrating.
If multiple controllers are attached to the cgroup next to the cpuset
controller a non-cpuset can_attach() can fail. In this case free DL BW
in cpuset_cancel_attach().
Finally, update cpuset DL task count (nr_deadline_tasks) only in
cpuset_attach().
Suggested-by: Waiman Long <longman@redhat.com>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
While moving a set of tasks between exclusive cpusets,
cpuset_can_attach() -> task_can_attach() calls dl_cpu_busy(..., p) for
DL BW overflow checking and per-task DL BW allocation on the destination
root_domain for the DL tasks in this set.
This approach has the issue of not freeing already allocated DL BW in
the following error cases:
(1) The set of tasks includes multiple DL tasks and DL BW overflow
checking fails for one of the subsequent DL tasks.
(2) Another controller next to the cpuset controller which is attached
to the same cgroup fails in its can_attach().
To address this problem rework dl_cpu_busy():
(1) Split it into dl_bw_check_overflow() & dl_bw_alloc() and add a
dedicated dl_bw_free().
(2) dl_bw_alloc() & dl_bw_free() take a `u64 dl_bw` parameter instead of
a `struct task_struct *p` used in dl_cpu_busy(). This allows to
allocate DL BW for a set of tasks too rather than only for a single
task.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
update_tasks_root_domain currently iterates over all tasks even if no
DEADLINE task is present on the cpuset/root domain for which bandwidth
accounting is being rebuilt. This has been reported to introduce 10+ ms
delays on suspend-resume operations.
Skip the costly iteration for cpusets that don't contain DEADLINE tasks.
Reported-by: Qais Yousef <qyousef@layalina.io>
Link: https://lore.kernel.org/lkml/20230206221428.2125324-1-qyousef@layalina.io/
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Qais reported that iterating over all tasks when rebuilding root domains
for finding out which ones are DEADLINE and need their bandwidth
correctly restored on such root domains can be a costly operation (10+
ms delays on suspend-resume).
To fix the problem keep track of the number of DEADLINE tasks belonging
to each cpuset and then use this information (followup patch) to only
perform the above iteration if DEADLINE tasks are actually present in
the cpuset for which a corresponding root domain is being rebuilt.
Reported-by: Qais Yousef <qyousef@layalina.io>
Link: https://lore.kernel.org/lkml/20230206221428.2125324-1-qyousef@layalina.io/
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Turns out percpu_cpuset_rwsem - commit 1243dc518c ("cgroup/cpuset:
Convert cpuset_mutex to percpu_rwsem") - wasn't such a brilliant idea,
as it has been reported to cause slowdowns in workloads that need to
change cpuset configuration frequently and it is also not implementing
priority inheritance (which causes troubles with realtime workloads).
Convert percpu_cpuset_rwsem back to regular cpuset_mutex. Also grab it
only for SCHED_DEADLINE tasks (other policies don't care about stable
cpusets anyway).
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
rebuild_root_domains() and update_tasks_root_domain() have neutral
names, but actually deal with DEADLINE bandwidth accounting.
Rename them to use 'dl_' prefix so that intent is more clear.
No functional change.
Suggested-by: Qais Yousef <qyousef@layalina.io>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
When a tick broadcast clockevent device is initialized for one shot mode
then tick_broadcast_setup_oneshot() OR's the periodic broadcast mode
cpumask into the oneshot broadcast cpumask.
This is required when switching from periodic broadcast mode to oneshot
broadcast mode to ensure that CPUs which are waiting for periodic
broadcast are woken up on the next tick.
But it is subtly broken, when an active broadcast device is replaced and
the system is already in oneshot (NOHZ/HIGHRES) mode. Victor observed
this and debugged the issue.
Then the OR of the periodic broadcast CPU mask is wrong as the periodic
cpumask bits are sticky after tick_broadcast_enable() set it for a CPU
unless explicitly cleared via tick_broadcast_disable().
That means that this sets all other CPUs which have tick broadcasting
enabled at that point unconditionally in the oneshot broadcast mask.
If the affected CPUs were already idle and had their bits set in the
oneshot broadcast mask then this does no harm. But for non idle CPUs
which were not set this corrupts their state.
On their next invocation of tick_broadcast_enable() they observe the bit
set, which indicates that the broadcast for the CPU is already set up.
As a consequence they fail to update the broadcast event even if their
earliest expiring timer is before the actually programmed broadcast
event.
If the programmed broadcast event is far in the future, then this can
cause stalls or trigger the hung task detector.
Avoid this by telling tick_broadcast_setup_oneshot() explicitly whether
this is the initial switch over from periodic to oneshot broadcast which
must take the periodic broadcast mask into account. In the case of
initialization of a replacement device this prevents that the broadcast
oneshot mask is modified.
There is a second problem with broadcast device replacement in this
function. The broadcast device is only armed when the previous state of
the device was periodic.
That is correct for the switch from periodic broadcast mode to oneshot
broadcast mode as the underlying broadcast device could operate in
oneshot state already due to lack of periodic state in hardware. In that
case it is already armed to expire at the next tick.
For the replacement case this is wrong as the device is in shutdown
state. That means that any already pending broadcast event will not be
armed.
This went unnoticed because any CPU which goes idle will observe that
the broadcast device has an expiry time of KTIME_MAX and therefore any
CPUs next timer event will be earlier and cause a reprogramming of the
broadcast device. But that does not guarantee that the events of the
CPUs which were already in idle are delivered on time.
Fix this by arming the newly installed device for an immediate event
which will reevaluate the per CPU expiry times and reprogram the
broadcast device accordingly. This is simpler than caching the last
expiry time in yet another place or saving it before the device exchange
and handing it down to the setup function. Replacement of broadcast
devices is not a frequent operation and usually happens once somewhere
late in the boot process.
Fixes: 9c336c9935 ("tick/broadcast: Allow late registered device to enter oneshot mode")
Reported-by: Victor Hassan <victor@allwinnertech.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/87pm7d2z1i.ffs@tglx
Commit e6fe3f422b ("sched: Make multiple runqueue task counters
32-bit") changed the type for rq->nr_uninterruptible from "unsigned
long" to "unsigned int", but left wrong cast print to
/sys/kernel/debug/sched/debug and to the console.
For example, nr_uninterruptible's value is fffffff7 with type
"unsigned int", (long)nr_uninterruptible shows 4294967287 while
(int)nr_uninterruptible prints -9. So using int cast fixes wrong
printing.
Signed-off-by: Yan Yan <yanyan.yan@antgroup.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230506074253.44526-1-yanyan.yan@antgroup.com
When a degenerate cluster domain for core with SMT CPUs is removed,
the SD_SHARE_CPUCAPACITY flag in the local child sched group was not
propagated to the new parent. We need this flag to properly determine
whether the local sched group is SMT. Set the flag in the local
child sched group of the new parent sched domain.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Link: https://lkml.kernel.org/r/73cf0959eafa53c02e7ef6bf805d751d9190e55d.1683156492.git.tim.c.chen@linux.intel.com
Current 500ms min window size for psi triggers limits polling interval
to 50ms to prevent polling threads from using too much cpu bandwidth by
polling too frequently. However the number of cgroups with triggers is
unlimited, so this protection can be defeated by creating multiple
cgroups with psi triggers (triggers in each cgroup are served by a single
"psimon" kernel thread).
Instead of limiting min polling period, which also limits the latency of
psi events, it's better to limit psi trigger creation to authorized users
only, like we do for system-wide psi triggers (/proc/pressure/* files can
be written only by processes with CAP_SYS_RESOURCE capability). This also
makes access rules for cgroup psi files consistent with system-wide ones.
Add a CAP_SYS_RESOURCE capability check for cgroup psi file writers and
remove the psi window min size limitation.
Suggested-by: Sudarshan Rajagopalan <quic_sudaraja@quicinc.com>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/all/cover.1676067791.git.quic_sudaraja@quicinc.com/
Do not assume that all the children of a scheduling domain have a given
flag. Check whether it has the SDF_SHARED_CHILD meta flag.
Suggested-by: Ionela Voinescu <ionela.voinescu@arm.com>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230406203148.19182-9-ricardo.neri-calderon@linux.intel.com
Now that find_busiest_group() triggers load balancing between a fully_
busy SMT2 core and an idle non-SMT core, it is no longer needed to force
balancing via asym_packing. Use asym_packing only as intended: when there
is high-priority CPU that is idle.
After this change, the same logic apply to SMT and non-SMT local groups.
It makes less sense having a separate function to deal specifically with
SMT. Fold the logic in asym_smt_can_pull_tasks() into sched_asym().
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230406203148.19182-8-ricardo.neri-calderon@linux.intel.com
The prefer_sibling setting acts on the busiest group to move excess tasks
to the local group. This should be done as per request of the child of the
busiest group's sched domain, not the local group's.
Using the flags of the child domain of the local group works fortuitously
if both groups have child domains.
There are cases, however, in which the busiest group's sched domain has
child but the local group's does not. Consider, for instance a non-SMT
core (or an SMT core with only one online sibling) doing load balance with
an SMT core at the MC level. SD_PREFER_SIBLING of the busiest group's child
domain will not be honored. We are left with a fully busy SMT core and an
idle non-SMT core.
Suggested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230406203148.19182-7-ricardo.neri-calderon@linux.intel.com
When comparing two fully_busy scheduling groups, keep the current busiest
group if it represents an SMT core. Tasks in such scheduling group share
CPU resources and need more help than tasks in a non-SMT fully_busy group.
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230406203148.19182-6-ricardo.neri-calderon@linux.intel.com
Using asym_packing priorities within an SMT core is straightforward. Just
follow the priorities that hardware indicates.
When balancing load from an SMT core, also consider the idle state of its
siblings. Priorities do not reflect that an SMT core divides its throughput
among all its busy siblings. They only makes sense when exactly one sibling
is busy.
Indicate that active balance is needed if the destination CPU has lower
priority than the source CPU but the latter has busy SMT siblings.
Make find_busiest_queue() not skip higher-priority SMT cores with more than
busy sibling.
Suggested-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230406203148.19182-5-ricardo.neri-calderon@linux.intel.com
Callers of asym_smt_can_pull_tasks() check the idle state of the
destination CPU and its SMT siblings, if any. No extra checks are needed
in such function.
Since SMT cores divide capacity among its siblings, priorities only really
make sense if only one sibling is active. This is true for SMT2, SMT4,
SMT8, etc. Do not use asym_packing load balance for this case. Instead,
let find_busiest_group() handle imbalances.
When balancing non-SMT cores or at higher scheduling domains (e.g.,
between MC scheduling groups), continue using priorities.
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Len Brown <len.brown@intel.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230406203148.19182-4-ricardo.neri-calderon@linux.intel.com
When balancing load between cores, all the SMT siblings of the destination
CPU, if any, must be idle. Otherwise, pulling new tasks degrades the
throughput of the busy SMT siblings. The overall throughput of the system
remains the same.
When balancing load within an SMT core this consideration is not relevant.
Follow the priorities that hardware indicates.
Suggested-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230406203148.19182-3-ricardo.neri-calderon@linux.intel.com
asym_packing needs this function to determine whether an SMT core is a
suitable destination for load balancing.
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230406203148.19182-2-ricardo.neri-calderon@linux.intel.com
Searching for the right pmu by iterating over all pmus is no longer
required since all pmus now *must* be present in the 'pmu_idr' list.
So, remove linear searching code.
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230504110003.2548-4-ravi.bangoria@amd.com
Currently, PERF_TYPE_SOFTWARE is treated specially since task-clock and
cpu-clock events are interfaced through it but internally gets forwarded
to their own pmus.
Rework this by overwriting event->attr.type in perf_swevent_init() which
will cause perf_init_event() to retry with updated type and event will
automatically get forwarded to right pmu. With the change, SW pmu no
longer needs to be treated specially and can be included in 'pmu_idr'
list.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230504110003.2548-2-ravi.bangoria@amd.com
Fix kernel-doc warnings for cid_lock and use_cid_lock.
These comments are not in kernel-doc format.
kernel/sched/core.c:11496: warning: Cannot understand * @cid_lock: Guarantee forward-progress of cid allocation.
on line 11496 - I thought it was a doc line
kernel/sched/core.c:11505: warning: Cannot understand * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
on line 11505 - I thought it was a doc line
Fixes: 223baf9d17 ("sched: Fix performance regression introduced by mm_cid")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230428031111.322-1-rdunlap@infradead.org
Apparently despite it being marked inline, the compiler
may not inline __down_read_common() which makes it difficult
to identify the cause of lock contention, as the blocked
function in traceevents will always be listed as
__down_read_common().
So this patch adds __always_inline annotation to the common
function (as well as the inlined helper callers) to force it to
be inlined so the blocking function will be listed (via Wchan)
in traceevents.
Fixes: c995e638cc ("locking/rwsem: Fold __down_{read,write}*()")
Reported-by: Tim Murray <timmurray@google.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Waiman Long <longman@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20230503023351.2832796-1-jstultz@google.com
This allows using memory retrieved from dynptrs with helper functions
that accept ARG_PTR_TO_MEM. For instance, results from bpf_dynptr_data
can be passed along to bpf_strncmp.
Signed-off-by: Daniel Rosenberg <drosen@google.com>
Link: https://lore.kernel.org/r/20230506013134.2492210-5-drosen@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_dynptr_slice(_rw) uses a user provided buffer if it can not provide
a pointer to a block of contiguous memory. This buffer is unused in the
case of local dynptrs, and may be unused in other cases as well. There
is no need to require the buffer, as the kfunc can just return NULL if
it was needed and not provided.
This adds another kfunc annotation, __opt, which combines with __sz and
__szk to allow the buffer associated with the size to be NULL. If the
buffer is NULL, the verifier does not check that the buffer is of
sufficient size.
Signed-off-by: Daniel Rosenberg <drosen@google.com>
Link: https://lore.kernel.org/r/20230506013134.2492210-2-drosen@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add a kfunc that's similar to the bpf_current_task_under_cgroup.
The difference is that it is a designated task.
When hook sched related functions, sometimes it is necessary to
specify a task instead of the current task.
Signed-off-by: Feng Zhou <zhoufeng.zf@bytedance.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230506031545.35991-2-zhoufeng.zf@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
- Make buffer_percent read/write. The buffer_percent file is how users can
state how long to block on the tracing buffer depending on how much
is in the buffer. When it hits the "buffer_percent" it will wake the
task waiting on the buffer. For some reason it was set to read-only.
This was not noticed because testing was done as root without SELinux,
but with SELinux it will prevent even root to write to it without having
CAP_DAC_OVERRIDE.
- The "touched_functions" was added this merge window, but one of the
reasons for adding it was not implemented. That was to show what functions
were not only touched, but had either a direct trampoline attached to
it, or a kprobe or live kernel patching that can "hijack" the function
to run a different function. The point is to know if there's functions
in the kernel that may not be behaving as the kernel code shows. This can
be used for debugging. TODO: Add this information to kernel oops too.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZFUcrxQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qgOoAP0U2R6+jvA2ehQFb0UTCH9wEu2uEELA
g2CkdPNdn6wJjAD+O1+v5nVkqSpsArjHOhv5OGYrgh+VSXK3Z8EpQ9vUVgg=
=nfoh
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull more tracing updates from Steven Rostedt:
- Make buffer_percent read/write.
The buffer_percent file is how users can state how long to block on
the tracing buffer depending on how much is in the buffer. When it
hits the "buffer_percent" it will wake the task waiting on the
buffer. For some reason it was set to read-only.
This was not noticed because testing was done as root without
SELinux, but with SELinux it will prevent even root to write to it
without having CAP_DAC_OVERRIDE.
- The "touched_functions" was added this merge window, but one of the
reasons for adding it was not implemented.
That was to show what functions were not only touched, but had either
a direct trampoline attached to it, or a kprobe or live kernel
patching that can "hijack" the function to run a different function.
The point is to know if there's functions in the kernel that may not
be behaving as the kernel code shows. This can be used for debugging.
TODO: Add this information to kernel oops too.
* tag 'trace-v6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
ftrace: Add MODIFIED flag to show if IPMODIFY or direct was attached
tracing: Fix permissions for the buffer_percent file
- Introduce local{,64}_try_cmpxchg() - a slightly more optimal
primitive, which will be used in perf events ring-buffer code.
- Simplify/modify rwsems on PREEMPT_RT, to address writer starvation.
- Misc cleanups/fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmRUvUoRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hlIhAArP33rTKi+HAndQ3UHW3XtmHRxEEQTfiE
wvIoN89h58QW4DGMeAV4ltafbIPQAkI233Aogwz903L0qbDV0Ro4OU3XJembRuWl
LeOADKwYyypXdOa8XICuY9aIP7e1/h0DF3ySs7inLcwK9JCyAIxnsVHYej+hsRXA
kZoXN98T3TR1C0V9UQy4SU3HI1lC3tsG3R9Ti9TnYUg3ygVXhRE9lOQ4kv9lFPVz
BNuj2Blj7KNiVaY9kehrhO54THI7NmsCVZO44Rcl48I0KAcFulAmFcNlE7GnR8Nj
thj38pU6XAFVHXG8MYjgE+Al+PnK48NtJxexCtHyGvGG4D2aLzRMnkolxAUCcVuK
G+UBsQm3ybjYgHgt1zuN6ehcpT+5tULkDH8JA7vrgZYaVgxHzsUaHgYfCCWKnmUY
mPR6aImEmYZwZVNLskhe0HT4mq244bp+VnWlnJ6LZK7t/itenvDhqnj7KTi4Bfej
lTHplOTitV/8uCEW8V4pX+YTEenVsIQmTc/G3iIabXP/6HzLffA3q4vyW6vKIErE
pqrpuFA0Z4GB+pU0mJXt7+I7zscDVthwI055jDyQBjA7IcdVGm2MjQ6xcNRW5FYN
UynvaEMocue4ZO4WdFsd1ZBUd9VfoNzGQspBw46DhCL1MEQBYv36SKQNjej/9aRr
ilVwqnOWI2s=
=mM0A
-----END PGP SIGNATURE-----
Merge tag 'locking-core-2023-05-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
- Introduce local{,64}_try_cmpxchg() - a slightly more optimal
primitive, which will be used in perf events ring-buffer code
- Simplify/modify rwsems on PREEMPT_RT, to address writer starvation
- Misc cleanups/fixes
* tag 'locking-core-2023-05-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/atomic: Correct (cmp)xchg() instrumentation
locking/x86: Define arch_try_cmpxchg_local()
locking/arch: Wire up local_try_cmpxchg()
locking/generic: Wire up local{,64}_try_cmpxchg()
locking/atomic: Add generic try_cmpxchg{,64}_local() support
locking/rwbase: Mitigate indefinite writer starvation
locking/arch: Rename all internal __xchg() names to __arch_xchg()
If a function had ever had IPMODIFY or DIRECT attached to it, where this
is how live kernel patching and BPF overrides work, mark them and display
an "M" in the enabled_functions and touched_functions files. This can be
used for debugging. If a function had been modified and later there's a bug
in the code related to that function, this can be used to know if the cause
is possibly from a live kernel patch or a BPF program that changed the
behavior of the code.
Also update the documentation on the enabled_functions and
touched_functions output, as it was missing direct callers and CALL_OPS.
And include this new modify attribute.
Link: https://lore.kernel.org/linux-trace-kernel/20230502213233.004e3ae4@gandalf.local.home
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Add support precision backtracking in the presence of subprogram frames in
jump history.
This means supporting a few different kinds of subprogram invocation
situations, all requiring a slightly different handling in precision
backtracking handling logic:
- static subprogram calls;
- global subprogram calls;
- callback-calling helpers/kfuncs.
For each of those we need to handle a few precision propagation cases:
- what to do with precision of subprog returns (r0);
- what to do with precision of input arguments;
- for all of them callee-saved registers in caller function should be
propagated ignoring subprog/callback part of jump history.
N.B. Async callback-calling helpers (currently only
bpf_timer_set_callback()) are transparent to all this because they set
a separate async callback environment and thus callback's history is not
shared with main program's history. So as far as all the changes in this
commit goes, such helper is just a regular helper.
Let's look at all these situation in more details. Let's start with
static subprogram being called, using an exxerpt of a simple main
program and its static subprog, indenting subprog's frame slightly to
make everything clear.
frame 0 frame 1 precision set
======= ======= =============
9: r6 = 456;
10: r1 = 123; fr0: r6
11: call pc+10; fr0: r1, r6
22: r0 = r1; fr0: r6; fr1: r1
23: exit fr0: r6; fr1: r0
12: r1 = <map_pointer> fr0: r0, r6
13: r1 += r0; fr0: r0, r6
14: r1 += r6; fr0: r6
15: exit
As can be seen above main function is passing 123 as single argument to
an identity (`return x;`) subprog. Returned value is used to adjust map
pointer offset, which forces r0 to be marked as precise. Then
instruction #14 does the same for callee-saved r6, which will have to be
backtracked all the way to instruction #9. For brevity, precision sets
for instruction #13 and #14 are combined in the diagram above.
First, for subprog calls, r0 returned from subprog (in frame 0) has to
go into subprog's frame 1, and should be cleared from frame 0. So we go
back into subprog's frame knowing we need to mark r0 precise. We then
see that insn #22 sets r0 from r1, so now we care about marking r1
precise. When we pop up from subprog's frame back into caller at
insn #11 we keep r1, as it's an argument-passing register, so we eventually
find `10: r1 = 123;` and satify precision propagation chain for insn #13.
This example demonstrates two sets of rules:
- r0 returned after subprog call has to be moved into subprog's r0 set;
- *static* subprog arguments (r1-r5) are moved back to caller precision set.
Let's look at what happens with callee-saved precision propagation. Insn #14
mark r6 as precise. When we get into subprog's frame, we keep r6 in
frame 0's precision set *only*. Subprog itself has its own set of
independent r6-r10 registers and is not affected. When we eventually
made our way out of subprog frame we keep r6 in precision set until we
reach `9: r6 = 456;`, satisfying propagation. r6-r10 propagation is
perhaps the simplest aspect, it always stays in its original frame.
That's pretty much all we have to do to support precision propagation
across *static subprog* invocation.
Let's look at what happens when we have global subprog invocation.
frame 0 frame 1 precision set
======= ======= =============
9: r6 = 456;
10: r1 = 123; fr0: r6
11: call pc+10; # global subprog fr0: r6
12: r1 = <map_pointer> fr0: r0, r6
13: r1 += r0; fr0: r0, r6
14: r1 += r6; fr0: r6;
15: exit
Starting from insn #13, r0 has to be precise. We backtrack all the way
to insn #11 (call pc+10) and see that subprog is global, so was already
validated in isolation. As opposed to static subprog, global subprog
always returns unknown scalar r0, so that satisfies precision
propagation and we drop r0 from precision set. We are done for insns #13.
Now for insn #14. r6 is in precision set, we backtrack to `call pc+10;`.
Here we need to recognize that this is effectively both exit and entry
to global subprog, which means we stay in caller's frame. So we carry on
with r6 still in precision set, until we satisfy it at insn #9. The only
hard part with global subprogs is just knowing when it's a global func.
Lastly, callback-calling helpers and kfuncs do simulate subprog calls,
so jump history will have subprog instructions in between caller
program's instructions, but the rules of propagating r0 and r1-r5
differ, because we don't actually directly call callback. We actually
call helper/kfunc, which at runtime will call subprog, so the only
difference between normal helper/kfunc handling is that we need to make
sure to skip callback simulatinog part of jump history.
Let's look at an example to make this clearer.
frame 0 frame 1 precision set
======= ======= =============
8: r6 = 456;
9: r1 = 123; fr0: r6
10: r2 = &callback; fr0: r6
11: call bpf_loop; fr0: r6
22: r0 = r1; fr0: r6 fr1:
23: exit fr0: r6 fr1:
12: r1 = <map_pointer> fr0: r0, r6
13: r1 += r0; fr0: r0, r6
14: r1 += r6; fr0: r6;
15: exit
Again, insn #13 forces r0 to be precise. As soon as we get to `23: exit`
we see that this isn't actually a static subprog call (it's `call
bpf_loop;` helper call instead). So we clear r0 from precision set.
For callee-saved register, there is no difference: it stays in frame 0's
precision set, we go through insn #22 and #23, ignoring them until we
get back to caller frame 0, eventually satisfying precision backtrack
logic at insn #8 (`r6 = 456;`).
Assuming callback needed to set r0 as precise at insn #23, we'd
backtrack to insn #22, switching from r0 to r1, and then at the point
when we pop back to frame 0 at insn #11, we'll clear r1-r5 from
precision set, as we don't really do a subprog call directly, so there
is no input argument precision propagation.
That's pretty much it. With these changes, it seems like the only still
unsupported situation for precision backpropagation is the case when
program is accessing stack through registers other than r10. This is
still left as unsupported (though rare) case for now.
As for results. For selftests, few positive changes for bigger programs,
cls_redirect in dynptr variant benefitting the most:
[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results.csv ~/subprog-precise-after-results.csv -f @veristat.cfg -e file,prog,insns -f 'insns_diff!=0'
File Program Insns (A) Insns (B) Insns (DIFF)
---------------------------------------- ------------- --------- --------- ----------------
pyperf600_bpf_loop.bpf.linked1.o on_event 2060 2002 -58 (-2.82%)
test_cls_redirect_dynptr.bpf.linked1.o cls_redirect 15660 2914 -12746 (-81.39%)
test_cls_redirect_subprogs.bpf.linked1.o cls_redirect 61620 59088 -2532 (-4.11%)
xdp_synproxy_kern.bpf.linked1.o syncookie_tc 109980 86278 -23702 (-21.55%)
xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 97716 85147 -12569 (-12.86%)
Cilium progress don't really regress. They don't use subprogs and are
mostly unaffected, but some other fixes and improvements could have
changed something. This doesn't appear to be the case:
[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-cilium.csv ~/subprog-precise-after-results-cilium.csv -e file,prog,insns -f 'insns_diff!=0'
File Program Insns (A) Insns (B) Insns (DIFF)
------------- ------------------------------ --------- --------- ------------
bpf_host.o tail_nodeport_nat_ingress_ipv6 4983 5003 +20 (+0.40%)
bpf_lxc.o tail_nodeport_nat_ingress_ipv6 4983 5003 +20 (+0.40%)
bpf_overlay.o tail_nodeport_nat_ingress_ipv6 4983 5003 +20 (+0.40%)
bpf_xdp.o tail_handle_nat_fwd_ipv6 12475 12504 +29 (+0.23%)
bpf_xdp.o tail_nodeport_nat_ingress_ipv6 6363 6371 +8 (+0.13%)
Looking at (somewhat anonymized) Meta production programs, we see mostly
insignificant variation in number of instructions, with one program
(syar_bind6_protect6) benefitting the most at -17%.
[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-fbcode.csv ~/subprog-precise-after-results-fbcode.csv -e prog,insns -f 'insns_diff!=0'
Program Insns (A) Insns (B) Insns (DIFF)
------------------------ --------- --------- ----------------
on_request_context_event 597 585 -12 (-2.01%)
read_async_py_stack 43789 43657 -132 (-0.30%)
read_sync_py_stack 35041 37599 +2558 (+7.30%)
rrm_usdt 946 940 -6 (-0.63%)
sysarmor_inet6_bind 28863 28249 -614 (-2.13%)
sysarmor_inet_bind 28845 28240 -605 (-2.10%)
syar_bind4_protect4 154145 147640 -6505 (-4.22%)
syar_bind6_protect6 165242 137088 -28154 (-17.04%)
syar_task_exit_setgid 21289 19720 -1569 (-7.37%)
syar_task_exit_setuid 21290 19721 -1569 (-7.37%)
do_uprobe 19967 19413 -554 (-2.77%)
tw_twfw_ingress 215877 204833 -11044 (-5.12%)
tw_twfw_tc_in 215877 204833 -11044 (-5.12%)
But checking duration (wall clock) differences, that is the actual time taken
by verifier to validate programs, we see a sometimes dramatic improvements, all
the way to about 16x improvements:
[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-meta.csv ~/subprog-precise-after-results-meta.csv -e prog,duration -s duration_diff^ | head -n20
Program Duration (us) (A) Duration (us) (B) Duration (us) (DIFF)
---------------------------------------- ----------------- ----------------- --------------------
tw_twfw_ingress 4488374 272836 -4215538 (-93.92%)
tw_twfw_tc_in 4339111 268175 -4070936 (-93.82%)
tw_twfw_egress 3521816 270751 -3251065 (-92.31%)
tw_twfw_tc_eg 3472878 284294 -3188584 (-91.81%)
balancer_ingress 343119 291391 -51728 (-15.08%)
syar_bind6_protect6 78992 64782 -14210 (-17.99%)
ttls_tc_ingress 11739 8176 -3563 (-30.35%)
kprobe__security_inode_link 13864 11341 -2523 (-18.20%)
read_sync_py_stack 21927 19442 -2485 (-11.33%)
read_async_py_stack 30444 28136 -2308 (-7.58%)
syar_task_exit_setuid 10256 8440 -1816 (-17.71%)
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-9-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When precision backtracking bails out due to some unsupported sequence
of instructions (e.g., stack access through register other than r10), we
need to mark all SCALAR registers as precise to be safe. Currently,
though, we mark SCALARs precise only starting from the state we detected
unsupported condition, which could be one of the parent states of the
actual current state. This will leave some registers potentially not
marked as precise, even though they should. So make sure we start
marking scalars as precise from current state (env->cur_state).
Further, we don't currently detect a situation when we end up with some
stack slots marked as needing precision, but we ran out of available
states to find the instructions that populate those stack slots. This is
akin the `i >= func->allocated_stack / BPF_REG_SIZE` check and should be
handled similarly by falling back to marking all SCALARs precise. Add
this check when we run out of states.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-8-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Fix propagate_precision() logic to perform propagation of all necessary
registers and stack slots across all active frames *in one batch step*.
Doing this for each register/slot in each individual frame is wasteful,
but the main problem is that backtracking of instruction in any frame
except the deepest one just doesn't work. This is due to backtracking
logic relying on jump history, and available jump history always starts
(or ends, depending how you view it) in current frame. So, if
prog A (frame #0) called subprog B (frame #1) and we need to propagate
precision of, say, register R6 (callee-saved) within frame #0, we
actually don't even know where jump history that corresponds to prog
A even starts. We'd need to skip subprog part of jump history first to
be able to do this.
Luckily, with struct backtrack_state and __mark_chain_precision()
handling bitmasks tracking/propagation across all active frames at the
same time (added in previous patch), propagate_precision() can be both
fixed and sped up by setting all the necessary bits across all frames
and then performing one __mark_chain_precision() pass. This makes it
unnecessary to skip subprog parts of jump history.
We also improve logging along the way, to clearly specify which
registers' and slots' precision markings are propagated within which
frame. Each frame will have dedicated line and all registers and stack
slots from that frame will be reported in format similar to precision
backtrack regs/stack logging. E.g.:
frame 1: propagating r1,r2,r3,fp-8,fp-16
frame 0: propagating r3,r9,fp-120
Fixes: 529409ea92 ("bpf: propagate precision across all frames, not just the last one")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Teach __mark_chain_precision logic to maintain register/stack masks
across all active frames when going from child state to parent state.
Currently this should be mostly no-op, as precision backtracking usually
bails out when encountering subprog entry/exit.
It's not very apparent from the diff due to increased indentation, but
the logic remains the same, except everything is done on specific `fr`
frame index. Calls to bt_clear_reg() and bt_clear_slot() are replaced
with frame-specific bt_clear_frame_reg() and bt_clear_frame_slot(),
where frame index is passed explicitly, instead of using current frame
number.
We also adjust logging to emit affected frame number. And we also add
better logging of human-readable register and stack slot masks, similar
to previous patch.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add helper to format register and stack masks in more human-readable
format. Adjust logging a bit during backtrack propagation and especially
during forcing precision fallback logic to make it clearer what's going
on (with log_level=2, of course), and also start reporting affected
frame depth. This is in preparation for having more than one active
frame later when precision propagation between subprog calls is added.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add struct backtrack_state and straightforward API around it to keep
track of register and stack masks used and maintained during precision
backtracking process. Having this logic separately allow to keep
high-level backtracking algorithm cleaner, but also it sets us up to
cleanly keep track of register and stack masks per frame, allowing (with
some further logic adjustments) to perform precision backpropagation
across multiple frames (i.e., subprog calls).
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When handling instructions that read register slots, mark relevant stack
slots as scratched so that verifier log would contain those slots' states, in
addition to currently emitted registers with stack slot offsets.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZFLuDAAKCRDdBJ7gKXxA
jk4KAP9ceSzcPrMejKeeWrkj0PoQzy8FMp3VhG9yaXkWPSNHUgD9EUG8J/lQftsH
t39eKmn6FDuY2cLpFS8HCrlain9JcAE=
=pn8p
-----END PGP SIGNATURE-----
Merge tag 'mm-hotfixes-stable-2023-05-03-16-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull hitfixes from Andrew Morton:
"Five hotfixes. Three are cc:stable, two for this -rc cycle"
* tag 'mm-hotfixes-stable-2023-05-03-16-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
mm: change per-VMA lock statistics to be disabled by default
MAINTAINERS: update Michal Simek's email
mm/mempolicy: correctly update prev when policy is equal on mbind
relayfs: fix out-of-bounds access in relay_file_read
kasan: hw_tags: avoid invalid virt_to_page()
- Some KSM work from David Hildenbrand, to make the PR_SET_MEMORY_MERGE
ioctl's behavior more similar to KSM's behavior.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZFLsxAAKCRDdBJ7gKXxA
jl8yAQCqjstPsOULf9QN0z4bGAUhY+Wj4ERz1jbKSIuhFCJWiQEAgQvgRXObKjmi
OtUB0Ek4CMDCQzbyIQ1Bhp3kxi6+Jgs=
=AbyC
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-05-03-16-22' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull more MM updates from Andrew Morton:
- Some DAMON cleanups from Kefeng Wang
- Some KSM work from David Hildenbrand, to make the PR_SET_MEMORY_MERGE
ioctl's behavior more similar to KSM's behavior.
[ Andrew called these "final", but I suspect we'll have a series fixing
up the fact that the last commit in the dmapools series in the
previous pull seems to have unintentionally just reverted all the
other commits in the same series.. - Linus ]
* tag 'mm-stable-2023-05-03-16-22' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
mm: hwpoison: coredump: support recovery from dump_user_range()
mm/page_alloc: add some comments to explain the possible hole in __pageblock_pfn_to_page()
mm/ksm: move disabling KSM from s390/gmap code to KSM code
selftests/ksm: ksm_functional_tests: add prctl unmerge test
mm/ksm: unmerge and clear VM_MERGEABLE when setting PR_SET_MEMORY_MERGE=0
mm/damon/paddr: fix missing folio_sz update in damon_pa_young()
mm/damon/paddr: minor refactor of damon_pa_mark_accessed_or_deactivate()
mm/damon/paddr: minor refactor of damon_pa_pageout()
There is only one fix by Arnd far for modules pending which came in after
the first pull request. The issue was found as part of some late compile
tests with 0-day. I take it 0-day does some secondary late builds with
after some initial ones.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmRStMcSHG1jZ3JvZkBr
ZXJuZWwub3JnAAoJEM4jHQowkoinIx0QAJaNXQNpbyIfLxtc1ILXMFH+o6H6M//D
7FQVyZbz+Xc3dQAYsi7Ux/AhTZKEz1L6j1cGxPBVEHGiaVb4RDzVmdPk/kQpTjnl
OdIdIPlMdLh1cuXl/sm1j5OW6gu9wxL13qxNuVfu/ADN09xRupuyruiXeA/8N2ca
kaXgufMMipLx7NisecYJ21CFQeyVjxEkSvhzL1UBJLm6D+fS+0iWiL6V5Nc0hxpH
RqZYZIK+KpBoTIYZbbR3+Gerev6gjbARh3/SY8WlfbQyKWG7eOULRBO8Urcs+x/a
Kf3XAVma24tHF4M5vu9qW98w/ghNr7ytyI47o8XA+HfxA6BkKxPsWBumvOs0S5pW
fT5YZ96oz85IfXipWy45xM+oZpcTxsnD7K6IYexDp7FO6458OkZazHED5djTboer
e77GLkdSc+7gMZ2AB0EVSKb9iTrpsQV8pQgrzP0qj7Z99/2q9Rlsi1//3SKBNOAK
mhQSbZ6m0rfdbA+wCS5efeA1roTZvHXJldHnsYyBzwcs7h5jLupqbKLiMKxpxxwk
z1kdBcQa5jc3KlRGUkIXktay0eTLwGfIIA24p60Wi6cALHr9oISeLVZECxBz/0az
NR6UUYrXSxvzU7dpyLPc+iOC8fbDdk50z02pASg9qjoc7yBJSkM+N/09AvBrQTyD
0Wm3C0aw7XYh
=JUoF
-----END PGP SIGNATURE-----
Merge tag 'modules-6.4-rc1-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull modules fix from Luis Chamberlain:
"One fix by Arnd far for modules which came in after the first pull
request.
The issue was found as part of some late compile tests with 0-day. I
take it 0-day does some secondary late builds with after some initial
ones"
* tag 'modules-6.4-rc1-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux:
module: include internal.h in module/dups.c
As mentioned on my first pull request for sysctl-next, for v6.4-rc1
we're very close to being able to deprecating register_sysctl_paths().
I was going to assess the situation after the first week of the merge
window.
That time is now and things are looking good. We only have one stragglers
on the patch which had already an ACK for so I'm picking this up here now and
the last patch is the one that uses an axe. Some careful eyeballing would
be appreciated by others. If this doesn't get properly reviewed I can also
just hold off on this in my tree for the next merge window. Either way is
fine by me.
I have boot tested the last patch and 0-day build completed successfully.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmRSsn0SHG1jZ3JvZkBr
ZXJuZWwub3JnAAoJEM4jHQowkoinzzMQAK6ddUwQM32z6E2SY/Ku6ZDQJhVKxE+Y
+HvghMqaGzr2eawEaASZzV6p//Q1aH4c2yaChyENa/O82QBXhbc2RBvdiAzQeJZx
cUQ4C6Lc+BlpoB24Nes69F9j1LAEI5YXKMK911DKDu7LNNS7Ytxt1IOfM2RpyqRV
6+9vOvAqCSh9EEjZeZDrMlsYhBA+t3YIkU6JFMX7Upc2P7m//57inLsZyUZBqnou
t9sfC0d1lDTZXZ0vSIk534VhoxXe1MkYERKkAciEprxbdNnqcsi4WMXKdXG6Mcpy
O1ZuUXqndAfhTSHLkqNidtuDP29TTvcdz5tDfwmaJ3JUTt0cDvlC2T7J9WyXDfCZ
XsR8Ik0/vEH/j9rVabF9fQ8DeTSLe9AgpaItHd6/LWI8UESs5k/wYi9O+7lhCf2p
JZpXl3G1itKA9ABMD1GUEtC5hfWTUxkTEgPkXbqFuKtCl0mI8lD3FPFRbuhYNLa8
7R/6SN9h6/43C9Ffp2bY3c/gKQj51QlvGOSctahvdYSFkG8KXKhEnsDu0V6eLM9G
QYrhvht8o9jbuKJKtEno9fjTlClVvXp5vARQQyy9OHyTuhU/Y8q2lH2BCZtFYZrM
cpIFdfqB18tZmo7QfNHZPLfws2j3MqsbXFG8Q23BB7cJp1P5QdLJjmjnqbMq8xmk
3kdRMZ2Xkfcx
=8VOt
-----END PGP SIGNATURE-----
Merge tag 'sysctl-6.4-rc1-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull more sysctl updates from Luis Chamberlain:
"As mentioned on my first pull request for sysctl-next, for v6.4-rc1
we're very close to being able to deprecating register_sysctl_paths().
I was going to assess the situation after the first week of the merge
window.
That time is now and things are looking good. We only have one which
had already an ACK for so I'm picking this up here now and the last
patch is the one that uses an axe.
I have boot tested the last patch and 0-day build completed
successfully"
* tag 'sysctl-6.4-rc1-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux:
sysctl: remove register_sysctl_paths()
kernel: pid_namespace: simplify sysctls with register_sysctl()
- Make test_resume work again after the changes that made hibernation
open the snapshot device in exclusive mode (Chen Yu).
- Clean up code in several places in intel_idle (Artem Bityutskiy).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmRSbLgSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxbvUP/3WeXEfulhN2FRuqmfqLtWNrpMwsoFpd
9BQRokAQdKL3V2Q+YgdEH22+cB2LNAo5ty1+SHXjzsiExxBYWbKd6/AwOwwmFVPq
I8uHS5pSqYQrZLI7eA1ZhFiTotePOpLyHpsHO3lezxXMlvEw30tY8g09WTH1F2Cz
uzgTB1NTHRZaHWObrjvPkq3IERAbtF1xAQVPMtyWzs7IoCOlLxsKtHpfLBwGFYpZ
1U7dbAFoGuQYjCUE9i1wbQdee9elRhPDJ6TGCx8rqtRRybxPZOdz1M947K/N5Q23
OtK1HHfTIFHoi36sjwfEdZC89RGr7CI3hc5CAgexxwtsCw4gpIgvFoNXjCKW1q0J
+C5ztCntxTGzWi37pnriV3I0NlTjTdEAoS2VDNRGlj0Vvrrx5S5H35qjoqD66N3a
+zJ9eEYl5WGJlmZWxUvycJmS0PdPp755tmxrBRWqm7nr+oVJWKY8j2OKjlADCgoG
k74zf1dp4zZJHIml1QpaRp0EsueiHs66Xu52VoFKyrAp0+ytYtnC1/SeKoYF4jDg
PoTJmIT5ve8Nq8vwYbrg/z497J3bKHfbf1LPxDPNHVB6gx4Nv254qUNaM8oyic9j
aHNwna6IAl+BshickaR0lUccJLnBAgPWyxnwFlfHaDbAGVtLNLSVFYlwr7xiUvlo
t9eB4FZNGKMU
=CwBd
-----END PGP SIGNATURE-----
Merge tag 'pm-6.4-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull more power management updates from Rafael Wysocki:
"These fix a hibernation test mode regression and clean up the
intel_idle driver.
Specifics:
- Make test_resume work again after the changes that made hibernation
open the snapshot device in exclusive mode (Chen Yu)
- Clean up code in several places in intel_idle (Artem Bityutskiy)"
* tag 'pm-6.4-rc1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
intel_idle: mark few variables as __read_mostly
intel_idle: do not sprinkle module parameter definitions around
intel_idle: fix confusing message
intel_idle: improve C-state flags handling robustness
intel_idle: further intel_idle_init_cstates_icpu() cleanup
intel_idle: clean up intel_idle_init_cstates_icpu()
intel_idle: use pr_info() instead of printk()
PM: hibernate: Do not get block device exclusively in test_resume mode
PM: hibernate: Turn snapshot_test into global variable
This file defines both read and write operations, yet it is being
created as read-only. This means that it can't be written to without the
CAP_DAC_OVERRIDE capability. Fix the permissions to allow root to write
to it without the need to override DAC perms.
Link: https://lore.kernel.org/linux-trace-kernel/20230503140114.3280002-1-omosnace@redhat.com
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Fixes: 03329f9939 ("tracing: Add tracefs file buffer_percentage")
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Two newly introduced functions are declared in a header that is not
included before the definition, causing a warning with sparse or
'make W=1':
kernel/module/dups.c:118:6: error: no previous prototype for 'kmod_dup_request_exists_wait' [-Werror=missing-prototypes]
118 | bool kmod_dup_request_exists_wait(char *module_name, bool wait, int *dup_ret)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
kernel/module/dups.c:220:6: error: no previous prototype for 'kmod_dup_request_announce' [-Werror=missing-prototypes]
220 | void kmod_dup_request_announce(char *module_name, int ret)
| ^~~~~~~~~~~~~~~~~~~~~~~~~
Add an explicit include to ensure the prototypes match.
Fixes: 8660484ed1 ("module: add debugging auto-load duplicate module support")
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202304141440.DYO4NAzp-lkp@intel.com/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
register_sysctl_paths() is only required if your child (directories)
have entries and pid_namespace does not. So use register_sysctl_init()
instead where we don't care about the return value and use
register_sysctl() where we do.
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Acked-by: Jeff Xu <jeffxu@google.com>
Link: https://lore.kernel.org/r/20230302202826.776286-9-mcgrof@kernel.org
There is a crash in relay_file_read, as the var from
point to the end of last subbuf.
The oops looks something like:
pc : __arch_copy_to_user+0x180/0x310
lr : relay_file_read+0x20c/0x2c8
Call trace:
__arch_copy_to_user+0x180/0x310
full_proxy_read+0x68/0x98
vfs_read+0xb0/0x1d0
ksys_read+0x6c/0xf0
__arm64_sys_read+0x20/0x28
el0_svc_common.constprop.3+0x84/0x108
do_el0_svc+0x74/0x90
el0_svc+0x1c/0x28
el0_sync_handler+0x88/0xb0
el0_sync+0x148/0x180
We get the condition by analyzing the vmcore:
1). The last produced byte and last consumed byte
both at the end of the last subbuf
2). A softirq calls function(e.g __blk_add_trace)
to write relay buffer occurs when an program is calling
relay_file_read_avail().
relay_file_read
relay_file_read_avail
relay_file_read_consume(buf, 0, 0);
//interrupted by softirq who will write subbuf
....
return 1;
//read_start point to the end of the last subbuf
read_start = relay_file_read_start_pos
//avail is equal to subsize
avail = relay_file_read_subbuf_avail
//from points to an invalid memory address
from = buf->start + read_start
//system is crashed
copy_to_user(buffer, from, avail)
Link: https://lkml.kernel.org/r/20230419040203.37676-1-zhang.zhengming@h3c.com
Fixes: 8d62fdebda ("relay file read: start-pos fix")
Signed-off-by: Zhang Zhengming <zhang.zhengming@h3c.com>
Reviewed-by: Zhao Lei <zhao_lei1@hoperun.com>
Reviewed-by: Zhou Kete <zhou.kete@h3c.com>
Reviewed-by: Pengcheng Yang <yangpc@wangsu.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm/ksm: improve PR_SET_MEMORY_MERGE=0 handling and cleanup
disabling KSM", v2.
(1) Make PR_SET_MEMORY_MERGE=0 unmerge pages like setting MADV_UNMERGEABLE
does, (2) add a selftest for it and (3) factor out disabling of KSM from
s390/gmap code.
This patch (of 3):
Let's unmerge any KSM pages when setting PR_SET_MEMORY_MERGE=0, and clear
the VM_MERGEABLE flag from all VMAs -- just like KSM would. Of course,
only do that if we previously set PR_SET_MEMORY_MERGE=1.
Link: https://lkml.kernel.org/r/20230422205420.30372-1-david@redhat.com
Link: https://lkml.kernel.org/r/20230422205420.30372-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Stefan Roesch <shr@devkernel.io>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Janosch Frank <frankja@linux.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Only print the warning message if you are writing to
"/proc/sys/kernel/unprivileged_bpf_disabled".
The kernel may print an annoying warning when you read
"/proc/sys/kernel/unprivileged_bpf_disabled" saying
WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible
via Spectre v2 BHB attacks!
However, this message is only meaningful when the feature is
disabled or enabled.
Signed-off-by: Kui-Feng Lee <kuifeng@meta.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230502181418.308479-1-kuifeng@meta.com
There is an explicit wait-type violation in debug_object_fill_pool()
for PREEMPT_RT=n kernels which allows them to more easily fill the
object pool and reduce the chance of allocation failures.
Lockdep's wait-type checks are designed to check the PREEMPT_RT
locking rules even for PREEMPT_RT=n kernels and object to this, so
create a lockdep annotation to allow this to stand.
Specifically, create a 'lock' type that overrides the inner wait-type
while it is held -- allowing one to temporarily raise it, such that
the violation is hidden.
Reported-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Qi Zheng <zhengqi.arch@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Qi Zheng <zhengqi.arch@bytedance.com>
Link: https://lkml.kernel.org/r/20230429100614.GA1489784@hirez.programming.kicks-ass.net
Including:
- Convert to platform remove callback returning void
- Extend changing default domain to normal group
- Intel VT-d updates:
- Remove VT-d virtual command interface and IOASID
- Allow the VT-d driver to support non-PRI IOPF
- Remove PASID supervisor request support
- Various small and misc cleanups
- ARM SMMU updates:
- Device-tree binding updates:
* Allow Qualcomm GPU SMMUs to accept relevant clock properties
* Document Qualcomm 8550 SoC as implementing an MMU-500
* Favour new "qcom,smmu-500" binding for Adreno SMMUs
- Fix S2CR quirk detection on non-architectural Qualcomm SMMU
implementations
- Acknowledge SMMUv3 PRI queue overflow when consuming events
- Document (in a comment) why ATS is disabled for bypass streams
- AMD IOMMU updates:
- 5-level page-table support
- NUMA awareness for memory allocations
- Unisoc driver: Support for reattaching an existing domain
- Rockchip driver: Add missing set_platform_dma_ops callback
- Mediatek driver: Adjust the dma-ranges
- Various other small fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEr9jSbILcajRFYWYyK/BELZcBGuMFAmRONeAACgkQK/BELZcB
GuPmpw/8C9ruxQ0JU5rcDBXQGvos4gMmxlbELMrBpbbiTtdb35xchpKfdhnECGIF
k2SrrcF40R/S82SyzNU/eZtGKirtcXvGFraUFgu/QdCcnnqpRHs+IJMXX2NJP+it
+0wO1uiInt3CN1ERcR4F31cDKiWjDG8bvQVE5LIyiy4KrIU5ld2G91Fkaa0R13Au
6H+/wKkcUC6OyaGE6wPx474xBkapT20vj5AIQuAWisXJJR0wbBon1sUTo/IRKsU+
IkNxH0W+1PNImJ+crAdf/nkOlyqoChY4ww6cm07LrOsBLIsX5bCqXfL4HvKthElD
MEgk2SN5kfjfR5Vf29W4hZVM1CT8VbhO41I7OzaZ6X6RU2PXoldPKlgKtZGeSKn1
9bcMpSgB0BtbttvBevSkxTo5KHFozXS2DG3DFoMB3yFMme8Th0LrhBZ9oB7NIPNw
ntMo4K75vviC6Vvzjy4Anj/+y+Zm3W6wDDP7F12O6WZLkK5s4hrSsHUm/MQnnKQP
muJlG870RnSl73xUQZe3cuBxktXuJ3EHqqYIPE0npzvauu8hhWcis3opf2Y+U2s8
aBCCIgp5kTKqjHLh2e4lNCKZf1/b/dhxRcRBQhpAIb8YsjMlIJyM+G8Jz6K6gBga
5Ld+68UQ3oHJwoLV1HCFN8jbpQ9KZn1s9+h3yrYjRAcLNiFb3nU=
=OvTo
-----END PGP SIGNATURE-----
Merge tag 'iommu-updates-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull iommu updates from Joerg Roedel:
- Convert to platform remove callback returning void
- Extend changing default domain to normal group
- Intel VT-d updates:
- Remove VT-d virtual command interface and IOASID
- Allow the VT-d driver to support non-PRI IOPF
- Remove PASID supervisor request support
- Various small and misc cleanups
- ARM SMMU updates:
- Device-tree binding updates:
* Allow Qualcomm GPU SMMUs to accept relevant clock properties
* Document Qualcomm 8550 SoC as implementing an MMU-500
* Favour new "qcom,smmu-500" binding for Adreno SMMUs
- Fix S2CR quirk detection on non-architectural Qualcomm SMMU
implementations
- Acknowledge SMMUv3 PRI queue overflow when consuming events
- Document (in a comment) why ATS is disabled for bypass streams
- AMD IOMMU updates:
- 5-level page-table support
- NUMA awareness for memory allocations
- Unisoc driver: Support for reattaching an existing domain
- Rockchip driver: Add missing set_platform_dma_ops callback
- Mediatek driver: Adjust the dma-ranges
- Various other small fixes and cleanups
* tag 'iommu-updates-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (82 commits)
iommu: Remove iommu_group_get_by_id()
iommu: Make iommu_release_device() static
iommu/vt-d: Remove BUG_ON in dmar_insert_dev_scope()
iommu/vt-d: Remove a useless BUG_ON(dev->is_virtfn)
iommu/vt-d: Remove BUG_ON in map/unmap()
iommu/vt-d: Remove BUG_ON when domain->pgd is NULL
iommu/vt-d: Remove BUG_ON in handling iotlb cache invalidation
iommu/vt-d: Remove BUG_ON on checking valid pfn range
iommu/vt-d: Make size of operands same in bitwise operations
iommu/vt-d: Remove PASID supervisor request support
iommu/vt-d: Use non-privileged mode for all PASIDs
iommu/vt-d: Remove extern from function prototypes
iommu/vt-d: Do not use GFP_ATOMIC when not needed
iommu/vt-d: Remove unnecessary checks in iopf disabling path
iommu/vt-d: Move PRI handling to IOPF feature path
iommu/vt-d: Move pfsid and ats_qdep calculation to device probe path
iommu/vt-d: Move iopf code from SVA to IOPF enabling path
iommu/vt-d: Allow SVA with device-specific IOPF
dmaengine: idxd: Add enable/disable device IOPF feature
arm64: dts: mt8186: Add dma-ranges for the parent "soc" node
...
- Add support for stackleak feature. Also allow specifying
architecture-specific stackleak poison function to enable faster
implementation. On s390, the mvc-based implementation helps decrease
typical overhead from a factor of 3 to just 25%
- Convert all assembler files to use SYM* style macros, deprecating the
ENTRY() macro and other annotations. Select ARCH_USE_SYM_ANNOTATIONS
- Improve KASLR to also randomize module and special amode31 code
base load addresses
- Rework decompressor memory tracking to support memory holes and improve
error handling
- Add support for protected virtualization AP binding
- Add support for set_direct_map() calls
- Implement set_memory_rox() and noexec module_alloc()
- Remove obsolete overriding of mem*() functions for KASAN
- Rework kexec/kdump to avoid using nodat_stack to call purgatory
- Convert the rest of the s390 code to use flexible-array member instead
of a zero-length array
- Clean up uaccess inline asm
- Enable ARCH_HAS_MEMBARRIER_SYNC_CORE
- Convert to using CONFIG_FUNCTION_ALIGNMENT and enable
DEBUG_FORCE_FUNCTION_ALIGN_64B
- Resolve last_break in userspace fault reports
- Simplify one-level sysctl registration
- Clean up branch prediction handling
- Rework CPU counter facility to retrieve available counter sets just
once
- Other various small fixes and improvements all over the code
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEE3QHqV+H2a8xAv27vjYWKoQLXFBgFAmRM8pwACgkQjYWKoQLX
FBjV1AgAlvAhu1XkwOdwqdT4GqE8pcN4XXzydog1MYihrSO2PdgWAxpEW7o2QURN
W+3xa6RIqt7nX2YBiwTanMZ12TYaFY7noGl3eUpD/NhueprweVirVl7VZUEuRoW/
j0mbx77xsVzLfuDFxkpVwE6/j+tTO78kLyjUHwcN9rFVUaL7/orJneDJf+V8fZG0
sHLOv0aljF7Jr2IIkw82lCmW/vdk7k0dACWMXK2kj1H3dIK34B9X4AdKDDf/WKXk
/OSElBeZ93tSGEfNDRIda6iR52xocROaRnQAaDtargKFl9VO0/dN9ADxO+SLNHjN
pFE/9VD6xT/xo4IuZZh/Z3TcYfiLvA==
=Geqx
-----END PGP SIGNATURE-----
Merge tag 's390-6.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Vasily Gorbik:
- Add support for stackleak feature. Also allow specifying
architecture-specific stackleak poison function to enable faster
implementation. On s390, the mvc-based implementation helps decrease
typical overhead from a factor of 3 to just 25%
- Convert all assembler files to use SYM* style macros, deprecating the
ENTRY() macro and other annotations. Select ARCH_USE_SYM_ANNOTATIONS
- Improve KASLR to also randomize module and special amode31 code base
load addresses
- Rework decompressor memory tracking to support memory holes and
improve error handling
- Add support for protected virtualization AP binding
- Add support for set_direct_map() calls
- Implement set_memory_rox() and noexec module_alloc()
- Remove obsolete overriding of mem*() functions for KASAN
- Rework kexec/kdump to avoid using nodat_stack to call purgatory
- Convert the rest of the s390 code to use flexible-array member
instead of a zero-length array
- Clean up uaccess inline asm
- Enable ARCH_HAS_MEMBARRIER_SYNC_CORE
- Convert to using CONFIG_FUNCTION_ALIGNMENT and enable
DEBUG_FORCE_FUNCTION_ALIGN_64B
- Resolve last_break in userspace fault reports
- Simplify one-level sysctl registration
- Clean up branch prediction handling
- Rework CPU counter facility to retrieve available counter sets just
once
- Other various small fixes and improvements all over the code
* tag 's390-6.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (118 commits)
s390/stackleak: provide fast __stackleak_poison() implementation
stackleak: allow to specify arch specific stackleak poison function
s390: select ARCH_USE_SYM_ANNOTATIONS
s390/mm: use VM_FLUSH_RESET_PERMS in module_alloc()
s390: wire up memfd_secret system call
s390/mm: enable ARCH_HAS_SET_DIRECT_MAP
s390/mm: use BIT macro to generate SET_MEMORY bit masks
s390/relocate_kernel: adjust indentation
s390/relocate_kernel: use SYM* macros instead of ENTRY(), etc.
s390/entry: use SYM* macros instead of ENTRY(), etc.
s390/purgatory: use SYM* macros instead of ENTRY(), etc.
s390/kprobes: use SYM* macros instead of ENTRY(), etc.
s390/reipl: use SYM* macros instead of ENTRY(), etc.
s390/head64: use SYM* macros instead of ENTRY(), etc.
s390/earlypgm: use SYM* macros instead of ENTRY(), etc.
s390/mcount: use SYM* macros instead of ENTRY(), etc.
s390/crc32le: use SYM* macros instead of ENTRY(), etc.
s390/crc32be: use SYM* macros instead of ENTRY(), etc.
s390/crypto,chacha: use SYM* macros instead of ENTRY(), etc.
s390/amode31: use SYM* macros instead of ENTRY(), etc.
...
- fix a PageHighMem check in dma-coherent initialization (Doug Berger)
- clean up the coherency defaul initialiation (Jiaxun Yang)
- add cacheline to user/kernel dma-debug space dump messages
(Desnes Nunes, Geert Uytterhoeve)
- swiotlb statistics improvements (Michael Kelley)
- misc cleanups (Petr Tesarik)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAmRLYsoLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYP4+RAAwpIqI198CrPxodCuBdwetuxznwncdwFvU3W+NQLF
cC5gDeUB2ZZevVh3moKITV7gXHrbTJF7jQs9jpWV0QEA5APzu0WDf3Y0m4sXPVpn
E9jS3jGJyntZ9rIMzHFs/lguI37xzT1YRAHAYgoZ84b7K/9g94NgEE2HecfNKVqZ
D6PN0UJcA4KQo+5UJ7MWiQxWM3QAwVfSKsP1mXv51tiRGo4UUzNW77Ej2nKRJjhK
wDNiZ+08khfeS2BuF9J2ebAzpgma5EgweH2z7zmx8Ch5t4Cx6hVAQ4Z6axbZMGjP
HxXPw5rIwZTnQYoaGU86BrxrFH2j2bb963kWoDzliH+4PQrJ/iIEpkF7vu5Y2oWr
WtXdOo6CsdQh1rT1UWA87ZYDtkWgj3/ITv5xJrXf8VyD9WHHSPst616XHLzBLGzo
Hc+lAPhnVm59XZhQbVgXZy37Eqa9qHEG6GIRUkwD13nttSSfLfizO0IlXlH+awQV
2A+TjbAt2lneUaRzMPfxG/yFt3rPqbBfSWj3o2ClPPn9sKksKxj7IjNW0v81Ztq/
H6UmYRuq+wlQJzlwiF8+6SzoBXObztrmtIa2ipiM5k+xePG1jsPGFLm98UMlPcxN
5IMz78DQ/hE3K3fKRt6clImd98xq5R0H9iUQPor2I7C/67fpTjThDRdHDUina1tk
Oxo=
=vAit
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-6.4-2023-04-28' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping updates from Christoph Hellwig:
- fix a PageHighMem check in dma-coherent initialization (Doug Berger)
- clean up the coherency defaul initialiation (Jiaxun Yang)
- add cacheline to user/kernel dma-debug space dump messages (Desnes
Nunes, Geert Uytterhoeve)
- swiotlb statistics improvements (Michael Kelley)
- misc cleanups (Petr Tesarik)
* tag 'dma-mapping-6.4-2023-04-28' of git://git.infradead.org/users/hch/dma-mapping:
swiotlb: Omit total_used and used_hiwater if !CONFIG_DEBUG_FS
swiotlb: track and report io_tlb_used high water marks in debugfs
swiotlb: fix debugfs reporting of reserved memory pools
swiotlb: relocate PageHighMem test away from rmem_swiotlb_setup
of: address: always use dma_default_coherent for default coherency
dma-mapping: provide CONFIG_ARCH_DMA_DEFAULT_COHERENT
dma-mapping: provide a fallback dma_default_coherent
dma-debug: Use %pa to format phys_addr_t
dma-debug: add cacheline to user/kernel space dump messages
dma-debug: small dma_debug_entry's comment and variable name updates
dma-direct: cleanup parameters to dma_direct_optimal_gfp_mask
- A trivial documentation fix in the timekeeping core
- A really boring set of small fixes, enhancements and cleanups in the
drivers code. No new clocksource/clockevent drivers for a change.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmRLuTsTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoQ+vEACSlqE5SN+6SxNQOwWcou79d1loB0Lk
3kSlFvRH9CdPDdW5a0Qnr3YJx4mFXrN9mMdFsywhl5NGrZQcH3nGPEYN74B3ynhP
WpE5PSDJDVOA9F/yK6kmf5xX39RPh0aVy+C6ShaHD/anqwX2mTlXVBAg/3nOGeNy
iHNYHzP4AtQfE+EtgbEPEZaOUpzmGL/dZb1HAzJaFU1QBmsrXWHLs4xqGUR0A36+
1I0TGK53WVSXHvEVciTx4lH7mHR1xzR3LvnotdET6rRsqLREptosqA4nBRqYZLGK
uF+jNxVE/0OwVzge5gPvwL3YSAjiln9cZjhA/q7z3L/pdoj/kR3hXv4XyXGrLPN6
L371RA/RLtjkrBb/rHcB/VNADBmtwLQjo7gJJ3UMzIuuvnkokzQrl3fxTxJjmegK
ypR8dpMUaO5vlwIGqwSuQyKxkNEeuNzm2fv84IpZJNSKoQj5nGHPmk+0u6FLhJeG
sqvIfDfuH/+Hc8fxbG5BKBu5lNvmCD4MZ3xxf3Wv80fykJBX6dvJs30B/iuJFQXr
VylbUbxddCNjdHGtByswY5tLGfpWuou0g2XWqtsEB5P0aLs54R0gaoDeTPuBTzJW
Io4tHnvRu7nZCSncxzHUuUfnve0WjMDBgJeSfa2Rx4Qz8M7G5l3XQLO4n+iFGzI5
gdYnrztBLSegww==
=LWO6
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2023-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull more timer updates from Thomas Gleixner:
"Timekeeping and clocksource/event driver updates the second batch:
- A trivial documentation fix in the timekeeping core
- A really boring set of small fixes, enhancements and cleanups in
the drivers code. No new clocksource/clockevent drivers for a
change"
* tag 'timers-core-2023-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timekeeping: Fix references to nonexistent ktime_get_fast_ns()
dt-bindings: timer: rockchip: Add rk3588 compatible
dt-bindings: timer: rockchip: Drop superfluous rk3288 compatible
clocksource/drivers/ti: Use of_property_read_bool() for boolean properties
clocksource/drivers/timer-ti-dm: Fix finding alwon timer
clocksource/drivers/davinci: Fix memory leak in davinci_timer_register when init fails
clocksource/drivers/stm32-lp: Drop of_match_ptr for ID table
clocksource/drivers/timer-ti-dm: Convert to platform remove callback returning void
clocksource/drivers/timer-tegra186: Convert to platform remove callback returning void
clocksource/drivers/timer-ti-dm: Improve error message in .remove
clocksource/drivers/timer-stm32-lp: Mark driver as non-removable
clocksource/drivers/sh_mtu2: Mark driver as non-removable
clocksource/drivers/timer-ti-dm: Use of_address_to_resource()
clocksource/drivers/timer-imx-gpt: Remove non-DT function
clocksource/drivers/timer-mediatek: Split out CPUXGPT timers
clocksource/drivers/exynos_mct: Explicitly return 0 for shared timer
* cpuset changes including the fix for an incorrect interaction with CPU
hotplug and an optimization.
* Other doc and cosmetic changes.
-----BEGIN PGP SIGNATURE-----
iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZErfng4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGVVtAQCDycK4VSgc4nsFPG1vh1Oy1A723ciEUwAbKmV/
F1n7xwEA68FiDvE29LpMJJuYP9HnX0A5zRMyNnb52kN9jmgcEQI=
=ALol
-----END PGP SIGNATURE-----
Merge tag 'cgroup-for-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
- cpuset changes including the fix for an incorrect interaction with
CPU hotplug and an optimization
- Other doc and cosmetic changes
* tag 'cgroup-for-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
docs: cgroup-v1/cpusets: update libcgroup project link
cgroup/cpuset: Minor updates to test_cpuset_prs.sh
cgroup/cpuset: Include offline CPUs when tasks' cpumasks in top_cpuset are updated
cgroup/cpuset: Skip task update if hotplug doesn't affect current cpuset
cpuset: Clean up cpuset_node_allowed
cgroup: bpf: use cgroup_lock()/cgroup_unlock() wrappers
Mostly changes from Petr to improve warning and error reporting. Workqueue
now reports more of the relevant failures with better context which should
help debugging.
-----BEGIN PGP SIGNATURE-----
iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZErbOg4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGfipAP9BXrUBI99uZL7XjSEe6rLWa0STODyWh67ikR+0
nUO22QEA+ttt5ecLZyopYB18Le06VBBW7J5cs0Cg83bCBTGb4wE=
=gHbc
-----END PGP SIGNATURE-----
Merge tag 'wq-for-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue updates from Tejun Heo:
"Mostly changes from Petr to improve warning and error reporting.
Workqueue now reports more of the relevant failures with better
context which should help debugging"
* tag 'wq-for-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: Introduce show_freezable_workqueues
workqueue: Print backtraces from CPUs with hung CPU bound workqueues
workqueue: Warn when a rescuer could not be created
workqueue: Interrupted create_worker() is not a repeated event
workqueue: Warn when a new worker could not be created
workqueue: Fix hung time report of worker pools
workqueue: Simplify a pr_warn() call in wq_select_unbound_cpu()
MAINTAINERS: Add workqueue_internal.h to the WORKQUEUE entry
On PREEMPT_RT, rw_semaphore and rwlock_t locks are unfair to writers.
Readers can indefinitely acquire the lock unless the writer fully acquired
the lock, which might never happen if there is always a reader in the
critical section owning the lock.
Mel Gorman reported that since LTP-20220121 the dio_truncate test case
went from having 1 reader to having 16 readers and that number of readers
is sufficient to prevent the down_write ever succeeding while readers
exist. Eventually the test is killed after 30 minutes as a failure.
Mel proposed a timeout to limit how long a writer can be blocked until
the reader is forced into the slowpath.
Thomas argued that there is no added value by providing this timeout. From
a PREEMPT_RT point of view, there are no critical rw_semaphore or rwlock_t
locks left where the reader must be preferred.
Mitigate indefinite writer starvation by forcing the READER into the
slowpath once the WRITER attempts to acquire the lock.
Reported-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Link: https://lore.kernel.org/877cwbq4cq.ffs@tglx
Link: https://lore.kernel.org/r/20230321161140.HMcQEhHb@linutronix.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
- Add auto-analysis only option to rtla/timerlat
Add an --aa-only option to the tooling to perform only the auto analysis
and not to parse and format the data.
- Other minor fixes and clean ups
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZEr6eRQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qpmpAQD5arr/Y++metYGug0qtAaRHEw/7XR4
xWDepF32eAdZDAEAtx69nu+t9q3Z5/CY+OdSmniRUjo6sDYTnAw8ok8U7wI=
=Yln0
-----END PGP SIGNATURE-----
Merge tag 'trace-tools-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing tools updates from Steven Rostedt:
- Add auto-analysis only option to rtla/timerlat
Add an --aa-only option to the tooling to perform only the auto
analysis and not to parse and format the data.
- Other minor fixes and clean ups
* tag 'trace-tools-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
rtla/timerlat: Fix "Previous IRQ" auto analysis' line
rtla/timerlat: Add auto-analysis only option
rv: Remove redundant assignment to variable retval
rv: Fix addition on an uninitialized variable 'run'
rtla: Add .gitignore file
- User events are finally ready!
After lots of collaboration between various parties, we finally locked
down on a stable interface for user events that can also work with user
space only tracing. This is implemented by telling the kernel (or user
space library, but that part is user space only and not part of this
patch set), where the variable is that the application uses to know if
something is listening to the trace. There's also an interface to tell
the kernel about these events, which will show up in the
/sys/kernel/tracing/events/user_events/ directory, where it can be
enabled. When it's enabled, the kernel will update the variable, to tell
the application to start writing to the kernel.
See https://lwn.net/Articles/927595/
- Cleaned up the direct trampolines code to simplify arm64 addition of
direct trampolines. Direct trampolines use the ftrace interface but
instead of jumping to the ftrace trampoline, applications (mostly BPF)
can register their own trampoline for performance reasons.
- Some updates to the fprobe infrastructure. fprobes are more efficient than
kprobes, as it does not need to save all the registers that kprobes on
ftrace do. More work needs to be done before the fprobes will be exposed
as dynamic events.
- More updates to references to the obsolete path of
/sys/kernel/debug/tracing for the new /sys/kernel/tracing path.
- Add a seq_buf_do_printk() helper to seq_bufs, to print a large buffer line
by line instead of all at once. There's users in production kernels that
have a large data dump that originally used printk() directly, but the
data dump was larger than what printk() allowed as a single print.
Using seq_buf() to do the printing fixes that.
- Add /sys/kernel/tracing/touched_functions that shows all functions that
was every traced by ftrace or a direct trampoline. This is used for
debugging issues where a traced function could have caused a crash by
a bpf program or live patching.
- Add a "fields" option that is similar to "raw" but outputs the fields of
the events. It's easier to read by humans.
- Some minor fixes and clean ups.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZEr36xQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6quZHAQCzuqnn2S8DsPd3Sy1vKIYaj0uajW5D
Kz1oUJH4F0H7kgEA8XwXkdtfKpOXWc/ZH4LWfL7Orx2wJZJQMV9dVqEPDAE=
=w0Z1
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing updates from Steven Rostedt:
- User events are finally ready!
After lots of collaboration between various parties, we finally
locked down on a stable interface for user events that can also work
with user space only tracing.
This is implemented by telling the kernel (or user space library, but
that part is user space only and not part of this patch set), where
the variable is that the application uses to know if something is
listening to the trace.
There's also an interface to tell the kernel about these events,
which will show up in the /sys/kernel/tracing/events/user_events/
directory, where it can be enabled.
When it's enabled, the kernel will update the variable, to tell the
application to start writing to the kernel.
See https://lwn.net/Articles/927595/
- Cleaned up the direct trampolines code to simplify arm64 addition of
direct trampolines.
Direct trampolines use the ftrace interface but instead of jumping to
the ftrace trampoline, applications (mostly BPF) can register their
own trampoline for performance reasons.
- Some updates to the fprobe infrastructure. fprobes are more efficient
than kprobes, as it does not need to save all the registers that
kprobes on ftrace do. More work needs to be done before the fprobes
will be exposed as dynamic events.
- More updates to references to the obsolete path of
/sys/kernel/debug/tracing for the new /sys/kernel/tracing path.
- Add a seq_buf_do_printk() helper to seq_bufs, to print a large buffer
line by line instead of all at once.
There are users in production kernels that have a large data dump
that originally used printk() directly, but the data dump was larger
than what printk() allowed as a single print.
Using seq_buf() to do the printing fixes that.
- Add /sys/kernel/tracing/touched_functions that shows all functions
that was every traced by ftrace or a direct trampoline. This is used
for debugging issues where a traced function could have caused a
crash by a bpf program or live patching.
- Add a "fields" option that is similar to "raw" but outputs the fields
of the events. It's easier to read by humans.
- Some minor fixes and clean ups.
* tag 'trace-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (41 commits)
ring-buffer: Sync IRQ works before buffer destruction
tracing: Add missing spaces in trace_print_hex_seq()
ring-buffer: Ensure proper resetting of atomic variables in ring_buffer_reset_online_cpus
recordmcount: Fix memory leaks in the uwrite function
tracing/user_events: Limit max fault-in attempts
tracing/user_events: Prevent same address and bit per process
tracing/user_events: Ensure bit is cleared on unregister
tracing/user_events: Ensure write index cannot be negative
seq_buf: Add seq_buf_do_printk() helper
tracing: Fix print_fields() for __dyn_loc/__rel_loc
tracing/user_events: Set event filter_type from type
ring-buffer: Clearly check null ptr returned by rb_set_head_page()
tracing: Unbreak user events
tracing/user_events: Use print_format_fields() for trace output
tracing/user_events: Align structs with tabs for readability
tracing/user_events: Limit global user_event count
tracing/user_events: Charge event allocs to cgroups
tracing/user_events: Update documentation for ABI
tracing/user_events: Use write ABI in example
tracing/user_events: Add ABI self-test
...
- Remove diagnostics and adjust config for CSD lock diagnostics
- Add a generic IPI-sending tracepoint, as currently there's no easy
way to instrument IPI origins: it's arch dependent and for some
major architectures it's not even consistently available.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmRK438RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jJ5Q/5AZ0HGpyqwdFK8GmGznyu5qjP5HwV9pPq
gZQScqSy4tZEeza4TFMi83CoXSg9uJ7GlYJqqQMKm78LGEPomnZtXXC7oWvTA9M5
M/jAvzytmvZloSCXV6kK7jzSejMHhag97J/BjTYhZYQpJ9T+hNC87XO6J6COsKr9
lPIYqkFrIkQNr6B0U11AQfFejRYP1ics2fnbnZL86G/zZAc6x8EveM3KgSer2iHl
KbrO+xcYyGY8Ef9P2F72HhEGFfM3WslpT1yzqR3sm4Y+fuMG0oW3qOQuMJx0ZhxT
AloterY0uo6gJwI0P9k/K4klWgz81Tf/zLb0eBAtY2uJV9Fo3YhPHuZC7jGPGAy3
JusW2yNYqc8erHVEMAKDUsl/1KN4TE2uKlkZy98wno+KOoMufK5MA2e2kPPqXvUi
Jk9RvFolnWUsexaPmCftti0OCv3YFiviVAJ/t0pchfmvvJA2da0VC9hzmEXpLJVF
25nBTV/1uAOrWvOpCyo3ElrC2CkQVkFmK5rXMDdvf6ib0Nid4vFcCkCSLVfu+ePB
11mi7QYro+CcnOug1K+yKogUDmsZgV/u1kUwgQzTIpZ05Kkb49gUiXw9L2RGcBJh
yoDoiI66KPR7PWQ2qBdQoXug4zfEEtWG0O9HNLB0FFRC3hu7I+HHyiUkBWs9jasK
PA5+V7HcQRk=
=Wp7f
-----END PGP SIGNATURE-----
Merge tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull SMP cross-CPU function-call updates from Ingo Molnar:
- Remove diagnostics and adjust config for CSD lock diagnostics
- Add a generic IPI-sending tracepoint, as currently there's no easy
way to instrument IPI origins: it's arch dependent and for some major
architectures it's not even consistently available.
* tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
trace,smp: Trace all smp_function_call*() invocations
trace: Add trace_ipi_send_cpu()
sched, smp: Trace smp callback causing an IPI
smp: reword smp call IPI comment
treewide: Trace IPIs sent via smp_send_reschedule()
irq_work: Trace self-IPIs sent via arch_irq_work_raise()
smp: Trace IPIs sent via arch_send_call_function_ipi_mask()
sched, smp: Trace IPIs sent via send_call_function_single_ipi()
trace: Add trace_ipi_send_cpumask()
kernel/smp: Make csdlock_debug= resettable
locking/csd_lock: Remove per-CPU data indirection from CSD lock debugging
locking/csd_lock: Remove added data from CSD lock debugging
locking/csd_lock: Add Kconfig option for csd_debug default
- Allow unprivileged PSI poll()ing
- Fix performance regression introduced by mm_cid
- Improve livepatch stalls by adding livepatch task switching to cond_resched(),
this resolves livepatching busy-loop stalls with certain CPU-bound kthreads.
- Improve sched_move_task() performance on autogroup configs.
- On core-scheduling CPUs, avoid selecting throttled tasks to run
- Misc cleanups, fixes and improvements.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmRK39cRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hXPhAAk2WqOV2cW4BjSCHjWWE05IfTb0HMn8si
mFGBAnr1GIkJRvICAusAwDU3FcmP5mWyXA+LK110d3x4fKJP15vCD5ru5lHnBfX7
fSD+Ml8uM4Xlp8iUoQspilbQwmWkQSwhudbDs3Nj7XGUzJCvNgm1sM3xPRDlqSJ5
6zumfVOPTfzSGcZY3a8sMuJnCepZHLRR6NkLzo/DuI1NMy2Jw1dK43dh77AO1mBF
M53PF2IQgm6Wu/67p2k5eDq4c0AKL4PyIb4dRTGOPyljWMf41n28jwMv1tjlvu+Y
uT0JD8MJSrFiylyT41x7Asr7orAGXj3cPhShK5R0vrutx/SbqBiaaE1MO9U3aC3B
7xVXEORHWD6KIDqTvzmWGrMBkIdyWB6CLk6EJKr3MqM9hUtP2ift7bkAgIad9h+4
G9DdVePGoCyh/TQtJ9EPIULAYeu9mmDZe8rTQ8C5MCSg//05/CTMgBbb0NiFWhnd
0JQl1B0nNUA87whVUxK8Hfu4DLh7m9jrzgQr9Ww8/FwQ6tQHBOKWgDdbv45ckkaG
cJIQt/+vLilddazc8u8E+BGaD5w2uIYF0uL7kvG6Q5oARX06AZ5dj1m06vhZe/Ym
laOVZEpJsbQnxviY6jwj1n+CSB9aK7feiQfDePBPbpJGGUHyZoKrnLN6wmW2se+H
VCHtdgsEl5I=
=Hgci
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Allow unprivileged PSI poll()ing
- Fix performance regression introduced by mm_cid
- Improve livepatch stalls by adding livepatch task switching to
cond_resched(). This resolves livepatching busy-loop stalls with
certain CPU-bound kthreads
- Improve sched_move_task() performance on autogroup configs
- On core-scheduling CPUs, avoid selecting throttled tasks to run
- Misc cleanups, fixes and improvements
* tag 'sched-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/clock: Fix local_clock() before sched_clock_init()
sched/rt: Fix bad task migration for rt tasks
sched: Fix performance regression introduced by mm_cid
sched/core: Make sched_dynamic_mutex static
sched/psi: Allow unprivileged polling of N*2s period
sched/psi: Extract update_triggers side effect
sched/psi: Rename existing poll members in preparation
sched/psi: Rearrange polling code in preparation
sched/fair: Fix inaccurate tally of ttwu_move_affine
vhost: Fix livepatch timeouts in vhost_worker()
livepatch,sched: Add livepatch task switching to cond_resched()
livepatch: Skip task_call_func() for current task
livepatch: Convert stack entries array to percpu
sched: Interleave cfs bandwidth timers for improved single thread performance at low utilization
sched/core: Reduce cost of sched_move_task when config autogroup
sched/core: Avoid selecting the task that is throttled to run when core-sched enable
sched/topology: Make sched_energy_mutex,update static
- Mark arch_cpu_idle_dead() __noreturn, make all architectures & drivers that did
this inconsistently follow this new, common convention, and fix all the fallout
that objtool can now detect statically.
- Fix/improve the ORC unwinder becoming unreliable due to UNWIND_HINT_EMPTY ambiguity,
split it into UNWIND_HINT_END_OF_STACK and UNWIND_HINT_UNDEFINED to resolve it.
- Fix noinstr violations in the KCSAN code and the lkdtm/stackleak code.
- Generate ORC data for __pfx code
- Add more __noreturn annotations to various kernel startup/shutdown/panic functions.
- Misc improvements & fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmRK1x0RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1ghxQ/+IkCynMYtdF5OG9YwbcGJqsPSfOPMEcEM
pUSFYg+gGPBDT/fJfcVSqvUtdnWbLC2kXt9yiswXz3X3J2nmNkBk5YKQftsNDcul
TmKeqIIAK51XTncpegKH0EGnOX63oZ9Vxa8CTPdDlb+YF23Km2FoudGRI9F5qbUd
LoraXqGYeiaeySkGyWmZVl6Uc8dIxnMkTN3H/oI9aB6TOrsi059hAtFcSaFfyemP
c4LqXXCH7k2baiQt+qaLZ8cuZVG/+K5r2N2cmjO5kmJc6ynIaFnfMe4XxZLjp5LT
/PulYI15bXkvSARKx5CRh/CDHMOx5Blw+ASO0RhWbdy0WH4ZhhcaVF5AeIpPW86a
1LBcz97rMp72WmvKgrJeVO1r9+ll4SI6/YKGJRsxsCMdP3hgFpqntXyVjTFNdTM1
0gH6H5v55x06vJHvhtTk8SR3PfMTEM2fRU5jXEOrGowoGifx+wNUwORiwj6LE3KQ
SKUdT19RNzoW3VkFxhgk65ThK1S7YsJUKRoac3YdhttpqqqtFV//erenrZoR4k/p
vzvKy68EQ7RCNyD5wNWNFe0YjeJl5G8gQ8bUm4Xmab7djjgz+pn4WpQB8yYKJLAo
x9dqQ+6eUbw3Hcgk6qQ9E+r/svbulnAL0AeALAWK/91DwnZ2mCzKroFkLN7napKi
fRho4CqzrtM=
=NwEV
-----END PGP SIGNATURE-----
Merge tag 'objtool-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Ingo Molnar:
- Mark arch_cpu_idle_dead() __noreturn, make all architectures &
drivers that did this inconsistently follow this new, common
convention, and fix all the fallout that objtool can now detect
statically
- Fix/improve the ORC unwinder becoming unreliable due to
UNWIND_HINT_EMPTY ambiguity, split it into UNWIND_HINT_END_OF_STACK
and UNWIND_HINT_UNDEFINED to resolve it
- Fix noinstr violations in the KCSAN code and the lkdtm/stackleak code
- Generate ORC data for __pfx code
- Add more __noreturn annotations to various kernel startup/shutdown
and panic functions
- Misc improvements & fixes
* tag 'objtool-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
x86/hyperv: Mark hv_ghcb_terminate() as noreturn
scsi: message: fusion: Mark mpt_halt_firmware() __noreturn
x86/cpu: Mark {hlt,resume}_play_dead() __noreturn
btrfs: Mark btrfs_assertfail() __noreturn
objtool: Include weak functions in global_noreturns check
cpu: Mark nmi_panic_self_stop() __noreturn
cpu: Mark panic_smp_self_stop() __noreturn
arm64/cpu: Mark cpu_park_loop() and friends __noreturn
x86/head: Mark *_start_kernel() __noreturn
init: Mark start_kernel() __noreturn
init: Mark [arch_call_]rest_init() __noreturn
objtool: Generate ORC data for __pfx code
x86/linkage: Fix padding for typed functions
objtool: Separate prefix code from stack validation code
objtool: Remove superfluous dead_end_function() check
objtool: Add symbol iteration helpers
objtool: Add WARN_INSN()
scripts/objdump-func: Support multiple functions
context_tracking: Fix KCSAN noinstr violation
objtool: Add stackleak instrumentation to uaccess safe list
...
- updates to scripts/gdb from Glenn Washburn
- kexec cleanups from Bjorn Helgaas
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZEr+6wAKCRDdBJ7gKXxA
jn4NAP4u/hj/kR2dxYehcVLuQqJspCRZZBZlAReFJyHNQO6voAEAk0NN9rtG2+/E
r0G29CJhK+YL0W6mOs8O1yo9J1rZnAM=
=2CUV
-----END PGP SIGNATURE-----
Merge tag 'mm-nonmm-stable-2023-04-27-16-01' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-MM updates from Andrew Morton:
"Mainly singleton patches all over the place.
Series of note are:
- updates to scripts/gdb from Glenn Washburn
- kexec cleanups from Bjorn Helgaas"
* tag 'mm-nonmm-stable-2023-04-27-16-01' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (50 commits)
mailmap: add entries for Paul Mackerras
libgcc: add forward declarations for generic library routines
mailmap: add entry for Oleksandr
ocfs2: reduce ioctl stack usage
fs/proc: add Kthread flag to /proc/$pid/status
ia64: fix an addr to taddr in huge_pte_offset()
checkpatch: introduce proper bindings license check
epoll: rename global epmutex
scripts/gdb: add GDB convenience functions $lx_dentry_name() and $lx_i_dentry()
scripts/gdb: create linux/vfs.py for VFS related GDB helpers
uapi/linux/const.h: prefer ISO-friendly __typeof__
delayacct: track delays from IRQ/SOFTIRQ
scripts/gdb: timerlist: convert int chunks to str
scripts/gdb: print interrupts
scripts/gdb: raise error with reduced debugging information
scripts/gdb: add a Radix Tree Parser
lib/rbtree: use '+' instead of '|' for setting color.
proc/stat: remove arch_idle_time()
checkpatch: check for misuse of the link tags
checkpatch: allow Closes tags with links
...
switching from a user process to a kernel thread.
- More folio conversions from Kefeng Wang, Zhang Peng and Pankaj Raghav.
- zsmalloc performance improvements from Sergey Senozhatsky.
- Yue Zhao has found and fixed some data race issues around the
alteration of memcg userspace tunables.
- VFS rationalizations from Christoph Hellwig:
- removal of most of the callers of write_one_page().
- make __filemap_get_folio()'s return value more useful
- Luis Chamberlain has changed tmpfs so it no longer requires swap
backing. Use `mount -o noswap'.
- Qi Zheng has made the slab shrinkers operate locklessly, providing
some scalability benefits.
- Keith Busch has improved dmapool's performance, making part of its
operations O(1) rather than O(n).
- Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
permitting userspace to wr-protect anon memory unpopulated ptes.
- Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive rather
than exclusive, and has fixed a bunch of errors which were caused by its
unintuitive meaning.
- Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
which causes minor faults to install a write-protected pte.
- Vlastimil Babka has done some maintenance work on vma_merge():
cleanups to the kernel code and improvements to our userspace test
harness.
- Cleanups to do_fault_around() by Lorenzo Stoakes.
- Mike Rapoport has moved a lot of initialization code out of various
mm/ files and into mm/mm_init.c.
- Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
DRM, but DRM doesn't use it any more.
- Lorenzo has also coverted read_kcore() and vread() to use iterators
and has thereby removed the use of bounce buffers in some cases.
- Lorenzo has also contributed further cleanups of vma_merge().
- Chaitanya Prakash provides some fixes to the mmap selftesting code.
- Matthew Wilcox changes xfs and afs so they no longer take sleeping
locks in ->map_page(), a step towards RCUification of pagefaults.
- Suren Baghdasaryan has improved mmap_lock scalability by switching to
per-VMA locking.
- Frederic Weisbecker has reworked the percpu cache draining so that it
no longer causes latency glitches on cpu isolated workloads.
- Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
logic.
- Liu Shixin has changed zswap's initialization so we no longer waste a
chunk of memory if zswap is not being used.
- Yosry Ahmed has improved the performance of memcg statistics flushing.
- David Stevens has fixed several issues involving khugepaged,
userfaultfd and shmem.
- Christoph Hellwig has provided some cleanup work to zram's IO-related
code paths.
- David Hildenbrand has fixed up some issues in the selftest code's
testing of our pte state changing.
- Pankaj Raghav has made page_endio() unneeded and has removed it.
- Peter Xu contributed some rationalizations of the userfaultfd
selftests.
- Yosry Ahmed has fixed an issue around memcg's page recalim accounting.
- Chaitanya Prakash has fixed some arm-related issues in the
selftests/mm code.
- Longlong Xia has improved the way in which KSM handles hwpoisoned
pages.
- Peter Xu fixes a few issues with uffd-wp at fork() time.
- Stefan Roesch has changed KSM so that it may now be used on a
per-process and per-cgroup basis.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZEr3zQAKCRDdBJ7gKXxA
jlLoAP0fpQBipwFxED0Us4SKQfupV6z4caXNJGPeay7Aj11/kQD/aMRC2uPfgr96
eMG3kwn2pqkB9ST2QpkaRbxA//eMbQY=
=J+Dj
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Nick Piggin's "shoot lazy tlbs" series, to improve the peformance of
switching from a user process to a kernel thread.
- More folio conversions from Kefeng Wang, Zhang Peng and Pankaj
Raghav.
- zsmalloc performance improvements from Sergey Senozhatsky.
- Yue Zhao has found and fixed some data race issues around the
alteration of memcg userspace tunables.
- VFS rationalizations from Christoph Hellwig:
- removal of most of the callers of write_one_page()
- make __filemap_get_folio()'s return value more useful
- Luis Chamberlain has changed tmpfs so it no longer requires swap
backing. Use `mount -o noswap'.
- Qi Zheng has made the slab shrinkers operate locklessly, providing
some scalability benefits.
- Keith Busch has improved dmapool's performance, making part of its
operations O(1) rather than O(n).
- Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
permitting userspace to wr-protect anon memory unpopulated ptes.
- Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive
rather than exclusive, and has fixed a bunch of errors which were
caused by its unintuitive meaning.
- Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
which causes minor faults to install a write-protected pte.
- Vlastimil Babka has done some maintenance work on vma_merge():
cleanups to the kernel code and improvements to our userspace test
harness.
- Cleanups to do_fault_around() by Lorenzo Stoakes.
- Mike Rapoport has moved a lot of initialization code out of various
mm/ files and into mm/mm_init.c.
- Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
DRM, but DRM doesn't use it any more.
- Lorenzo has also coverted read_kcore() and vread() to use iterators
and has thereby removed the use of bounce buffers in some cases.
- Lorenzo has also contributed further cleanups of vma_merge().
- Chaitanya Prakash provides some fixes to the mmap selftesting code.
- Matthew Wilcox changes xfs and afs so they no longer take sleeping
locks in ->map_page(), a step towards RCUification of pagefaults.
- Suren Baghdasaryan has improved mmap_lock scalability by switching to
per-VMA locking.
- Frederic Weisbecker has reworked the percpu cache draining so that it
no longer causes latency glitches on cpu isolated workloads.
- Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
logic.
- Liu Shixin has changed zswap's initialization so we no longer waste a
chunk of memory if zswap is not being used.
- Yosry Ahmed has improved the performance of memcg statistics
flushing.
- David Stevens has fixed several issues involving khugepaged,
userfaultfd and shmem.
- Christoph Hellwig has provided some cleanup work to zram's IO-related
code paths.
- David Hildenbrand has fixed up some issues in the selftest code's
testing of our pte state changing.
- Pankaj Raghav has made page_endio() unneeded and has removed it.
- Peter Xu contributed some rationalizations of the userfaultfd
selftests.
- Yosry Ahmed has fixed an issue around memcg's page recalim
accounting.
- Chaitanya Prakash has fixed some arm-related issues in the
selftests/mm code.
- Longlong Xia has improved the way in which KSM handles hwpoisoned
pages.
- Peter Xu fixes a few issues with uffd-wp at fork() time.
- Stefan Roesch has changed KSM so that it may now be used on a
per-process and per-cgroup basis.
* tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (369 commits)
mm,unmap: avoid flushing TLB in batch if PTE is inaccessible
shmem: restrict noswap option to initial user namespace
mm/khugepaged: fix conflicting mods to collapse_file()
sparse: remove unnecessary 0 values from rc
mm: move 'mmap_min_addr' logic from callers into vm_unmapped_area()
hugetlb: pte_alloc_huge() to replace huge pte_alloc_map()
maple_tree: fix allocation in mas_sparse_area()
mm: do not increment pgfault stats when page fault handler retries
zsmalloc: allow only one active pool compaction context
selftests/mm: add new selftests for KSM
mm: add new KSM process and sysfs knobs
mm: add new api to enable ksm per process
mm: shrinkers: fix debugfs file permissions
mm: don't check VMA write permissions if the PTE/PMD indicates write permissions
migrate_pages_batch: fix statistics for longterm pin retry
userfaultfd: use helper function range_in_vma()
lib/show_mem.c: use for_each_populated_zone() simplify code
mm: correct arg in reclaim_pages()/reclaim_clean_pages_from_list()
fs/buffer: convert create_page_buffers to folio_create_buffers
fs/buffer: add folio_create_empty_buffers helper
...
-----BEGIN PGP SIGNATURE-----
iQFHBAABCgAxFiEEIbPD0id6easf0xsudhRwX5BBoF4FAmRHJSgTHHdlaS5saXVA
a2VybmVsLm9yZwAKCRB2FHBfkEGgXjSOCAClsmFmyP320yAB74vQer5cSzxbIpFW
3qt/P3D8zABn0UxjjmD8+LTHuyB+72KANU6qQ9No6zdYs8yaA1vGX8j8UglWWHuj
fmaAD4DuZl+V+fmqDgHukgaPlhakmW0m5tJkR+TW3kCgnyrtvSWpXPoxUAe6CLvj
Kb/SPl6ylHRWlIAEZ51gy0Ipqxjvs5vR/h9CWpTmRMuZvxdWUro2Cm82wJgzXPqq
3eLbAzB29kLFEIIUpba9a/rif1yrWgVFlfpuENFZ+HUYuR78wrPB9evhwuPvhXd2
+f+Wk0IXORAJo8h7aaMMIr6bd4Lyn98GPgmS5YSe92HRIqjBvtYs3Dq8
=F6+n
-----END PGP SIGNATURE-----
Merge tag 'hyperv-next-signed-20230424' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyperv updates from Wei Liu:
- PCI passthrough for Hyper-V confidential VMs (Michael Kelley)
- Hyper-V VTL mode support (Saurabh Sengar)
- Move panic report initialization code earlier (Long Li)
- Various improvements and bug fixes (Dexuan Cui and Michael Kelley)
* tag 'hyperv-next-signed-20230424' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux: (22 commits)
PCI: hv: Replace retarget_msi_interrupt_params with hyperv_pcpu_input_arg
Drivers: hv: move panic report code from vmbus to hv early init code
x86/hyperv: VTL support for Hyper-V
Drivers: hv: Kconfig: Add HYPERV_VTL_MODE
x86/hyperv: Make hv_get_nmi_reason public
x86/hyperv: Add VTL specific structs and hypercalls
x86/init: Make get/set_rtc_noop() public
x86/hyperv: Exclude lazy TLB mode CPUs from enlightened TLB flushes
x86/hyperv: Add callback filter to cpumask_to_vpset()
Drivers: hv: vmbus: Remove the per-CPU post_msg_page
clocksource: hyper-v: make sure Invariant-TSC is used if it is available
PCI: hv: Enable PCI pass-thru devices in Confidential VMs
Drivers: hv: Don't remap addresses that are above shared_gpa_boundary
hv_netvsc: Remove second mapping of send and recv buffers
Drivers: hv: vmbus: Remove second way of mapping ring buffers
Drivers: hv: vmbus: Remove second mapping of VMBus monitor pages
swiotlb: Remove bounce buffer remapping for Hyper-V
Driver: VMBus: Add Devicetree support
dt-bindings: bus: Add Hyper-V VMBus
Drivers: hv: vmbus: Convert acpi_device to more generic platform_device
...
This pull request goes with only a few sysctl moves from the
kernel/sysctl.c file, the rest of the work has been put towards
deprecating two API calls which incur recursion and prevent us
from simplifying the registration process / saving memory per
move. Most of the changes have been soaking on linux-next since
v6.3-rc3.
I've slowed down the kernel/sysctl.c moves due to Matthew Wilcox's
feedback that we should see if we could *save* memory with these
moves instead of incurring more memory. We currently incur more
memory since when we move a syctl from kernel/sysclt.c out to its
own file we end up having to add a new empty sysctl used to register
it. To achieve saving memory we want to allow syctls to be passed
without requiring the end element being empty, and just have our
registration process rely on ARRAY_SIZE(). Without this, supporting
both styles of sysctls would make the sysctl registration pretty
brittle, hard to read and maintain as can be seen from Meng Tang's
efforts to do just this [0]. Fortunately, in order to use ARRAY_SIZE()
for all sysctl registrations also implies doing the work to deprecate
two API calls which use recursion in order to support sysctl
declarations with subdirectories.
And so during this development cycle quite a bit of effort went into
this deprecation effort. I've annotated the following two APIs are
deprecated and in few kernel releases we should be good to remove them:
* register_sysctl_table()
* register_sysctl_paths()
During this merge window we should be able to deprecate and unexport
register_sysctl_paths(), we can probably do that towards the end
of this merge window.
Deprecating register_sysctl_table() will take a bit more time but
this pull request goes with a few example of how to do this.
As it turns out each of the conversions to move away from either of
these two API calls *also* saves memory. And so long term, all these
changes *will* prove to have saved a bit of memory on boot.
The way I see it then is if remove a user of one deprecated call, it
gives us enough savings to move one kernel/sysctl.c out from the
generic arrays as we end up with about the same amount of bytes.
Since deprecating register_sysctl_table() and register_sysctl_paths()
does not require maintainer coordination except the final unexport
you'll see quite a bit of these changes from other pull requests, I've
just kept the stragglers after rc3.
Most of these changes have been soaking on linux-next since around rc3.
[0] https://lkml.kernel.org/r/ZAD+cpbrqlc5vmry@bombadil.infradead.org
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmRHAjQSHG1jZ3JvZkBr
ZXJuZWwub3JnAAoJEM4jHQowkoinTzgQAI/uKHKi0VlUR1l2Psl0XbseUVueuyj3
ZDxSJpbVUmsoDf2MlLjzB8mYE3ricnNTDbLr7qOyA6pXdM1N0mY5LQmRVRu8/ffd
2T1hQ5pl7YnJdWP5dPhcF9Y+jnu1tjX1MW5DS4fzllwK7FnD86HuIruGq52RAPS/
/FH+BD9eodLWWXk6A/o2GFqoWxPKQI0GLxEYWa7Hg7yt8E/3PQL9QsRzn8i6U+HW
BrN/+G3YD1VCCzXu0UAeXnm+i1Z7CdvqNdZuSkvE3DObiZ5WpOS+/i7FrDB7zdiu
zAbHaifHnDPtcK3w2ZodbLAAwEWD/mG4iwIjE2kgIMVYxBv7TFDBRREXAWYAevIT
UUuZnWDQsGaWdjywrebaUycEfd6dytKyan0fTXgMFkcoWRjejhitfdM2iZDdQROg
q453p4HqOw4vTrhy4ov4zOX7J3EFiBzpZdl+SmLqcXk+jbLVb/Q9snUWz1AFtHBl
gHoP5bS82uVktGG3MsObjgTzYYMQjO9YGIrVuW1VP9uWs8WaoWx6M9FQJIIhtwE+
h6wG2s7CjuFWnS0/IxWmDOn91QyUn1w7ohiz9TuvYj/5GLSBpBDGCJHsNB5T2WS1
qbQRaZ2Kg3j9TeyWfXxdlxBx7bt3ni+J/IXDY0zom2sTpGHKl8D2g5AzmEXJDTpl
kd7Z3gsmwhDh
=0U0W
-----END PGP SIGNATURE-----
Merge tag 'sysctl-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull sysctl updates from Luis Chamberlain:
"This only does a few sysctl moves from the kernel/sysctl.c file, the
rest of the work has been put towards deprecating two API calls which
incur recursion and prevent us from simplifying the registration
process / saving memory per move. Most of the changes have been
soaking on linux-next since v6.3-rc3.
I've slowed down the kernel/sysctl.c moves due to Matthew Wilcox's
feedback that we should see if we could *save* memory with these moves
instead of incurring more memory. We currently incur more memory since
when we move a syctl from kernel/sysclt.c out to its own file we end
up having to add a new empty sysctl used to register it. To achieve
saving memory we want to allow syctls to be passed without requiring
the end element being empty, and just have our registration process
rely on ARRAY_SIZE(). Without this, supporting both styles of sysctls
would make the sysctl registration pretty brittle, hard to read and
maintain as can be seen from Meng Tang's efforts to do just this [0].
Fortunately, in order to use ARRAY_SIZE() for all sysctl registrations
also implies doing the work to deprecate two API calls which use
recursion in order to support sysctl declarations with subdirectories.
And so during this development cycle quite a bit of effort went into
this deprecation effort. I've annotated the following two APIs are
deprecated and in few kernel releases we should be good to remove
them:
- register_sysctl_table()
- register_sysctl_paths()
During this merge window we should be able to deprecate and unexport
register_sysctl_paths(), we can probably do that towards the end of
this merge window.
Deprecating register_sysctl_table() will take a bit more time but this
pull request goes with a few example of how to do this.
As it turns out each of the conversions to move away from either of
these two API calls *also* saves memory. And so long term, all these
changes *will* prove to have saved a bit of memory on boot.
The way I see it then is if remove a user of one deprecated call, it
gives us enough savings to move one kernel/sysctl.c out from the
generic arrays as we end up with about the same amount of bytes.
Since deprecating register_sysctl_table() and register_sysctl_paths()
does not require maintainer coordination except the final unexport
you'll see quite a bit of these changes from other pull requests, I've
just kept the stragglers after rc3"
Link: https://lkml.kernel.org/r/ZAD+cpbrqlc5vmry@bombadil.infradead.org [0]
* tag 'sysctl-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (29 commits)
fs: fix sysctls.c built
mm: compaction: remove incorrect #ifdef checks
mm: compaction: move compaction sysctl to its own file
mm: memory-failure: Move memory failure sysctls to its own file
arm: simplify two-level sysctl registration for ctl_isa_vars
ia64: simplify one-level sysctl registration for kdump_ctl_table
utsname: simplify one-level sysctl registration for uts_kern_table
ntfs: simplfy one-level sysctl registration for ntfs_sysctls
coda: simplify one-level sysctl registration for coda_table
fs/cachefiles: simplify one-level sysctl registration for cachefiles_sysctls
xfs: simplify two-level sysctl registration for xfs_table
nfs: simplify two-level sysctl registration for nfs_cb_sysctls
nfs: simplify two-level sysctl registration for nfs4_cb_sysctls
lockd: simplify two-level sysctl registration for nlm_sysctls
proc_sysctl: enhance documentation
xen: simplify sysctl registration for balloon
md: simplify sysctl registration
hv: simplify sysctl registration
scsi: simplify sysctl registration with register_sysctl()
csky: simplify alignment sysctl registration
...
The summary of the changes for this pull requests is:
* Song Liu's new struct module_memory replacement
* Nick Alcock's MODULE_LICENSE() removal for non-modules
* My cleanups and enhancements to reduce the areas where we vmalloc
module memory for duplicates, and the respective debug code which
proves the remaining vmalloc pressure comes from userspace.
Most of the changes have been in linux-next for quite some time except
the minor fixes I made to check if a module was already loaded
prior to allocating the final module memory with vmalloc and the
respective debug code it introduces to help clarify the issue. Although
the functional change is small it is rather safe as it can only *help*
reduce vmalloc space for duplicates and is confirmed to fix a bootup
issue with over 400 CPUs with KASAN enabled. I don't expect stable
kernels to pick up that fix as the cleanups would have also had to have
been picked up. Folks on larger CPU systems with modules will want to
just upgrade if vmalloc space has been an issue on bootup.
Given the size of this request, here's some more elaborate details
on this pull request.
The functional change change in this pull request is the very first
patch from Song Liu which replaces the struct module_layout with a new
struct module memory. The old data structure tried to put together all
types of supported module memory types in one data structure, the new
one abstracts the differences in memory types in a module to allow each
one to provide their own set of details. This paves the way in the
future so we can deal with them in a cleaner way. If you look at changes
they also provide a nice cleanup of how we handle these different memory
areas in a module. This change has been in linux-next since before the
merge window opened for v6.3 so to provide more than a full kernel cycle
of testing. It's a good thing as quite a bit of fixes have been found
for it.
Jason Baron then made dynamic debug a first class citizen module user by
using module notifier callbacks to allocate / remove module specific
dynamic debug information.
Nick Alcock has done quite a bit of work cross-tree to remove module
license tags from things which cannot possibly be module at my request
so to:
a) help him with his longer term tooling goals which require a
deterministic evaluation if a piece a symbol code could ever be
part of a module or not. But quite recently it is has been made
clear that tooling is not the only one that would benefit.
Disambiguating symbols also helps efforts such as live patching,
kprobes and BPF, but for other reasons and R&D on this area
is active with no clear solution in sight.
b) help us inch closer to the now generally accepted long term goal
of automating all the MODULE_LICENSE() tags from SPDX license tags
In so far as a) is concerned, although module license tags are a no-op
for non-modules, tools which would want create a mapping of possible
modules can only rely on the module license tag after the commit
8b41fc4454 ("kbuild: create modules.builtin without Makefile.modbuiltin
or tristate.conf"). Nick has been working on this *for years* and
AFAICT I was the only one to suggest two alternatives to this approach
for tooling. The complexity in one of my suggested approaches lies in
that we'd need a possible-obj-m and a could-be-module which would check
if the object being built is part of any kconfig build which could ever
lead to it being part of a module, and if so define a new define
-DPOSSIBLE_MODULE [0]. A more obvious yet theoretical approach I've
suggested would be to have a tristate in kconfig imply the same new
-DPOSSIBLE_MODULE as well but that means getting kconfig symbol names
mapping to modules always, and I don't think that's the case today. I am
not aware of Nick or anyone exploring either of these options. Quite
recently Josh Poimboeuf has pointed out that live patching, kprobes and
BPF would benefit from resolving some part of the disambiguation as
well but for other reasons. The function granularity KASLR (fgkaslr)
patches were mentioned but Joe Lawrence has clarified this effort has
been dropped with no clear solution in sight [1].
In the meantime removing module license tags from code which could never
be modules is welcomed for both objectives mentioned above. Some
developers have also welcomed these changes as it has helped clarify
when a module was never possible and they forgot to clean this up,
and so you'll see quite a bit of Nick's patches in other pull
requests for this merge window. I just picked up the stragglers after
rc3. LWN has good coverage on the motivation behind this work [2] and
the typical cross-tree issues he ran into along the way. The only
concrete blocker issue he ran into was that we should not remove the
MODULE_LICENSE() tags from files which have no SPDX tags yet, even if
they can never be modules. Nick ended up giving up on his efforts due
to having to do this vetting and backlash he ran into from folks who
really did *not understand* the core of the issue nor were providing
any alternative / guidance. I've gone through his changes and dropped
the patches which dropped the module license tags where an SPDX
license tag was missing, it only consisted of 11 drivers. To see
if a pull request deals with a file which lacks SPDX tags you
can just use:
./scripts/spdxcheck.py -f \
$(git diff --name-only commid-id | xargs echo)
You'll see a core module file in this pull request for the above,
but that's not related to his changes. WE just need to add the SPDX
license tag for the kernel/module/kmod.c file in the future but
it demonstrates the effectiveness of the script.
Most of Nick's changes were spread out through different trees,
and I just picked up the slack after rc3 for the last kernel was out.
Those changes have been in linux-next for over two weeks.
The cleanups, debug code I added and final fix I added for modules
were motivated by David Hildenbrand's report of boot failing on
a systems with over 400 CPUs when KASAN was enabled due to running
out of virtual memory space. Although the functional change only
consists of 3 lines in the patch "module: avoid allocation if module is
already present and ready", proving that this was the best we can
do on the modules side took quite a bit of effort and new debug code.
The initial cleanups I did on the modules side of things has been
in linux-next since around rc3 of the last kernel, the actual final
fix for and debug code however have only been in linux-next for about a
week or so but I think it is worth getting that code in for this merge
window as it does help fix / prove / evaluate the issues reported
with larger number of CPUs. Userspace is not yet fixed as it is taking
a bit of time for folks to understand the crux of the issue and find a
proper resolution. Worst come to worst, I have a kludge-of-concept [3]
of how to make kernel_read*() calls for modules unique / converge them,
but I'm currently inclined to just see if userspace can fix this
instead.
[0] https://lore.kernel.org/all/Y/kXDqW+7d71C4wz@bombadil.infradead.org/
[1] https://lkml.kernel.org/r/025f2151-ce7c-5630-9b90-98742c97ac65@redhat.com
[2] https://lwn.net/Articles/927569/
[3] https://lkml.kernel.org/r/20230414052840.1994456-3-mcgrof@kernel.org
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmRG4m0SHG1jZ3JvZkBr
ZXJuZWwub3JnAAoJEM4jHQowkoinQ2oP/0xlvKwJg6Ey8fHZF0qv8VOskE80zoLF
hMazU3xfqLA+1TQvouW1YBxt3jwS3t1Ehs+NrV+nY9Yzcm0MzRX/n3fASJVe7nRr
oqWWQU+voYl5Pw1xsfdp6C8IXpBQorpYby3Vp0MAMoZyl2W2YrNo36NV488wM9KC
jD4HF5Z6xpnPSZTRR7AgW9mo7FdAtxPeKJ76Bch7lH8U6omT7n36WqTw+5B1eAYU
YTOvrjRs294oqmWE+LeebyiOOXhH/yEYx4JNQgCwPdxwnRiGJWKsk5va0hRApqF/
WW8dIqdEnjsa84lCuxnmWgbcPK8cgmlO0rT0DyneACCldNlldCW1LJ0HOwLk9pea
p3JFAsBL7TKue4Tos6I7/4rx1ufyBGGIigqw9/VX5g0Iif+3BhWnqKRfz+p9wiMa
Fl7cU6u7yC68CHu1HBSisK16cYMCPeOnTSd89upHj8JU/t74O6k/ARvjrQ9qmNUt
c5U+OY+WpNJ1nXQydhY/yIDhFdYg8SSpNuIO90r4L8/8jRQYXNG80FDd1UtvVDuy
eq0r2yZ8C0XHSlOT9QHaua/tWV/aaKtyC/c0hDRrigfUrq8UOlGujMXbUnrmrWJI
tLJLAc7ePWAAoZXGSHrt0U27l029GzLwRdKqJ6kkDANVnTeOdV+mmBg9zGh3/Mp6
agiwdHUMVN7X
=56WK
-----END PGP SIGNATURE-----
Merge tag 'modules-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull module updates from Luis Chamberlain:
"The summary of the changes for this pull requests is:
- Song Liu's new struct module_memory replacement
- Nick Alcock's MODULE_LICENSE() removal for non-modules
- My cleanups and enhancements to reduce the areas where we vmalloc
module memory for duplicates, and the respective debug code which
proves the remaining vmalloc pressure comes from userspace.
Most of the changes have been in linux-next for quite some time except
the minor fixes I made to check if a module was already loaded prior
to allocating the final module memory with vmalloc and the respective
debug code it introduces to help clarify the issue. Although the
functional change is small it is rather safe as it can only *help*
reduce vmalloc space for duplicates and is confirmed to fix a bootup
issue with over 400 CPUs with KASAN enabled. I don't expect stable
kernels to pick up that fix as the cleanups would have also had to
have been picked up. Folks on larger CPU systems with modules will
want to just upgrade if vmalloc space has been an issue on bootup.
Given the size of this request, here's some more elaborate details:
The functional change change in this pull request is the very first
patch from Song Liu which replaces the 'struct module_layout' with a
new 'struct module_memory'. The old data structure tried to put
together all types of supported module memory types in one data
structure, the new one abstracts the differences in memory types in a
module to allow each one to provide their own set of details. This
paves the way in the future so we can deal with them in a cleaner way.
If you look at changes they also provide a nice cleanup of how we
handle these different memory areas in a module. This change has been
in linux-next since before the merge window opened for v6.3 so to
provide more than a full kernel cycle of testing. It's a good thing as
quite a bit of fixes have been found for it.
Jason Baron then made dynamic debug a first class citizen module user
by using module notifier callbacks to allocate / remove module
specific dynamic debug information.
Nick Alcock has done quite a bit of work cross-tree to remove module
license tags from things which cannot possibly be module at my request
so to:
a) help him with his longer term tooling goals which require a
deterministic evaluation if a piece a symbol code could ever be
part of a module or not. But quite recently it is has been made
clear that tooling is not the only one that would benefit.
Disambiguating symbols also helps efforts such as live patching,
kprobes and BPF, but for other reasons and R&D on this area is
active with no clear solution in sight.
b) help us inch closer to the now generally accepted long term goal
of automating all the MODULE_LICENSE() tags from SPDX license tags
In so far as a) is concerned, although module license tags are a no-op
for non-modules, tools which would want create a mapping of possible
modules can only rely on the module license tag after the commit
8b41fc4454 ("kbuild: create modules.builtin without
Makefile.modbuiltin or tristate.conf").
Nick has been working on this *for years* and AFAICT I was the only
one to suggest two alternatives to this approach for tooling. The
complexity in one of my suggested approaches lies in that we'd need a
possible-obj-m and a could-be-module which would check if the object
being built is part of any kconfig build which could ever lead to it
being part of a module, and if so define a new define
-DPOSSIBLE_MODULE [0].
A more obvious yet theoretical approach I've suggested would be to
have a tristate in kconfig imply the same new -DPOSSIBLE_MODULE as
well but that means getting kconfig symbol names mapping to modules
always, and I don't think that's the case today. I am not aware of
Nick or anyone exploring either of these options. Quite recently Josh
Poimboeuf has pointed out that live patching, kprobes and BPF would
benefit from resolving some part of the disambiguation as well but for
other reasons. The function granularity KASLR (fgkaslr) patches were
mentioned but Joe Lawrence has clarified this effort has been dropped
with no clear solution in sight [1].
In the meantime removing module license tags from code which could
never be modules is welcomed for both objectives mentioned above. Some
developers have also welcomed these changes as it has helped clarify
when a module was never possible and they forgot to clean this up, and
so you'll see quite a bit of Nick's patches in other pull requests for
this merge window. I just picked up the stragglers after rc3. LWN has
good coverage on the motivation behind this work [2] and the typical
cross-tree issues he ran into along the way. The only concrete blocker
issue he ran into was that we should not remove the MODULE_LICENSE()
tags from files which have no SPDX tags yet, even if they can never be
modules. Nick ended up giving up on his efforts due to having to do
this vetting and backlash he ran into from folks who really did *not
understand* the core of the issue nor were providing any alternative /
guidance. I've gone through his changes and dropped the patches which
dropped the module license tags where an SPDX license tag was missing,
it only consisted of 11 drivers. To see if a pull request deals with a
file which lacks SPDX tags you can just use:
./scripts/spdxcheck.py -f \
$(git diff --name-only commid-id | xargs echo)
You'll see a core module file in this pull request for the above, but
that's not related to his changes. WE just need to add the SPDX
license tag for the kernel/module/kmod.c file in the future but it
demonstrates the effectiveness of the script.
Most of Nick's changes were spread out through different trees, and I
just picked up the slack after rc3 for the last kernel was out. Those
changes have been in linux-next for over two weeks.
The cleanups, debug code I added and final fix I added for modules
were motivated by David Hildenbrand's report of boot failing on a
systems with over 400 CPUs when KASAN was enabled due to running out
of virtual memory space. Although the functional change only consists
of 3 lines in the patch "module: avoid allocation if module is already
present and ready", proving that this was the best we can do on the
modules side took quite a bit of effort and new debug code.
The initial cleanups I did on the modules side of things has been in
linux-next since around rc3 of the last kernel, the actual final fix
for and debug code however have only been in linux-next for about a
week or so but I think it is worth getting that code in for this merge
window as it does help fix / prove / evaluate the issues reported with
larger number of CPUs. Userspace is not yet fixed as it is taking a
bit of time for folks to understand the crux of the issue and find a
proper resolution. Worst come to worst, I have a kludge-of-concept [3]
of how to make kernel_read*() calls for modules unique / converge
them, but I'm currently inclined to just see if userspace can fix this
instead"
Link: https://lore.kernel.org/all/Y/kXDqW+7d71C4wz@bombadil.infradead.org/ [0]
Link: https://lkml.kernel.org/r/025f2151-ce7c-5630-9b90-98742c97ac65@redhat.com [1]
Link: https://lwn.net/Articles/927569/ [2]
Link: https://lkml.kernel.org/r/20230414052840.1994456-3-mcgrof@kernel.org [3]
* tag 'modules-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (121 commits)
module: add debugging auto-load duplicate module support
module: stats: fix invalid_mod_bytes typo
module: remove use of uninitialized variable len
module: fix building stats for 32-bit targets
module: stats: include uapi/linux/module.h
module: avoid allocation if module is already present and ready
module: add debug stats to help identify memory pressure
module: extract patient module check into helper
modules/kmod: replace implementation with a semaphore
Change DEFINE_SEMAPHORE() to take a number argument
module: fix kmemleak annotations for non init ELF sections
module: Ignore L0 and rename is_arm_mapping_symbol()
module: Move is_arm_mapping_symbol() to module_symbol.h
module: Sync code of is_arm_mapping_symbol()
scripts/gdb: use mem instead of core_layout to get the module address
interconnect: remove module-related code
interconnect: remove MODULE_LICENSE in non-modules
zswap: remove MODULE_LICENSE in non-modules
zpool: remove MODULE_LICENSE in non-modules
x86/mm/dump_pagetables: remove MODULE_LICENSE in non-modules
...
If something was written to the buffer just before destruction,
it may be possible (maybe not in a real system, but it did
happen in ARCH=um with time-travel) to destroy the ringbuffer
before the IRQ work ran, leading this KASAN report (or a crash
without KASAN):
BUG: KASAN: slab-use-after-free in irq_work_run_list+0x11a/0x13a
Read of size 8 at addr 000000006d640a48 by task swapper/0
CPU: 0 PID: 0 Comm: swapper Tainted: G W O 6.3.0-rc1 #7
Stack:
60c4f20f 0c203d48 41b58ab3 60f224fc
600477fa 60f35687 60c4f20f 601273dd
00000008 6101eb00 6101eab0 615be548
Call Trace:
[<60047a58>] show_stack+0x25e/0x282
[<60c609e0>] dump_stack_lvl+0x96/0xfd
[<60c50d4c>] print_report+0x1a7/0x5a8
[<603078d3>] kasan_report+0xc1/0xe9
[<60308950>] __asan_report_load8_noabort+0x1b/0x1d
[<60232844>] irq_work_run_list+0x11a/0x13a
[<602328b4>] irq_work_tick+0x24/0x34
[<6017f9dc>] update_process_times+0x162/0x196
[<6019f335>] tick_sched_handle+0x1a4/0x1c3
[<6019fd9e>] tick_sched_timer+0x79/0x10c
[<601812b9>] __hrtimer_run_queues.constprop.0+0x425/0x695
[<60182913>] hrtimer_interrupt+0x16c/0x2c4
[<600486a3>] um_timer+0x164/0x183
[...]
Allocated by task 411:
save_stack_trace+0x99/0xb5
stack_trace_save+0x81/0x9b
kasan_save_stack+0x2d/0x54
kasan_set_track+0x34/0x3e
kasan_save_alloc_info+0x25/0x28
____kasan_kmalloc+0x8b/0x97
__kasan_kmalloc+0x10/0x12
__kmalloc+0xb2/0xe8
load_elf_phdrs+0xee/0x182
[...]
The buggy address belongs to the object at 000000006d640800
which belongs to the cache kmalloc-1k of size 1024
The buggy address is located 584 bytes inside of
freed 1024-byte region [000000006d640800, 000000006d640c00)
Add the appropriate irq_work_sync() so the work finishes before
the buffers are destroyed.
Prior to the commit in the Fixes tag below, there was only a
single global IRQ work, so this issue didn't exist.
Link: https://lore.kernel.org/linux-trace-kernel/20230427175920.a76159263122.I8295e405c44362a86c995e9c2c37e3e03810aa56@changeid
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Fixes: 15693458c4 ("tracing/ring-buffer: Move poll wake ups into ring buffer code")
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Here is the "big" set of char/misc and other driver subsystems for
6.4-rc1.
It's pretty big, but due to the removal of pcmcia drivers, almost breaks
even for number of lines added vs. removed, a nice change.
Included in here are:
- removal of unused PCMCIA drivers (finally!)
- Interconnect driver updates and additions
- Lots of IIO driver updates and additions
- MHI driver updates
- Coresight driver updates
- NVMEM driver updates, which required some OF updates
- W1 driver updates and a new maintainer to manage the subsystem
- FPGA driver updates
- New driver subsystem, CDX, for AMD systems
- lots of other small driver updates and additions
All of these have been in linux-next for a while with no reported
issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCZEp5Eg8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ynSXgCg0kSw3vUYwpsnhAsQkoPw1QVA23sAn2edRCMa
GEkPWjrROueCom7xbLMu
=eR+P
-----END PGP SIGNATURE-----
Merge tag 'char-misc-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc drivers updates from Greg KH:
"Here is the "big" set of char/misc and other driver subsystems for
6.4-rc1.
It's pretty big, but due to the removal of pcmcia drivers, almost
breaks even for number of lines added vs. removed, a nice change.
Included in here are:
- removal of unused PCMCIA drivers (finally!)
- Interconnect driver updates and additions
- Lots of IIO driver updates and additions
- MHI driver updates
- Coresight driver updates
- NVMEM driver updates, which required some OF updates
- W1 driver updates and a new maintainer to manage the subsystem
- FPGA driver updates
- New driver subsystem, CDX, for AMD systems
- lots of other small driver updates and additions
All of these have been in linux-next for a while with no reported
issues"
* tag 'char-misc-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (196 commits)
mcb-lpc: Reallocate memory region to avoid memory overlapping
mcb-pci: Reallocate memory region to avoid memory overlapping
mcb: Return actual parsed size when reading chameleon table
kernel/configs: Drop Android config fragments
virt: acrn: Replace obsolete memalign() with posix_memalign()
spmi: Add a check for remove callback when removing a SPMI driver
spmi: fix W=1 kernel-doc warnings
spmi: mtk-pmif: Drop of_match_ptr for ID table
spmi: pmic-arb: Convert to platform remove callback returning void
spmi: mtk-pmif: Convert to platform remove callback returning void
spmi: hisi-spmi-controller: Convert to platform remove callback returning void
w1: gpio: remove unnecessary ENOMEM messages
w1: omap-hdq: remove unnecessary ENOMEM messages
w1: omap-hdq: add SPDX tag
w1: omap-hdq: allow compile testing
w1: matrox: remove unnecessary ENOMEM messages
w1: matrox: use inline over __inline__
w1: matrox: switch from asm to linux header
w1: ds2482: do not use assignment in if condition
w1: ds2482: drop unnecessary header
...
Here is the large set of driver core changes for 6.4-rc1.
Once again, a busy development cycle, with lots of changes happening in
the driver core in the quest to be able to move "struct bus" and "struct
class" into read-only memory, a task now complete with these changes.
This will make the future rust interactions with the driver core more
"provably correct" as well as providing more obvious lifetime rules for
all busses and classes in the kernel.
The changes required for this did touch many individual classes and
busses as many callbacks were changed to take const * parameters
instead. All of these changes have been submitted to the various
subsystem maintainers, giving them plenty of time to review, and most of
them actually did so.
Other than those changes, included in here are a small set of other
things:
- kobject logging improvements
- cacheinfo improvements and updates
- obligatory fw_devlink updates and fixes
- documentation updates
- device property cleanups and const * changes
- firwmare loader dependency fixes.
All of these have been in linux-next for a while with no reported
problems.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCZEp7Sw8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykitQCfamUHpxGcKOAGuLXMotXNakTEsxgAoIquENm5
LEGadNS38k5fs+73UaxV
=7K4B
-----END PGP SIGNATURE-----
Merge tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the large set of driver core changes for 6.4-rc1.
Once again, a busy development cycle, with lots of changes happening
in the driver core in the quest to be able to move "struct bus" and
"struct class" into read-only memory, a task now complete with these
changes.
This will make the future rust interactions with the driver core more
"provably correct" as well as providing more obvious lifetime rules
for all busses and classes in the kernel.
The changes required for this did touch many individual classes and
busses as many callbacks were changed to take const * parameters
instead. All of these changes have been submitted to the various
subsystem maintainers, giving them plenty of time to review, and most
of them actually did so.
Other than those changes, included in here are a small set of other
things:
- kobject logging improvements
- cacheinfo improvements and updates
- obligatory fw_devlink updates and fixes
- documentation updates
- device property cleanups and const * changes
- firwmare loader dependency fixes.
All of these have been in linux-next for a while with no reported
problems"
* tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (120 commits)
device property: make device_property functions take const device *
driver core: update comments in device_rename()
driver core: Don't require dynamic_debug for initcall_debug probe timing
firmware_loader: rework crypto dependencies
firmware_loader: Strip off \n from customized path
zram: fix up permission for the hot_add sysfs file
cacheinfo: Add use_arch[|_cache]_info field/function
arch_topology: Remove early cacheinfo error message if -ENOENT
cacheinfo: Check cache properties are present in DT
cacheinfo: Check sib_leaf in cache_leaves_are_shared()
cacheinfo: Allow early level detection when DT/ACPI info is missing/broken
cacheinfo: Add arm64 early level initializer implementation
cacheinfo: Add arch specific early level initializer
tty: make tty_class a static const structure
driver core: class: remove struct class_interface * from callbacks
driver core: class: mark the struct class in struct class_interface constant
driver core: class: make class_register() take a const *
driver core: class: mark class_release() as taking a const *
driver core: remove incorrect comment for device_create*
MIPS: vpe-cmp: remove module owner pointer from struct class usage.
...
The system refused to do a test_resume because it found that the
swap device has already been taken by someone else. Specifically,
the swsusp_check()->blkdev_get_by_dev(FMODE_EXCL) is supposed to
do this check.
Steps to reproduce:
dd if=/dev/zero of=/swapfile bs=$(cat /proc/meminfo |
awk '/MemTotal/ {print $2}') count=1024 conv=notrunc
mkswap /swapfile
swapon /swapfile
swap-offset /swapfile
echo 34816 > /sys/power/resume_offset
echo test_resume > /sys/power/disk
echo disk > /sys/power/state
PM: Using 3 thread(s) for compression
PM: Compressing and saving image data (293150 pages)...
PM: Image saving progress: 0%
PM: Image saving progress: 10%
ata1: SATA link up 1.5 Gbps (SStatus 113 SControl 300)
ata1.00: configured for UDMA/100
ata2: SATA link down (SStatus 0 SControl 300)
ata5: SATA link down (SStatus 0 SControl 300)
ata6: SATA link down (SStatus 0 SControl 300)
ata3: SATA link down (SStatus 0 SControl 300)
ata4: SATA link down (SStatus 0 SControl 300)
PM: Image saving progress: 20%
PM: Image saving progress: 30%
PM: Image saving progress: 40%
PM: Image saving progress: 50%
pcieport 0000:00:02.5: pciehp: Slot(0-5): No device found
PM: Image saving progress: 60%
PM: Image saving progress: 70%
PM: Image saving progress: 80%
PM: Image saving progress: 90%
PM: Image saving done
PM: hibernation: Wrote 1172600 kbytes in 2.70 seconds (434.29 MB/s)
PM: S|
PM: hibernation: Basic memory bitmaps freed
PM: Image not found (code -16)
This is because when using the swapfile as the hibernation storage,
the block device where the swapfile is located has already been mounted
by the OS distribution(usually mounted as the rootfs). This is not
an issue for normal hibernation, because software_resume()->swsusp_check()
happens before the block device(rootfs) mount. But it is a problem for the
test_resume mode. Because when test_resume happens, the block device has
been mounted already.
Thus remove the FMODE_EXCL for test_resume mode. This would not be a
problem because in test_resume stage, the processes have already been
frozen, and the race condition described in
Commit 39fbef4b0f ("PM: hibernate: Get block device exclusively in swsusp_check()")
is unlikely to happen.
Fixes: 39fbef4b0f ("PM: hibernate: Get block device exclusively in swsusp_check()")
Reported-by: Yifan Li <yifan2.li@intel.com>
Suggested-by: Pavankumar Kondeti <quic_pkondeti@quicinc.com>
Tested-by: Pavankumar Kondeti <quic_pkondeti@quicinc.com>
Tested-by: Wendy Wang <wendy.wang@intel.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There is need to check snapshot_test and open block device
in different mode, so as to avoid the race condition.
No functional changes intended.
Suggested-by: Pavankumar Kondeti <quic_pkondeti@quicinc.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The cloned dynptr will point to the same data as its parent dynptr,
with the same type, offset, size and read-only properties.
Any writes to a dynptr will be reflected across all instances
(by 'instance', this means any dynptrs that point to the same
underlying data).
Please note that data slice and dynptr invalidations will affect all
instances as well. For example, if bpf_dynptr_write() is called on an
skb-type dynptr, all data slices of dynptr instances to that skb
will be invalidated as well (eg data slices of any clones, parents,
grandparents, ...). Another example is if a ringbuf dynptr is submitted,
any instance of that dynptr will be invalidated.
Changing the view of the dynptr (eg advancing the offset or
trimming the size) will only affect that dynptr and not affect any
other instances.
One example use case where cloning may be helpful is for hashing or
iterating through dynptr data. Cloning will allow the user to maintain
the original view of the dynptr for future use, while also allowing
views to smaller subsets of the data after the offset is advanced or the
size is trimmed.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230420071414.570108-5-joannelkoong@gmail.com
bpf_dynptr_size returns the number of usable bytes in a dynptr.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20230420071414.570108-4-joannelkoong@gmail.com
bpf_dynptr_is_null returns true if the dynptr is null / invalid
(determined by whether ptr->data is NULL), else false if
the dynptr is a valid dynptr.
bpf_dynptr_is_rdonly returns true if the dynptr is read-only,
else false if the dynptr is read-writable. If the dynptr is
null / invalid, false is returned by default.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20230420071414.570108-3-joannelkoong@gmail.com
Add a new kfunc
int bpf_dynptr_adjust(struct bpf_dynptr_kern *ptr, u32 start, u32 end);
which adjusts the dynptr to reflect the new [start, end) interval.
In particular, it advances the offset of the dynptr by "start" bytes,
and if end is less than the size of the dynptr, then this will trim the
dynptr accordingly.
Adjusting the dynptr interval may be useful in certain situations.
For example, when hashing which takes in generic dynptrs, if the dynptr
points to a struct but only a certain memory region inside the struct
should be hashed, adjust can be used to narrow in on the
specific region to hash.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230420071414.570108-2-joannelkoong@gmail.com
Core
----
- Introduce a config option to tweak MAX_SKB_FRAGS. Increasing the
default value allows for better BIG TCP performances.
- Reduce compound page head access for zero-copy data transfers.
- RPS/RFS improvements, avoiding unneeded NET_RX_SOFTIRQ when possible.
- Threaded NAPI improvements, adding defer skb free support and unneeded
softirq avoidance.
- Address dst_entry reference count scalability issues, via false
sharing avoidance and optimize refcount tracking.
- Add lockless accesses annotation to sk_err[_soft].
- Optimize again the skb struct layout.
- Extends the skb drop reasons to make it usable by multiple
subsystems.
- Better const qualifier awareness for socket casts.
BPF
---
- Add skb and XDP typed dynptrs which allow BPF programs for more
ergonomic and less brittle iteration through data and variable-sized
accesses.
- Add a new BPF netfilter program type and minimal support to hook
BPF programs to netfilter hooks such as prerouting or forward.
- Add more precise memory usage reporting for all BPF map types.
- Adds support for using {FOU,GUE} encap with an ipip device operating
in collect_md mode and add a set of BPF kfuncs for controlling encap
params.
- Allow BPF programs to detect at load time whether a particular kfunc
exists or not, and also add support for this in light skeleton.
- Bigger batch of BPF verifier improvements to prepare for upcoming BPF
open-coded iterators allowing for less restrictive looping capabilities.
- Rework RCU enforcement in the verifier, add kptr_rcu and enforce BPF
programs to NULL-check before passing such pointers into kfunc.
- Add support for kptrs in percpu hashmaps, percpu LRU hashmaps and in
local storage maps.
- Enable RCU semantics for task BPF kptrs and allow referenced kptr
tasks to be stored in BPF maps.
- Add support for refcounted local kptrs to the verifier for allowing
shared ownership, useful for adding a node to both the BPF list and
rbtree.
- Add BPF verifier support for ST instructions in convert_ctx_access()
which will help new -mcpu=v4 clang flag to start emitting them.
- Add ARM32 USDT support to libbpf.
- Improve bpftool's visual program dump which produces the control
flow graph in a DOT format by adding C source inline annotations.
Protocols
---------
- IPv4: Allow adding to IPv4 address a 'protocol' tag. Such value
indicates the provenance of the IP address.
- IPv6: optimize route lookup, dropping unneeded R/W lock acquisition.
- Add the handshake upcall mechanism, allowing the user-space
to implement generic TLS handshake on kernel's behalf.
- Bridge: support per-{Port, VLAN} neighbor suppression, increasing
resilience to nodes failures.
- SCTP: add support for Fair Capacity and Weighted Fair Queueing
schedulers.
- MPTCP: delay first subflow allocation up to its first usage. This
will allow for later better LSM interaction.
- xfrm: Remove inner/outer modes from input/output path. These are
not needed anymore.
- WiFi:
- reduced neighbor report (RNR) handling for AP mode
- HW timestamping support
- support for randomized auth/deauth TA for PASN privacy
- per-link debugfs for multi-link
- TC offload support for mac80211 drivers
- mac80211 mesh fast-xmit and fast-rx support
- enable Wi-Fi 7 (EHT) mesh support
Netfilter
---------
- Add nf_tables 'brouting' support, to force a packet to be routed
instead of being bridged.
- Update bridge netfilter and ovs conntrack helpers to handle
IPv6 Jumbo packets properly, i.e. fetch the packet length
from hop-by-hop extension header. This is needed for BIT TCP
support.
- The iptables 32bit compat interface isn't compiled in by default
anymore.
- Move ip(6)tables builtin icmp matches to the udptcp one.
This has the advantage that icmp/icmpv6 match doesn't load the
iptables/ip6tables modules anymore when iptables-nft is used.
- Extended netlink error report for netdevice in flowtables and
netdev/chains. Allow for incrementally add/delete devices to netdev
basechain. Allow to create netdev chain without device.
Driver API
----------
- Remove redundant Device Control Error Reporting Enable, as PCI core
has already error reporting enabled at enumeration time.
- Move Multicast DB netlink handlers to core, allowing devices other
then bridge to use them.
- Allow the page_pool to directly recycle the pages from safely
localized NAPI.
- Implement lockless TX queue stop/wake combo macros, allowing for
further code de-duplication and sanitization.
- Add YNL support for user headers and struct attrs.
- Add partial YNL specification for devlink.
- Add partial YNL specification for ethtool.
- Add tc-mqprio and tc-taprio support for preemptible traffic classes.
- Add tx push buf len param to ethtool, specifies the maximum number
of bytes of a transmitted packet a driver can push directly to the
underlying device.
- Add basic LED support for switch/phy.
- Add NAPI documentation, stop relaying on external links.
- Convert dsa_master_ioctl() to netdev notifier. This is a preparatory
work to make the hardware timestamping layer selectable by user
space.
- Add transceiver support and improve the error messages for CAN-FD
controllers.
New hardware / drivers
----------------------
- Ethernet:
- AMD/Pensando core device support
- MediaTek MT7981 SoC
- MediaTek MT7988 SoC
- Broadcom BCM53134 embedded switch
- Texas Instruments CPSW9G ethernet switch
- Qualcomm EMAC3 DWMAC ethernet
- StarFive JH7110 SoC
- NXP CBTX ethernet PHY
- WiFi:
- Apple M1 Pro/Max devices
- RealTek rtl8710bu/rtl8188gu
- RealTek rtl8822bs, rtl8822cs and rtl8821cs SDIO chipset
- Bluetooth:
- Realtek RTL8821CS, RTL8851B, RTL8852BS
- Mediatek MT7663, MT7922
- NXP w8997
- Actions Semi ATS2851
- QTI WCN6855
- Marvell 88W8997
- Can:
- STMicroelectronics bxcan stm32f429
Drivers
-------
- Ethernet NICs:
- Intel (1G, icg):
- add tracking and reporting of QBV config errors.
- add support for configuring max SDU for each Tx queue.
- Intel (100G, ice):
- refactor mailbox overflow detection to support Scalable IOV
- GNSS interface optimization
- Intel (i40e):
- support XDP multi-buffer
- nVidia/Mellanox:
- add the support for linux bridge multicast offload
- enable TC offload for egress and engress MACVLAN over bond
- add support for VxLAN GBP encap/decap flows offload
- extend packet offload to fully support libreswan
- support tunnel mode in mlx5 IPsec packet offload
- extend XDP multi-buffer support
- support MACsec VLAN offload
- add support for dynamic msix vectors allocation
- drop RX page_cache and fully use page_pool
- implement thermal zone to report NIC temperature
- Netronome/Corigine:
- add support for multi-zone conntrack offload
- Solarflare/Xilinx:
- support offloading TC VLAN push/pop actions to the MAE
- support TC decap rules
- support unicast PTP
- Other NICs:
- Broadcom (bnxt): enforce software based freq adjustments only
on shared PHC NIC
- RealTek (r8169): refactor to addess ASPM issues during NAPI poll.
- Micrel (lan8841): add support for PTP_PF_PEROUT
- Cadence (macb): enable PTP unicast
- Engleder (tsnep): add XDP socket zero-copy support
- virtio-net: implement exact header length guest feature
- veth: add page_pool support for page recycling
- vxlan: add MDB data path support
- gve: add XDP support for GQI-QPL format
- geneve: accept every ethertype
- macvlan: allow some packets to bypass broadcast queue
- mana: add support for jumbo frame
- Ethernet high-speed switches:
- Microchip (sparx5): Add support for TC flower templates.
- Ethernet embedded switches:
- Broadcom (b54):
- configure 6318 and 63268 RGMII ports
- Marvell (mv88e6xxx):
- faster C45 bus scan
- Microchip:
- lan966x:
- add support for IS1 VCAP
- better TX/RX from/to CPU performances
- ksz9477: add ETS Qdisc support
- ksz8: enhance static MAC table operations and error handling
- sama7g5: add PTP capability
- NXP (ocelot):
- add support for external ports
- add support for preemptible traffic classes
- Texas Instruments:
- add CPSWxG SGMII support for J7200 and J721E
- Intel WiFi (iwlwifi):
- preparation for Wi-Fi 7 EHT and multi-link support
- EHT (Wi-Fi 7) sniffer support
- hardware timestamping support for some devices/firwmares
- TX beacon protection on newer hardware
- Qualcomm 802.11ax WiFi (ath11k):
- MU-MIMO parameters support
- ack signal support for management packets
- RealTek WiFi (rtw88):
- SDIO bus support
- better support for some SDIO devices
(e.g. MAC address from efuse)
- RealTek WiFi (rtw89):
- HW scan support for 8852b
- better support for 6 GHz scanning
- support for various newer firmware APIs
- framework firmware backwards compatibility
- MediaTek WiFi (mt76):
- P2P support
- mesh A-MSDU support
- EHT (Wi-Fi 7) support
- coredump support
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEEg1AjqC77wbdLX2LbKSR5jcyPE6QFAmRI/mUSHHBhYmVuaUBy
ZWRoYXQuY29tAAoJECkkeY3MjxOkgO0QAJGxpuN67YgYV0BIM+/atWKEEexJYG7B
9MMpU4jMO3EW/pUS5t7VRsBLUybLYVPmqCZoHodObDfnu59jiPOegb6SikJv/ZwJ
Zw62PVk5MvDnQjlu4e6kDcGwkplteN08TlgI+a49BUTedpdFitrxHAYGW8f2fRO6
cK2XSld+ZucMoym5vRwf8yWS1BwdxnslPMxDJ+/8ZbWBZv44qAnG2vMB/kIx7ObC
Vel/4m6MzTwVsLYBsRvcwMVbNNlZ9GuhztlTzEbfGA4ZhTadIAMgb5VTWXB84Ws7
Aic5wTdli+q+x6/2cxhbyeoVuB9HHObYmLBAciGg4GNljP5rnQBY3X3+KVZ/x9TI
HQB7CmhxmAZVrO9pLARFV+ECrMTH2/dy3NyrZ7uYQ3WPOXJi8hJZjOTO/eeEGL7C
eTjdz0dZBWIBK2gON/6s4nExXVQUTEF2ZsPi52jTTClKjfe5pz/ddeFQIWaY1DTm
pInEiWPAvd28JyiFmhFNHsuIBCjX/Zqe2JuMfMBeBibDAC09o/OGdKJYUI15AiRf
F46Pdb7use/puqfrYW44kSAfaPYoBiE+hj1RdeQfen35xD9HVE4vdnLNeuhRlFF9
aQfyIRHYQofkumRDr5f8JEY66cl9NiKQ4IVW1xxQfYDNdC6wQqREPG1md7rJVMrJ
vP7ugFnttneg
=ITVa
-----END PGP SIGNATURE-----
Merge tag 'net-next-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next
Pull networking updates from Paolo Abeni:
"Core:
- Introduce a config option to tweak MAX_SKB_FRAGS. Increasing the
default value allows for better BIG TCP performances
- Reduce compound page head access for zero-copy data transfers
- RPS/RFS improvements, avoiding unneeded NET_RX_SOFTIRQ when
possible
- Threaded NAPI improvements, adding defer skb free support and
unneeded softirq avoidance
- Address dst_entry reference count scalability issues, via false
sharing avoidance and optimize refcount tracking
- Add lockless accesses annotation to sk_err[_soft]
- Optimize again the skb struct layout
- Extends the skb drop reasons to make it usable by multiple
subsystems
- Better const qualifier awareness for socket casts
BPF:
- Add skb and XDP typed dynptrs which allow BPF programs for more
ergonomic and less brittle iteration through data and
variable-sized accesses
- Add a new BPF netfilter program type and minimal support to hook
BPF programs to netfilter hooks such as prerouting or forward
- Add more precise memory usage reporting for all BPF map types
- Adds support for using {FOU,GUE} encap with an ipip device
operating in collect_md mode and add a set of BPF kfuncs for
controlling encap params
- Allow BPF programs to detect at load time whether a particular
kfunc exists or not, and also add support for this in light
skeleton
- Bigger batch of BPF verifier improvements to prepare for upcoming
BPF open-coded iterators allowing for less restrictive looping
capabilities
- Rework RCU enforcement in the verifier, add kptr_rcu and enforce
BPF programs to NULL-check before passing such pointers into kfunc
- Add support for kptrs in percpu hashmaps, percpu LRU hashmaps and
in local storage maps
- Enable RCU semantics for task BPF kptrs and allow referenced kptr
tasks to be stored in BPF maps
- Add support for refcounted local kptrs to the verifier for allowing
shared ownership, useful for adding a node to both the BPF list and
rbtree
- Add BPF verifier support for ST instructions in
convert_ctx_access() which will help new -mcpu=v4 clang flag to
start emitting them
- Add ARM32 USDT support to libbpf
- Improve bpftool's visual program dump which produces the control
flow graph in a DOT format by adding C source inline annotations
Protocols:
- IPv4: Allow adding to IPv4 address a 'protocol' tag. Such value
indicates the provenance of the IP address
- IPv6: optimize route lookup, dropping unneeded R/W lock acquisition
- Add the handshake upcall mechanism, allowing the user-space to
implement generic TLS handshake on kernel's behalf
- Bridge: support per-{Port, VLAN} neighbor suppression, increasing
resilience to nodes failures
- SCTP: add support for Fair Capacity and Weighted Fair Queueing
schedulers
- MPTCP: delay first subflow allocation up to its first usage. This
will allow for later better LSM interaction
- xfrm: Remove inner/outer modes from input/output path. These are
not needed anymore
- WiFi:
- reduced neighbor report (RNR) handling for AP mode
- HW timestamping support
- support for randomized auth/deauth TA for PASN privacy
- per-link debugfs for multi-link
- TC offload support for mac80211 drivers
- mac80211 mesh fast-xmit and fast-rx support
- enable Wi-Fi 7 (EHT) mesh support
Netfilter:
- Add nf_tables 'brouting' support, to force a packet to be routed
instead of being bridged
- Update bridge netfilter and ovs conntrack helpers to handle IPv6
Jumbo packets properly, i.e. fetch the packet length from
hop-by-hop extension header. This is needed for BIT TCP support
- The iptables 32bit compat interface isn't compiled in by default
anymore
- Move ip(6)tables builtin icmp matches to the udptcp one. This has
the advantage that icmp/icmpv6 match doesn't load the
iptables/ip6tables modules anymore when iptables-nft is used
- Extended netlink error report for netdevice in flowtables and
netdev/chains. Allow for incrementally add/delete devices to netdev
basechain. Allow to create netdev chain without device
Driver API:
- Remove redundant Device Control Error Reporting Enable, as PCI core
has already error reporting enabled at enumeration time
- Move Multicast DB netlink handlers to core, allowing devices other
then bridge to use them
- Allow the page_pool to directly recycle the pages from safely
localized NAPI
- Implement lockless TX queue stop/wake combo macros, allowing for
further code de-duplication and sanitization
- Add YNL support for user headers and struct attrs
- Add partial YNL specification for devlink
- Add partial YNL specification for ethtool
- Add tc-mqprio and tc-taprio support for preemptible traffic classes
- Add tx push buf len param to ethtool, specifies the maximum number
of bytes of a transmitted packet a driver can push directly to the
underlying device
- Add basic LED support for switch/phy
- Add NAPI documentation, stop relaying on external links
- Convert dsa_master_ioctl() to netdev notifier. This is a
preparatory work to make the hardware timestamping layer selectable
by user space
- Add transceiver support and improve the error messages for CAN-FD
controllers
New hardware / drivers:
- Ethernet:
- AMD/Pensando core device support
- MediaTek MT7981 SoC
- MediaTek MT7988 SoC
- Broadcom BCM53134 embedded switch
- Texas Instruments CPSW9G ethernet switch
- Qualcomm EMAC3 DWMAC ethernet
- StarFive JH7110 SoC
- NXP CBTX ethernet PHY
- WiFi:
- Apple M1 Pro/Max devices
- RealTek rtl8710bu/rtl8188gu
- RealTek rtl8822bs, rtl8822cs and rtl8821cs SDIO chipset
- Bluetooth:
- Realtek RTL8821CS, RTL8851B, RTL8852BS
- Mediatek MT7663, MT7922
- NXP w8997
- Actions Semi ATS2851
- QTI WCN6855
- Marvell 88W8997
- Can:
- STMicroelectronics bxcan stm32f429
Drivers:
- Ethernet NICs:
- Intel (1G, icg):
- add tracking and reporting of QBV config errors
- add support for configuring max SDU for each Tx queue
- Intel (100G, ice):
- refactor mailbox overflow detection to support Scalable IOV
- GNSS interface optimization
- Intel (i40e):
- support XDP multi-buffer
- nVidia/Mellanox:
- add the support for linux bridge multicast offload
- enable TC offload for egress and engress MACVLAN over bond
- add support for VxLAN GBP encap/decap flows offload
- extend packet offload to fully support libreswan
- support tunnel mode in mlx5 IPsec packet offload
- extend XDP multi-buffer support
- support MACsec VLAN offload
- add support for dynamic msix vectors allocation
- drop RX page_cache and fully use page_pool
- implement thermal zone to report NIC temperature
- Netronome/Corigine:
- add support for multi-zone conntrack offload
- Solarflare/Xilinx:
- support offloading TC VLAN push/pop actions to the MAE
- support TC decap rules
- support unicast PTP
- Other NICs:
- Broadcom (bnxt): enforce software based freq adjustments only on
shared PHC NIC
- RealTek (r8169): refactor to addess ASPM issues during NAPI poll
- Micrel (lan8841): add support for PTP_PF_PEROUT
- Cadence (macb): enable PTP unicast
- Engleder (tsnep): add XDP socket zero-copy support
- virtio-net: implement exact header length guest feature
- veth: add page_pool support for page recycling
- vxlan: add MDB data path support
- gve: add XDP support for GQI-QPL format
- geneve: accept every ethertype
- macvlan: allow some packets to bypass broadcast queue
- mana: add support for jumbo frame
- Ethernet high-speed switches:
- Microchip (sparx5): Add support for TC flower templates
- Ethernet embedded switches:
- Broadcom (b54):
- configure 6318 and 63268 RGMII ports
- Marvell (mv88e6xxx):
- faster C45 bus scan
- Microchip:
- lan966x:
- add support for IS1 VCAP
- better TX/RX from/to CPU performances
- ksz9477: add ETS Qdisc support
- ksz8: enhance static MAC table operations and error handling
- sama7g5: add PTP capability
- NXP (ocelot):
- add support for external ports
- add support for preemptible traffic classes
- Texas Instruments:
- add CPSWxG SGMII support for J7200 and J721E
- Intel WiFi (iwlwifi):
- preparation for Wi-Fi 7 EHT and multi-link support
- EHT (Wi-Fi 7) sniffer support
- hardware timestamping support for some devices/firwmares
- TX beacon protection on newer hardware
- Qualcomm 802.11ax WiFi (ath11k):
- MU-MIMO parameters support
- ack signal support for management packets
- RealTek WiFi (rtw88):
- SDIO bus support
- better support for some SDIO devices (e.g. MAC address from
efuse)
- RealTek WiFi (rtw89):
- HW scan support for 8852b
- better support for 6 GHz scanning
- support for various newer firmware APIs
- framework firmware backwards compatibility
- MediaTek WiFi (mt76):
- P2P support
- mesh A-MSDU support
- EHT (Wi-Fi 7) support
- coredump support"
* tag 'net-next-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2078 commits)
net: phy: hide the PHYLIB_LEDS knob
net: phy: marvell-88x2222: remove unnecessary (void*) conversions
tcp/udp: Fix memleaks of sk and zerocopy skbs with TX timestamp.
net: amd: Fix link leak when verifying config failed
net: phy: marvell: Fix inconsistent indenting in led_blink_set
lan966x: Don't use xdp_frame when action is XDP_TX
tsnep: Add XDP socket zero-copy TX support
tsnep: Add XDP socket zero-copy RX support
tsnep: Move skb receive action to separate function
tsnep: Add functions for queue enable/disable
tsnep: Rework TX/RX queue initialization
tsnep: Replace modulo operation with mask
net: phy: dp83867: Add led_brightness_set support
net: phy: Fix reading LED reg property
drivers: nfc: nfcsim: remove return value check of `dev_dir`
net: phy: dp83867: Remove unnecessary (void*) conversions
net: ethtool: coalesce: try to make user settings stick twice
net: mana: Check if netdev/napi_alloc_frag returns single page
net: mana: Rename mana_refill_rxoob and remove some empty lines
net: veth: add page_pool stats
...
There was never a function named ktime_get_fast_ns().
Presumably these should refer to ktime_get_mono_fast_ns() instead.
Fixes: c1ce406e80 ("timekeeping: Fix up function documentation for the NMI safe accessors")
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/06df7b3cbd94f016403bbf6cd2b38e4368e7468f.1682516546.git.geert+renesas@glider.be
API:
- Total usage stats now include all that returned error (instead of some).
- Remove maximum hash statesize limit.
- Add cloning support for hmac and unkeyed hashes.
- Demote BUG_ON in crypto_unregister_alg to a WARN_ON.
Algorithms:
- Use RIP-relative addressing on x86 to prepare for PIE build.
- Add accelerated AES/GCM stitched implementation on powerpc P10.
- Add some test vectors for cmac(camellia).
- Remove failure case where jent is unavailable outside of FIPS mode in drbg.
- Add permanent and intermittent health error checks in jitter RNG.
Drivers:
- Add support for 402xx devices in qat.
- Add support for HiSTB TRNG.
- Fix hash concurrency issues in stm32.
- Add OP-TEE firmware support in caam.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEn51F/lCuNhUwmDeSxycdCkmxi6cFAmRGCjcACgkQxycdCkmx
i6d6JA//ZmwgEqAKA8qWpHnNKZylTLqFhLxnKZwr4Hhp1KzManh/T9pepXiD2zAY
D92wU60v0hfGAazeUWQRmrIZxcjyd3b3Tr7WiFuNoZbkPsuXWZAoz8iHgMq69dqb
DXZhKJnlmVlcr+qTSk9MP8HODL5kU6Ug2pk+r8hL/WsBI+JGfZEXKcJhhMqYLYls
nl+NN4fkE5tgcTh2lp/9dQsQRylhESZuqb8L2wItQmripSbhPGwYf24I7B7xcGrn
o7X4XG//cQO6zQErgnOJOosIgJEEynW27CN4ZiHB8WhRAk0YLXydQBs6EjZgNA8H
EvZC/bIx2YOt8ngG99q4kRg4OgKp4c7UnV6l1pxuJWbIyXrFh4djxHdq9pTYr3UB
P3pVEX38Wu7U5Tfgy3y1QqZzsvrPjmnI3NQ8QBrcFzNRDan5K6nH4kQyk9Cv7LQm
GlE1JOThU5U2G33ZWKCluJUjVUCRceMWQYla1X5R4uWMCwSqRMpmx8Ib9QvbYlWe
iUI+RatLnlIobx+lgaC8mtij9dQddFjk6YwFYhQcD3Bl30DhTeIlbnOUY9YOTXps
H6V9X2inVUjyZr1uJ4a7rPdCUuzQxR6HWPyp6fXMlbLrEhL8e6c4/QbEoTubRQeS
WTtoIFt4ezd2SG6hI6dTCscgFc5EAyEMDD5GtQmJeyozu0Gqtpo=
=ITkW
-----END PGP SIGNATURE-----
Merge tag 'v6.4-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu:
"API:
- Total usage stats now include all that returned errors (instead of
just some)
- Remove maximum hash statesize limit
- Add cloning support for hmac and unkeyed hashes
- Demote BUG_ON in crypto_unregister_alg to a WARN_ON
Algorithms:
- Use RIP-relative addressing on x86 to prepare for PIE build
- Add accelerated AES/GCM stitched implementation on powerpc P10
- Add some test vectors for cmac(camellia)
- Remove failure case where jent is unavailable outside of FIPS mode
in drbg
- Add permanent and intermittent health error checks in jitter RNG
Drivers:
- Add support for 402xx devices in qat
- Add support for HiSTB TRNG
- Fix hash concurrency issues in stm32
- Add OP-TEE firmware support in caam"
* tag 'v6.4-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (139 commits)
i2c: designware: Add doorbell support for Mendocino
i2c: designware: Use PCI PSP driver for communication
powerpc: Move Power10 feature PPC_MODULE_FEATURE_P10
crypto: p10-aes-gcm - Remove POWER10_CPU dependency
crypto: testmgr - Add some test vectors for cmac(camellia)
crypto: cryptd - Add support for cloning hashes
crypto: cryptd - Convert hash to use modern init_tfm/exit_tfm
crypto: hmac - Add support for cloning
crypto: hash - Add crypto_clone_ahash/shash
crypto: api - Add crypto_clone_tfm
crypto: api - Add crypto_tfm_get
crypto: x86/sha - Use local .L symbols for code
crypto: x86/crc32 - Use local .L symbols for code
crypto: x86/aesni - Use local .L symbols for code
crypto: x86/sha256 - Use RIP-relative addressing
crypto: x86/ghash - Use RIP-relative addressing
crypto: x86/des3 - Use RIP-relative addressing
crypto: x86/crc32c - Use RIP-relative addressing
crypto: x86/cast6 - Use RIP-relative addressing
crypto: x86/cast5 - Use RIP-relative addressing
...
If the buffer length is larger than 16 and concatenate is set to false,
there would be missing spaces every 16 bytes.
Example:
Before: c5 11 10 50 05 4d 31 40 00 40 00 40 00 4d 31 4000 40 00
After: c5 11 10 50 05 4d 31 40 00 40 00 40 00 4d 31 40 00 40 00
Link: https://lore.kernel.org/linux-trace-kernel/20230426032257.3157247-1-lyenting@google.com
Signed-off-by: Ken Lin <lyenting@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
In ring_buffer_reset_online_cpus, the buffer_size_kb write operation
may permanently fail if the cpu_online_mask changes between two
for_each_online_buffer_cpu loops. The number of increases and decreases
on both cpu_buffer->resize_disabled and cpu_buffer->record_disabled may be
inconsistent, causing some CPUs to have non-zero values for these atomic
variables after the function returns.
This issue can be reproduced by "echo 0 > trace" while hotplugging cpu.
After reproducing success, we can find out buffer_size_kb will not be
functional anymore.
To prevent leaving 'resize_disabled' and 'record_disabled' non-zero after
ring_buffer_reset_online_cpus returns, we ensure that each atomic variable
has been set up before atomic_sub() to it.
Link: https://lore.kernel.org/linux-trace-kernel/20230426062027.17451-1-Tze-nan.Wu@mediatek.com
Cc: stable@vger.kernel.org
Cc: <mhiramat@kernel.org>
Cc: npiggin@gmail.com
Fixes: b23d7a5f4a ("ring-buffer: speed up buffer resets by avoiding synchronize_rcu for each CPU")
Reviewed-by: Cheng-Jui Wang <cheng-jui.wang@mediatek.com>
Signed-off-by: Tze-nan Wu <Tze-nan.Wu@mediatek.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
- Fix the frequency unit in cpufreq_verify_current_freq checks()
(Sanjay Chandrashekara).
- Make mode_state_machine in amd-pstate static (Tom Rix).
- Make the cpufreq core require drivers with target_index() to set
freq_table (Viresh Kumar).
- Fix typo in the ARM_BRCMSTB_AVS_CPUFREQ Kconfig entry (Jingyu Wang).
- Use of_property_read_bool() for boolean properties in the pmac32
cpufreq driver (Rob Herring).
- Make the cpufreq sysfs interface return proper error codes on
obviously invalid input (qinyu).
- Add guided autonomous mode support to the AMD P-state driver (Wyes
Karny).
- Make the Intel P-state driver enable HWP IO boost on all server
platforms (Srinivas Pandruvada).
- Add opp and bandwidth support to tegra194 cpufreq driver (Sumit
Gupta).
- Use of_property_present() for testing DT property presence (Rob
Herring).
- Remove MODULE_LICENSE in non-modules (Nick Alcock).
- Add SM7225 to cpufreq-dt-platdev blocklist (Luca Weiss).
- Optimizations and fixes for qcom-cpufreq-hw driver (Krzysztof
Kozlowski, Konrad Dybcio, and Bjorn Andersson).
- DT binding updates for qcom-cpufreq-hw driver (Konrad Dybcio and
Bartosz Golaszewski).
- Updates and fixes for mediatek driver (Jia-Wei Chang and
AngeloGioacchino Del Regno).
- Use of_property_present() for testing DT property presence in the
cpuidle code (Rob Herring).
- Drop unnecessary (void *) conversions from the PM core (Li zeming).
- Add sysfs files to represent time spent in a platform sleep state
during suspend-to-idle and make AMD and Intel PMC drivers use them
(Mario Limonciello).
- Use of_property_present() for testing DT property presence (Rob
Herring).
- Add set_required_opps() callback to the 'struct opp_table', to make
the code paths cleaner (Viresh Kumar).
- Update the pm-graph siute of utilities to v5.11 with the following
changes:
* New script which allows users to install the latest pm-graph
from the upstream github repo.
* Update all the dmesg suspend/resume PM print formats to be able to
process recent timelines using dmesg only.
* Add ethtool output to the log for the system's ethernet device if
ethtool exists.
* Make the tool more robustly handle events where mangled dmesg or
ftrace outputs do not include all the requisite data.
- Make the sleepgraph utility recognize "CPU killed" messages (Xueqin
Luo).
- Remove unneeded SRCU selection in Kconfig because it's always set
from devfreq core (Paul E. McKenney).
- Drop of_match_ptr() macro from exynos-bus.c because this driver is
always using the DT table for driver probe (Krzysztof Kozlowski).
- Use the preferred of_property_present() instead of the low-level
of_get_property() on exynos-bus.c (Rob Herring).
- Use devm_platform_get_and_ioream_resource() in exyno-ppmu.c (Yang Li).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmRGvX4SHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxcwsQAK5wK1HWLZDap8nTGGAyvpX+bNJ3YM+l
TS1zSzWV97K6kq2bg4GTgDi6EXJJNgfP9sThOEIee5GrWAjrk9yaxjEyIcrUBjfl
oyFN8SEuYbMN5t9Bir3GRqkL+tWErUiVafplML6vTT8W8GlL2rbxPXM6ifmK9IJq
7r3Rt+tlMrookTzV+ykSGVmC5cpnlNGsvMlGGw91Z8rlICy7MI/ecg8O6Zsy25dR
Vchrg0M+jVxtaFU9/ikQaNHx0B3AF7fpi472CYYWgk1ABfIfNyQATeHsCkKan/ZV
i4+gfgIhIQnO1Ov/05aGYbBhxVpFGQIcLkG0vEmdbHsnC/WDuMCrr5wg1HCgCdpQ
+0eQem5bWxrzKp0g9tL07QG8LuiJTfjuA4DrRZNhudKFU9oglZfZeywRk+s6ta4v
rQFzz7qdlKpcM87pz/Bm8tSTc8UYNCDd7hLe+ZI940CMs/vQ4CfQJ2tlYaIl0AiO
q33Nz1iqhEycQ9OZDzBDyQtK+Xm6lsXUehIBtbqBsFsP3Ry+nxe/fz6UMs5tVNeM
BYaaNhhkiZMhXgJncMi2oR8/LRLYtOHjn1rdOGSMu9Rck5i5TVPsxqzUOzkhvuM9
eXAwts6SwFVYxtaPJs+i6yl8cdLOFORsntIBWFKuwsgH8BFx7pNFuZA33eMOA+Iw
UFey2fKDn3W5
=p/5G
-----END PGP SIGNATURE-----
Merge tag 'pm-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These update several cpufreq drivers and the cpufreq core, add sysfs
interface for exposing the time really spent in the platform low-power
state during suspend-to-idle, update devfreq (core and drivers) and
the pm-graph suite of tools and clean up code.
Specifics:
- Fix the frequency unit in cpufreq_verify_current_freq checks()
Sanjay Chandrashekara)
- Make mode_state_machine in amd-pstate static (Tom Rix)
- Make the cpufreq core require drivers with target_index() to set
freq_table (Viresh Kumar)
- Fix typo in the ARM_BRCMSTB_AVS_CPUFREQ Kconfig entry (Jingyu Wang)
- Use of_property_read_bool() for boolean properties in the pmac32
cpufreq driver (Rob Herring)
- Make the cpufreq sysfs interface return proper error codes on
obviously invalid input (qinyu)
- Add guided autonomous mode support to the AMD P-state driver (Wyes
Karny)
- Make the Intel P-state driver enable HWP IO boost on all server
platforms (Srinivas Pandruvada)
- Add opp and bandwidth support to tegra194 cpufreq driver (Sumit
Gupta)
- Use of_property_present() for testing DT property presence (Rob
Herring)
- Remove MODULE_LICENSE in non-modules (Nick Alcock)
- Add SM7225 to cpufreq-dt-platdev blocklist (Luca Weiss)
- Optimizations and fixes for qcom-cpufreq-hw driver (Krzysztof
Kozlowski, Konrad Dybcio, and Bjorn Andersson)
- DT binding updates for qcom-cpufreq-hw driver (Konrad Dybcio and
Bartosz Golaszewski)
- Updates and fixes for mediatek driver (Jia-Wei Chang and
AngeloGioacchino Del Regno)
- Use of_property_present() for testing DT property presence in the
cpuidle code (Rob Herring)
- Drop unnecessary (void *) conversions from the PM core (Li zeming)
- Add sysfs files to represent time spent in a platform sleep state
during suspend-to-idle and make AMD and Intel PMC drivers use them
Mario Limonciello)
- Use of_property_present() for testing DT property presence (Rob
Herring)
- Add set_required_opps() callback to the 'struct opp_table', to make
the code paths cleaner (Viresh Kumar)
- Update the pm-graph siute of utilities to v5.11 with the following
changes:
* New script which allows users to install the latest pm-graph
from the upstream github repo.
* Update all the dmesg suspend/resume PM print formats to be able
to process recent timelines using dmesg only.
* Add ethtool output to the log for the system's ethernet device
if ethtool exists.
* Make the tool more robustly handle events where mangled dmesg
or ftrace outputs do not include all the requisite data.
- Make the sleepgraph utility recognize "CPU killed" messages (Xueqin
Luo)
- Remove unneeded SRCU selection in Kconfig because it's always set
from devfreq core (Paul E. McKenney)
- Drop of_match_ptr() macro from exynos-bus.c because this driver is
always using the DT table for driver probe (Krzysztof Kozlowski)
- Use the preferred of_property_present() instead of the low-level
of_get_property() on exynos-bus.c (Rob Herring)
- Use devm_platform_get_and_ioream_resource() in exyno-ppmu.c (Yang
Li)"
* tag 'pm-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (44 commits)
platform/x86/intel/pmc: core: Report duration of time in HW sleep state
platform/x86/intel/pmc: core: Always capture counters on suspend
platform/x86/amd: pmc: Report duration of time in hw sleep state
PM: Add sysfs files to represent time spent in hardware sleep state
cpufreq: use correct unit when verify cur freq
cpufreq: tegra194: add OPP support and set bandwidth
cpufreq: amd-pstate: Make varaiable mode_state_machine static
PM: core: Remove unnecessary (void *) conversions
cpufreq: drivers with target_index() must set freq_table
PM / devfreq: exynos-ppmu: Use devm_platform_get_and_ioremap_resource()
OPP: Move required opps configuration to specialized callback
OPP: Handle all genpd cases together in _set_required_opps()
cpufreq: qcom-cpufreq-hw: Revert adding cpufreq qos
dt-bindings: cpufreq: cpufreq-qcom-hw: Add QCM2290
dt-bindings: cpufreq: cpufreq-qcom-hw: Sanitize data per compatible
dt-bindings: cpufreq: cpufreq-qcom-hw: Allow just 1 frequency domain
cpufreq: Add SM7225 to cpufreq-dt-platdev blocklist
cpufreq: qcom-cpufreq-hw: fix double IO unmap and resource release on exit
cpufreq: mediatek: Raise proc and sram max voltage for MT7622/7623
cpufreq: mediatek: raise proc/sram max voltage for MT8516
...
When event enablement changes, user_events attempts to update a bit in
the user process. If a fault is hit, an attempt to fault-in the page and
the write is retried if the page made it in. While this normally requires
a couple attempts, it is possible a bad user process could attempt to
cause infinite loops.
Ensure fault-in attempts either sync or async are limited to a max of 10
attempts for each update. When the max is hit, return -EFAULT so another
attempt is not made in all cases.
Link: https://lkml.kernel.org/r/20230425225107.8525-5-beaub@linux.microsoft.com
Suggested-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
User processes register an address and bit pair for events. If the same
address and bit pair are registered multiple times in the same process,
it can cause undefined behavior when events are enabled/disabled.
When more than one are used, the bit could be turned off by another
event being disabled, while the original event is still enabled.
Prevent undefined behavior by checking the current mm to see if any
event has already been registered for the address and bit pair. Return
EADDRINUSE back to the user process if it's already being used.
Update ftrace self-test to ensure this occurs properly.
Link: https://lkml.kernel.org/r/20230425225107.8525-4-beaub@linux.microsoft.com
Suggested-by: Doug Cook <dcook@linux.microsoft.com>
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
If an event is enabled and a user process unregisters user_events, the
bit is left set. Fix this by always clearing the bit in the user process
if unregister is successful.
Update abi self-test to ensure this occurs properly.
Link: https://lkml.kernel.org/r/20230425225107.8525-3-beaub@linux.microsoft.com
Suggested-by: Doug Cook <dcook@linux.microsoft.com>
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The write index indicates which event the data is for and accesses a
per-file array. The index is passed by user processes during write()
calls as the first 4 bytes. Ensure that it cannot be negative by
returning -EINVAL to prevent out of bounds accesses.
Update ftrace self-test to ensure this occurs properly.
Link: https://lkml.kernel.org/r/20230425225107.8525-2-beaub@linux.microsoft.com
Fixes: 7f5a08c79d ("user_events: Add minimal support for trace_event into ftrace")
Reported-by: Doug Cook <dcook@linux.microsoft.com>
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Both print_fields() and print_array() do not handle if dynamic data ends
at the last byte of the payload for both __dyn_loc and __rel_loc field
types. For __rel_loc, the offset was off by 4 bytes, leading to
incorrect strings and data being printed out. In print_array() the
buffer pos was missed from being advanced, which results in the first
payload byte being used as the offset base instead of the field offset.
Advance __rel_loc offset by 4 to ensure correct offset and advance pos
to the field offset to ensure correct data is displayed when printing
arrays. Change >= to > when checking if data is in-bounds, since it's
valid for dynamic data to include the last byte of the payload.
Example outputs for event format:
field:unsigned short common_type; offset:0; size:2; signed:0;
field:unsigned char common_flags; offset:2; size:1; signed:0;
field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
field:int common_pid; offset:4; size:4; signed:1;
field:__rel_loc char text[]; offset:8; size:4; signed:1;
Output before:
tp_rel_loc: text=<OVERFLOW>
Output after:
tp_rel_loc: text=Test
Link: https://lkml.kernel.org/r/20230419214140.4158-3-beaub@linux.microsoft.com
Fixes: 80a76994b2 ("tracing: Add "fields" option to show raw trace event fields")
Reported-by: Doug Cook <dcook@linux.microsoft.com>
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Users expect that events can be filtered by the kernel. User events
currently sets all event fields as FILTER_OTHER which limits to binary
filters only. When strings are being used, functionality is reduced.
Use filter_assign_type() to find the most appropriate filter
type for each field in user events to ensure full kernel capabilities.
Link: https://lkml.kernel.org/r/20230419214140.4158-2-beaub@linux.microsoft.com
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
In error case, 'buffer_page' returned by rb_set_head_page() is NULL,
currently check '&buffer_page->list' is equivalent to check 'buffer_page'
due to 'list' is the first member of 'buffer_page', but suppose it is not
some time, 'head_page' would be wild memory while check would be bypassed.
Link: https://lore.kernel.org/linux-trace-kernel/20230414071729.57312-1-zhengyejian1@huawei.com
Cc: <mhiramat@kernel.org>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Variable retval is being assigned a value that is never read, it is
being re-assigned a new value in both paths of a following if statement.
Remove the assignment.
Cleans up clang-scan warning:
kernel/trace/rv/rv.c:293:2: warning: Value stored to 'retval' is never read [deadcode.DeadStores]
retval = count;
Link: https://lkml.kernel.org/r/20230418150018.3123753-1-colin.i.king@gmail.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Acked-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEe7vIQRWZI0iWSE3xu+CwddJFiJoFAmRCSGEACgkQu+CwddJF
iJpA2wgAkwMP++Znd8JU3iQ4N53lv18euNuEMLTOY+jk7zXHvsRX8KyzLmsohUKO
SSGVi1Om785AidOsJhARJawW7AWYuJ5l7ri+FyskTwrTUcMC4UZ/IT2tB22lRsXi
0f3lgbdArZbj7aq7AVO9N7bh9rgVUHa/RHIwXzMp0sc9nekne9t+FFv7tyRnr7cc
SMp/FdMZqbt9pVf0Uwud1BpdgER7QqQaSfaxITL7D2oJTePRZVWiXerrr4hMcQl1
s6kgUgKdlaYmIx2N8eP1Nmp7undtwHo1C8dLLWKGCEuEAaXIxtXUtaUWFFmBDzH9
Fv6qswNFcfwiLNPsY+xi9iA+vlGKAg==
=T0EM
-----END PGP SIGNATURE-----
Merge tag 'slab-for-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab
Pull slab updates from Vlastimil Babka:
"The main change is naturally the SLOB removal. Since its deprecation
in 6.2 I've seen no complaints so hopefully SLUB_(TINY) works well for
everyone and we can proceed.
Besides the code cleanup, the main immediate benefit will be allowing
kfree() family of function to work on kmem_cache_alloc() objects,
which was incompatible with SLOB. This includes kfree_rcu() which had
no kmem_cache_free_rcu() counterpart yet and now it shouldn't be
necessary anymore.
Besides that, there are several small code and comment improvements
from Thomas, Thorsten and Vernon"
* tag 'slab-for-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab:
mm/slab: document kfree() as allowed for kmem_cache_alloc() objects
mm/slob: remove slob.c
mm/slab: remove CONFIG_SLOB code from slab common code
mm, pagemap: remove SLOB and SLQB from comments and documentation
mm, page_flags: remove PG_slob_free
mm/slob: remove CONFIG_SLOB
mm/slub: fix help comment of SLUB_DEBUG
mm: slub: make kobj_type structure constant
slab: Adjust comment after refactoring of gfp.h
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAmRGaygACgkQUqAMR0iA
lPKlGBAAqn0yS8E2CP16Oo8nCB5AjoPVzohh6pQ6O8G0CFhvu47EKVTHPTa1BEFE
YAz94geN5crpAmEcQyBcqkcJuLRXmYBOqE1x9M4PcCUUXTjcyYEzBYsOZO+j5jB7
LUPX6jBbm2PpbT/e1ZSr90R8MhblVfBTD7DJHmXGhibYHj5D4KOwxQnhx8uWz9aT
dgTWm1AgwEX85wUpXil5phD+YnvI/TxGlyV4AVOYh3y3K7Kc4CAeHFzCsg3h/Amr
c2RR1dzvmMcEvg8lF3U9MsnVNF/2i0Tg9BXLRxSe1c20CKhtzNNPH5krPa3vHGeP
P//FWDAd9S2hev54TN7LO92V+IsDh8nlU++HwRua50wflzJU/tkyWDtcmmlkGU6A
hqtMUWE4libAaAW7FBJomRFirmEtEA4GwXN5WH3+B6htgVwKKrKhL9U/PtQtZxZ1
GUEvtjmnBIfGndu7fHv70a1sLc9LuebOfmOQs3W6p6KUZkmL1Hqg1WGQoYwmUz4A
bZRbCwMYNJCG4iO2jDmPU27D6tWMbQdt1kZ20svP6p3PRGy8EuI1C5tnO5Jhkw3E
FCFudMMZEuZmBoztWWqEkZSfbMDlH6kc1+6+HMuCfSrpg6QD87TzO5CONIHCZyk9
f3UD04R//BubTdiKQ4y/g6OwctihX7F8i3O71hTj5etuYqPs0nI=
=t0d6
-----END PGP SIGNATURE-----
Merge tag 'printk-for-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux
Pull printk updates from Petr Mladek:
- Code cleanup and dead code removal
* tag 'printk-for-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux:
printk: Remove obsoleted check for non-existent "user" object
lib/vsprintf: Use isodigit() for the octal number check
Remove orphaned CONFIG_PRINTK_SAFE_LOG_BUF_SHIFT
ACPI:
* Improve error reporting when failing to manage SDEI on AGDI device
removal
Assembly routines:
* Improve register constraints so that the compiler can make use of
the zero register instead of moving an immediate #0 into a GPR
* Allow the compiler to allocate the registers used for CAS
instructions
CPU features and system registers:
* Cleanups to the way in which CPU features are identified from the
ID register fields
* Extend system register definition generation to handle Enum types
when defining shared register fields
* Generate definitions for new _EL2 registers and add new fields
for ID_AA64PFR1_EL1
* Allow SVE to be disabled separately from SME on the kernel
command-line
Tracing:
* Support for "direct calls" in ftrace, which enables BPF tracing
for arm64
Kdump:
* Don't bother unmapping the crashkernel from the linear mapping,
which then allows us to use huge (block) mappings and reduce
TLB pressure when a crashkernel is loaded.
Memory management:
* Try again to remove data cache invalidation from the coherent DMA
allocation path
* Simplify the fixmap code by mapping at page granularity
* Allow the kfence pool to be allocated early, preventing the rest
of the linear mapping from being forced to page granularity
Perf and PMU:
* Move CPU PMU code out to drivers/perf/ where it can be reused
by the 32-bit ARM architecture when running on ARMv8 CPUs
* Fix race between CPU PMU probing and pKVM host de-privilege
* Add support for Apple M2 CPU PMU
* Adjust the generic PERF_COUNT_HW_BRANCH_INSTRUCTIONS event
dynamically, depending on what the CPU actually supports
* Minor fixes and cleanups to system PMU drivers
Stack tracing:
* Use the XPACLRI instruction to strip PAC from pointers, rather
than rolling our own function in C
* Remove redundant PAC removal for toolchains that handle this in
their builtins
* Make backtracing more resilient in the face of instrumentation
Miscellaneous:
* Fix single-step with KGDB
* Remove harmless warning when 'nokaslr' is passed on the kernel
command-line
* Minor fixes and cleanups across the board
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmRChcwQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNCgBCADFvkYY9ESztSnd3EpiMbbAzgRCQBiA5H7U
F2Wc+hIWgeAeUEttSH22+F16r6Jb0gbaDvsuhtN2W/rwQhKNbCU0MaUME05MPmg2
AOp+RZb2vdT5i5S5dC6ZM6G3T6u9O78LBWv2JWBdd6RIybamEn+RL00ep2WAduH7
n1FgTbsKgnbScD2qd4K1ejZ1W/BQMwYulkNpyTsmCIijXM12lkzFlxWnMtky3uhR
POpawcIZzXvWI02QAX+SIdynGChQV3VP+dh9GuFbt7ASigDEhgunvfUYhZNSaqf4
+/q0O8toCtmQJBUhF0DEDSB5T8SOz5v9CKxKuwfaX6Trq0ixFQpZ
=78L9
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"ACPI:
- Improve error reporting when failing to manage SDEI on AGDI device
removal
Assembly routines:
- Improve register constraints so that the compiler can make use of
the zero register instead of moving an immediate #0 into a GPR
- Allow the compiler to allocate the registers used for CAS
instructions
CPU features and system registers:
- Cleanups to the way in which CPU features are identified from the
ID register fields
- Extend system register definition generation to handle Enum types
when defining shared register fields
- Generate definitions for new _EL2 registers and add new fields for
ID_AA64PFR1_EL1
- Allow SVE to be disabled separately from SME on the kernel
command-line
Tracing:
- Support for "direct calls" in ftrace, which enables BPF tracing for
arm64
Kdump:
- Don't bother unmapping the crashkernel from the linear mapping,
which then allows us to use huge (block) mappings and reduce TLB
pressure when a crashkernel is loaded.
Memory management:
- Try again to remove data cache invalidation from the coherent DMA
allocation path
- Simplify the fixmap code by mapping at page granularity
- Allow the kfence pool to be allocated early, preventing the rest of
the linear mapping from being forced to page granularity
Perf and PMU:
- Move CPU PMU code out to drivers/perf/ where it can be reused by
the 32-bit ARM architecture when running on ARMv8 CPUs
- Fix race between CPU PMU probing and pKVM host de-privilege
- Add support for Apple M2 CPU PMU
- Adjust the generic PERF_COUNT_HW_BRANCH_INSTRUCTIONS event
dynamically, depending on what the CPU actually supports
- Minor fixes and cleanups to system PMU drivers
Stack tracing:
- Use the XPACLRI instruction to strip PAC from pointers, rather than
rolling our own function in C
- Remove redundant PAC removal for toolchains that handle this in
their builtins
- Make backtracing more resilient in the face of instrumentation
Miscellaneous:
- Fix single-step with KGDB
- Remove harmless warning when 'nokaslr' is passed on the kernel
command-line
- Minor fixes and cleanups across the board"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (72 commits)
KVM: arm64: Ensure CPU PMU probes before pKVM host de-privilege
arm64: kexec: include reboot.h
arm64: delete dead code in this_cpu_set_vectors()
arm64/cpufeature: Use helper macro to specify ID register for capabilites
drivers/perf: hisi: add NULL check for name
drivers/perf: hisi: Remove redundant initialized of pmu->name
arm64/cpufeature: Consistently use symbolic constants for min_field_value
arm64/cpufeature: Pull out helper for CPUID register definitions
arm64/sysreg: Convert HFGITR_EL2 to automatic generation
ACPI: AGDI: Improve error reporting for problems during .remove()
arm64: kernel: Fix kernel warning when nokaslr is passed to commandline
perf/arm-cmn: Fix port detection for CMN-700
arm64: kgdb: Set PSTATE.SS to 1 to re-enable single-step
arm64: move PAC masks to <asm/pointer_auth.h>
arm64: use XPACLRI to strip PAC
arm64: avoid redundant PAC stripping in __builtin_return_address()
arm64/sme: Fix some comments of ARM SME
arm64/signal: Alloc tpidr2 sigframe after checking system_supports_tpidr2()
arm64/signal: Use system_supports_tpidr2() to check TPIDR2
arm64/idreg: Don't disable SME when disabling SVE
...
- Improve the VDSO build time checks to cover all dynamic relocations
VDSO does not allow dynamic relcations, but the build time check is
incomplete and fragile.
It's based on architectures specifying the relocation types to search
for and does not handle R_*_NONE relocation entries correctly.
R_*_NONE relocations are injected by some GNU ld variants if they fail
to determine the exact .rel[a]/dyn_size to cover trailing zeros.
R_*_NONE relocations must be ignored by dynamic loaders, so they
should be ignored in the build time check too.
Remove the architecture specific relocation types to check for and
validate strictly that no other relocations than R_*_NONE end up
in the VSDO .so file.
- Prefer signal delivery to the current thread for
CLOCK_PROCESS_CPUTIME_ID based posix-timers
Such timers prefer to deliver the signal to the main thread of a
process even if the context in which the timer expires is the current
task. This has the downside that it might wake up an idle thread.
As there is no requirement or guarantee that the signal has to be
delivered to the main thread, avoid this by preferring the current
task if it is part of the thread group which shares sighand.
This not only avoids waking idle threads, it also distributes the
signal delivery in case of multiple timers firing in the context
of different threads close to each other better.
- Align the tick period properly (again)
For a long time the tick was starting at CLOCK_MONOTONIC zero, which
allowed users space applications to either align with the tick or to
place a periodic computation so that it does not interfere with the
tick. The alignement of the tick period was more by chance than by
intention as the tick is set up before a high resolution clocksource is
installed, i.e. timekeeping is still tick based and the tick period
advances from there.
The early enablement of sched_clock() broke this alignement as the time
accumulated by sched_clock() is taken into account when timekeeping is
initialized. So the base value now(CLOCK_MONOTONIC) is not longer a
multiple of tick periods, which breaks applications which relied on
that behaviour.
Cure this by aligning the tick starting point to the next multiple of
tick periods, i.e 1000ms/CONFIG_HZ.
- A set of NOHZ fixes and enhancements
- Cure the concurrent writer race for idle and IO sleeptime statistics
The statitic values which are exposed via /proc/stat are updated from
the CPU local idle exit and remotely by cpufreq, but that happens
without any form of serialization. As a consequence sleeptimes can be
accounted twice or worse.
Prevent this by restricting the accumulation writeback to the CPU
local idle exit and let the remote access compute the accumulated
value.
- Protect idle/iowait sleep time with a sequence count
Reading idle/iowait sleep time, e.g. from /proc/stat, can race with
idle exit updates. As a consequence the readout may result in random
and potentially going backwards values.
Protect this by a sequence count, which fixes the idle time
statistics issue, but cannot fix the iowait time problem because
iowait time accounting races with remote wake ups decrementing the
remote runqueues nr_iowait counter. The latter is impossible to fix,
so the only way to deal with that is to document it properly and to
remove the assertion in the selftest which triggers occasionally due
to that.
- Restructure struct tick_sched for better cache layout
- Some small cleanups and a better cache layout for struct tick_sched
- Implement the missing timer_wait_running() callback for POSIX CPU timers
For unknown reason the introduction of the timer_wait_running() callback
missed to fixup posix CPU timers, which went unnoticed for almost four
years.
While initially only targeted to prevent livelocks between a timer
deletion and the timer expiry function on PREEMPT_RT enabled kernels, it
turned out that fixing this for mainline is not as trivial as just
implementing a stub similar to the hrtimer/timer callbacks.
The reason is that for CONFIG_POSIX_CPU_TIMERS_TASK_WORK enabled systems
there is a livelock issue independent of RT.
CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y moves the expiry of POSIX CPU timers
out from hard interrupt context to task work, which is handled before
returning to user space or to a VM. The expiry mechanism moves the
expired timers to a stack local list head with sighand lock held. Once
sighand is dropped the task can be preempted and a task which wants to
delete a timer will spin-wait until the expiry task is scheduled back
in. In the worst case this will end up in a livelock when the preempting
task and the expiry task are pinned on the same CPU.
The timer wheel has a timer_wait_running() mechanism for RT, which uses
a per CPU timer-base expiry lock which is held by the expiry code and the
task waiting for the timer function to complete blocks on that lock.
This does not work in the same way for posix CPU timers as there is no
timer base and expiry for process wide timers can run on any task
belonging to that process, but the concept of waiting on an expiry lock
can be used too in a slightly different way.
Add a per task mutex to struct posix_cputimers_work, let the expiry task
hold it accross the expiry function and let the deleting task which
waits for the expiry to complete block on the mutex.
In the non-contended case this results in an extra mutex_lock()/unlock()
pair on both sides.
This avoids spin-waiting on a task which is scheduled out, prevents the
livelock and cures the problem for RT and !RT systems.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmRGrj4THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoZhdEAC/lwfDWCnTXHC8ExQQRDIVNyXmDlLb
EHB8ZY7Wc4gNZ8UEXEOLOXJHMG9bsbtPGctVewJwRGnXZWKVhpPwQba6kCRycyX0
0J6l5DlvUaGGrpoOzOZwgETRmtIZE9tEArZR8xlfRScYd93a7yLhwIjO8JaV9vKs
IQpAQMeJ/ysp6gHrS59qakYfoHU/ERUAu3Tk4GqHUtPtcyz3nX3eTlLWV8LySqs+
00qr2yc0bQFUFoKzTCxtM8lcEi9ja9SOj1rw28348O+BXE4d0HC12Ie7eU/CDN2Y
OAlWYxVjy4LMh24LDrRQKTzoVqx9MXDx2g+09B3t8NK5LgeS+EJIjujDhZF147/H
5y906nplZUKa8BiZW5Rpm/HKH8tFI80T9XWSQCRBeMgTEJyRyRU1yASAwO4xw+dY
Dn3tGmFGymcV/72o4ic9JFKQd8cTSxPjEJS3qqzMkEAtyI/zPBmKxj/Tce50OH40
6FSZq1uU21ZQzszwSHISwgFtNr75laUSK4Z1te5OhPOOz+C7O9YqHvqS/1jwhPj2
tMd8X17fRW3UTUBlBj+zqxqiEGBl/Yk2AvKrJIXGUtfWYCtjMJ7ieCf0kZ7NSVJx
9ewubA0gqseMD783YomZsy8LLtMKnhclJeslUOVb1oKs1q/WF1R/k6qjy9vUwYaB
nIJuHl8mxSetag==
=SVnj
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2023-04-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timers and timekeeping updates from Thomas Gleixner:
- Improve the VDSO build time checks to cover all dynamic relocations
VDSO does not allow dynamic relocations, but the build time check is
incomplete and fragile.
It's based on architectures specifying the relocation types to search
for and does not handle R_*_NONE relocation entries correctly.
R_*_NONE relocations are injected by some GNU ld variants if they
fail to determine the exact .rel[a]/dyn_size to cover trailing zeros.
R_*_NONE relocations must be ignored by dynamic loaders, so they
should be ignored in the build time check too.
Remove the architecture specific relocation types to check for and
validate strictly that no other relocations than R_*_NONE end up in
the VSDO .so file.
- Prefer signal delivery to the current thread for
CLOCK_PROCESS_CPUTIME_ID based posix-timers
Such timers prefer to deliver the signal to the main thread of a
process even if the context in which the timer expires is the current
task. This has the downside that it might wake up an idle thread.
As there is no requirement or guarantee that the signal has to be
delivered to the main thread, avoid this by preferring the current
task if it is part of the thread group which shares sighand.
This not only avoids waking idle threads, it also distributes the
signal delivery in case of multiple timers firing in the context of
different threads close to each other better.
- Align the tick period properly (again)
For a long time the tick was starting at CLOCK_MONOTONIC zero, which
allowed users space applications to either align with the tick or to
place a periodic computation so that it does not interfere with the
tick. The alignement of the tick period was more by chance than by
intention as the tick is set up before a high resolution clocksource
is installed, i.e. timekeeping is still tick based and the tick
period advances from there.
The early enablement of sched_clock() broke this alignement as the
time accumulated by sched_clock() is taken into account when
timekeeping is initialized. So the base value now(CLOCK_MONOTONIC) is
not longer a multiple of tick periods, which breaks applications
which relied on that behaviour.
Cure this by aligning the tick starting point to the next multiple of
tick periods, i.e 1000ms/CONFIG_HZ.
- A set of NOHZ fixes and enhancements:
* Cure the concurrent writer race for idle and IO sleeptime
statistics
The statitic values which are exposed via /proc/stat are updated
from the CPU local idle exit and remotely by cpufreq, but that
happens without any form of serialization. As a consequence
sleeptimes can be accounted twice or worse.
Prevent this by restricting the accumulation writeback to the CPU
local idle exit and let the remote access compute the accumulated
value.
* Protect idle/iowait sleep time with a sequence count
Reading idle/iowait sleep time, e.g. from /proc/stat, can race
with idle exit updates. As a consequence the readout may result
in random and potentially going backwards values.
Protect this by a sequence count, which fixes the idle time
statistics issue, but cannot fix the iowait time problem because
iowait time accounting races with remote wake ups decrementing
the remote runqueues nr_iowait counter. The latter is impossible
to fix, so the only way to deal with that is to document it
properly and to remove the assertion in the selftest which
triggers occasionally due to that.
* Restructure struct tick_sched for better cache layout
* Some small cleanups and a better cache layout for struct
tick_sched
- Implement the missing timer_wait_running() callback for POSIX CPU
timers
For unknown reason the introduction of the timer_wait_running()
callback missed to fixup posix CPU timers, which went unnoticed for
almost four years.
While initially only targeted to prevent livelocks between a timer
deletion and the timer expiry function on PREEMPT_RT enabled kernels,
it turned out that fixing this for mainline is not as trivial as just
implementing a stub similar to the hrtimer/timer callbacks.
The reason is that for CONFIG_POSIX_CPU_TIMERS_TASK_WORK enabled
systems there is a livelock issue independent of RT.
CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y moves the expiry of POSIX CPU
timers out from hard interrupt context to task work, which is handled
before returning to user space or to a VM. The expiry mechanism moves
the expired timers to a stack local list head with sighand lock held.
Once sighand is dropped the task can be preempted and a task which
wants to delete a timer will spin-wait until the expiry task is
scheduled back in. In the worst case this will end up in a livelock
when the preempting task and the expiry task are pinned on the same
CPU.
The timer wheel has a timer_wait_running() mechanism for RT, which
uses a per CPU timer-base expiry lock which is held by the expiry
code and the task waiting for the timer function to complete blocks
on that lock.
This does not work in the same way for posix CPU timers as there is
no timer base and expiry for process wide timers can run on any task
belonging to that process, but the concept of waiting on an expiry
lock can be used too in a slightly different way.
Add a per task mutex to struct posix_cputimers_work, let the expiry
task hold it accross the expiry function and let the deleting task
which waits for the expiry to complete block on the mutex.
In the non-contended case this results in an extra
mutex_lock()/unlock() pair on both sides.
This avoids spin-waiting on a task which is scheduled out, prevents
the livelock and cures the problem for RT and !RT systems
* tag 'timers-core-2023-04-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
posix-cpu-timers: Implement the missing timer_wait_running callback
selftests/proc: Assert clock_gettime(CLOCK_BOOTTIME) VS /proc/uptime monotonicity
selftests/proc: Remove idle time monotonicity assertions
MAINTAINERS: Remove stale email address
timers/nohz: Remove middle-function __tick_nohz_idle_stop_tick()
timers/nohz: Add a comment about broken iowait counter update race
timers/nohz: Protect idle/iowait sleep time under seqcount
timers/nohz: Only ever update sleeptime from idle exit
timers/nohz: Restructure and reshuffle struct tick_sched
tick/common: Align tick period with the HZ tick.
selftests/timers/posix_timers: Test delivery of signals across threads
posix-timers: Prefer delivery of signals to the current thread
vdso: Improve cmd_vdso_check to check all dynamic relocations
- Core:
- Add tracepoints for tasklet callbacks which makes it possible to
analyze individual tasklet functions instead of guess working
from the overall duration of tasklet processing
- Ensure that secondary interrupt threads have their affinity adjusted
correctly.
- Drivers:
- A large rework of the RISC-V IPI management to prepare for a new
RISC-V interrupt architecture
- Small fixes and enhancements all over the place
- Removal of support for various obsolete hardware platforms and the
related code
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmRGnqsTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUsSD/9IHF2HogDvMq+9dBqmqQMrryiLOIad
dne9PvhZu6Cww60WVRbYA5dvmyRx3oi9vHb5xrqjEgEXwCGyNGUU9K6seqzqwTjr
BuhokcbeimCVUBsF9/6x0k50tRSRP0oCLA49WDJ+uaXyICII+y+p+qkQOQmP6UTx
sCpA6Y51RpO7eAcxiMqLa2XgiixQCFZvRXRmO0a0DcxY3DhOSz6PbecTWcY43jtX
CpHiNZkeiVmLOAmbfPF/mBBRczt9BzYTx3C/NA2TTXwwA2Mcw7p2Vmh3JL2cTWzc
nD6nvarsTkOk9T8LkT8uEk/ovalwXtTn+Z8yYrcI3o2I89y4cat56haz/Y2tOTFG
D5fUXHIFTV8jsBUUL2Ai+3PCjoSzd1jbqua7fa8496FqS2FyZjNsHeuzIUXRyQd9
2/VF+sT5NQ6ytYzgiUuoO13VcI6e6Hc3mwmbd3RhKMf+epZQ9ifx9KcLlokWcxcS
bdJSHWz6Zos3hH+GRilXmgi16xNN7eaYxEtg0FPUBuB2zWYzZwreY2uvlZGqYpVG
OKTncko7TeDOR8PXybWXXce6VhKxhMHgpHOdFMFm4lIqDzpbMmyYjNaXdxFqhyGM
s/FTxPOdEMwapWBGr5Fhumepgdmujc2USZArnIPvnzwF5mUje+U1Pg4xHeLYF4lU
Taaw4Jc5OvAD2A==
=EWF0
-----END PGP SIGNATURE-----
Merge tag 'irq-core-2023-04-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull interrupt updates from Thomas Gleixner:
"Core:
- Add tracepoints for tasklet callbacks which makes it possible to
analyze individual tasklet functions instead of guess working from
the overall duration of tasklet processing
- Ensure that secondary interrupt threads have their affinity
adjusted correctly
Drivers:
- A large rework of the RISC-V IPI management to prepare for a new
RISC-V interrupt architecture
- Small fixes and enhancements all over the place
- Removal of support for various obsolete hardware platforms and the
related code"
* tag 'irq-core-2023-04-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
irqchip/st: Remove stih415/stih416 and stid127 platforms support
irqchip/gic-v3: Add Rockchip 3588001 erratum workaround
genirq: Update affinity of secondary threads
softirq: Add trace points for tasklet entry/exit
irqchip/loongson-pch-pic: Fix pch_pic_acpi_init calling
irqchip/loongson-pch-pic: Fix registration of syscore_ops
irqchip/loongson-eiointc: Fix registration of syscore_ops
irqchip/loongson-eiointc: Fix incorrect use of acpi_get_vec_parent
irqchip/loongson-eiointc: Fix returned value on parsing MADT
irqchip/riscv-intc: Add empty irq_eoi() for chained irq handlers
RISC-V: Use IPIs for remote icache flush when possible
RISC-V: Use IPIs for remote TLB flush when possible
RISC-V: Allow marking IPIs as suitable for remote FENCEs
RISC-V: Treat IPIs as normal Linux IRQs
irqchip/riscv-intc: Allow drivers to directly discover INTC hwnode
RISC-V: Clear SIP bit only when using SBI IPI operations
irqchip/irq-sifive-plic: Add syscore callbacks for hibernation
irqchip: Use of_property_read_bool() for boolean properties
irqchip/bcm-6345-l1: Request memory region
irqchip/gicv3: Workaround for NVIDIA erratum T241-FABRIC-4
...
Provide a ptrace set/get interface for syscall user dispatch. The main
purpose is to enable checkpoint/restore (CRIU) to handle processes which
utilize syscall user dispatch correctly.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmRGgIETHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYockhEACWVd/KOBlQIdUMpM3jfSWsm+VZrITg
sKN2WCKaz8MS5RA7xTAfZIEqMzkI0V+GPoj+8eK70W39XFU/PlSQo8LUFahSxVHF
RVyz4zFKeR2XZpDa8J3ytoOvngiAnpOUflssvfA0+f3gq/B48jgLmj8XsrkmkL2T
6txRpusYNlzVTBoza0+1uEmxBTNhRxvURXa6OR/l24Kbh2udyNd6dlAoRHBV0iOW
qn7ILgoYIr/74ChCbrr8yZe2rZ+BqqlS1fsjDWkuUqq9AgzeuOjGJnZtMKG6WbGg
/NBj0Ewe7gsgZwBo7t4MbKNF7bXRkLczp8BX/l9xOTe+mpZ+LyNIHvOM3/TD6O1A
NFJNwTAGAnhU5Uoba9HzaKYZZnanqgLxuszXznJDU3zKV5pCNMNzlKxjPT73Jzsl
T1WTCyhSydluSuhOHLU4awC38pqVEQwichx98c9agIBPo7kxkb5RcTVq223wOSeI
h8otkecJ6U+gmjNDHnRtNBzykEIjVFjgiSBYGTr+/6ek2Myf0O/RMr13oe9OZG5R
jaKyjcDIADbYRow1rXfEs7Bq42K8rIkbVZvEEK/auYRUFngAoQ3l090i9wj6ViXf
7CqAjCC1K1BBxbqQwf0YLuDXCzUaXxcWfvNGEGEGs/NYDuu291QntGSFSxsJgsym
HXvO4NzHOHi13A==
=AS+6
-----END PGP SIGNATURE-----
Merge tag 'core-entry-2023-04-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core entry/ptrace update from Thomas Gleixner:
"Provide a ptrace set/get interface for syscall user dispatch. The main
purpose is to enable checkpoint/restore (CRIU) to handle processes
which utilize syscall user dispatch correctly"
* tag 'core-entry-2023-04-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
selftest, ptrace: Add selftest for syscall user dispatch config api
ptrace: Provide set/get interface for syscall user dispatch
syscall_user_dispatch: Untag selector address before access_ok()
syscall_user_dispatch: Split up set_syscall_user_dispatch()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZEYCQAAKCRBZ7Krx/gZQ
64FdAQDZ2hTDyZEWPt486dWYPYpiKyaGFXSXDGo7wgP0fiwxXQEA/mROKb6JqYw6
27mZ9A7qluT8r3AfTTQ0D+Yse/dr4AM=
=GA9W
-----END PGP SIGNATURE-----
Merge tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs fget updates from Al Viro:
"fget() to fdget() conversions"
* tag 'pull-fd' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
fuse_dev_ioctl(): switch to fdget()
cgroup_get_from_fd(): switch to fdget_raw()
bpf: switch to fdget_raw()
build_mount_idmapped(): switch to fdget()
kill the last remaining user of proc_ns_fget()
SVM-SEV: convert the rest of fget() uses to fdget() in there
convert sgx_set_attribute() to fdget()/fdput()
convert setns(2) to fdget()/fdput()
The tracing recursion prevention mechanism must be protected by rcu, that
leaves __rcu_read_{lock,unlock} unprotected by this mechanism. If we trace
them, the recursion will happen. Let's add them into the btf id deny list.
When CONFIG_PREEMPT_RCU is enabled, it can be reproduced with a simple bpf
program as such:
SEC("fentry/__rcu_read_lock")
int fentry_run()
{
return 0;
}
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230424161104.3737-2-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
As reported by Kumar in [0], the shared ownership implementation for BPF
programs has some race conditions which need to be addressed before it
can safely be used. This patch does so in a minimal way instead of
ripping out shared ownership entirely, as proper fixes for the issues
raised will follow ASAP, at which point this patch's commit can be
reverted to re-enable shared ownership.
The patch removes the ability to call bpf_refcount_acquire_impl from BPF
programs. Programs can only bump refcount and obtain a new owning
reference using this kfunc, so removing the ability to call it
effectively disables shared ownership.
Instead of changing success / failure expectations for
bpf_refcount-related selftests, this patch just disables them from
running for now.
[0]: https://lore.kernel.org/bpf/d7hyspcow5wtjcmw4fugdgyp3fwhljwuscp3xyut5qnwivyeru@ysdq543otzv2/
Reported-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230424204321.2680232-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZEEt8gAKCRCRxhvAZXjc
oppuAQDu9kwAQWAl0KzlpjQkrEDAEuyHRy6SCpo1kPPD5f3rigD+INZb3fi2QXmK
ZL/c6XtII9ah/8i2zfzAgH9Q2ZZu0gk=
=xcAX
-----END PGP SIGNATURE-----
Merge tag 'v6.4/pidfd.file' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull pidfd updates from Christian Brauner:
"This adds a new pidfd_prepare() helper which allows the caller to
reserve a pidfd number and allocates a new pidfd file that stashes the
provided struct pid.
It should be avoided installing a file descriptor into a task's file
descriptor table just to close it again via close_fd() in case an
error occurs. The fd has been visible to userspace and might already
be in use. Instead, a file descriptor should be reserved but not
installed into the caller's file descriptor table.
If another failure path is hit then the reserved file descriptor and
file can just be put without any userspace visible side-effects. And
if all failure paths are cleared the file descriptor and file can be
installed into the task's file descriptor table.
This helper is now used in all places that open coded this
functionality before. For example, this is currently done during
copy_process() and fanotify used pidfd_create(), which returns a pidfd
that has already been made visibile in the caller's file descriptor
table, but then closed it using close_fd().
In one of the next merge windows there is also new functionality
coming to unix domain sockets that will have to rely on
pidfd_prepare()"
* tag 'v6.4/pidfd.file' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
fanotify: use pidfd_prepare()
fork: use pidfd_prepare()
pid: add pidfd_prepare()
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZEEvmQAKCRCRxhvAZXjc
omUmAP0YaHa0gGgC1HEqZUpr0wRCo9WCyDCIZh3CYHUsgSwtvAD/Skl3jeWPPhlm
pmRA2DDxmwYFP3vhhFMjP+Z6AuUpEQQ=
=9XpZ
-----END PGP SIGNATURE-----
Merge tag 'v6.4/kernel.user_worker' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull user work thread updates from Christian Brauner:
"This contains the work generalizing the ability to create a kernel
worker from a userspace process.
Such user workers will run with the same credentials as the userspace
process they were created from providing stronger security and
accounting guarantees than the traditional override_creds() approach
ever could've hoped for.
The original work was heavily based and optimzed for the needs of
io_uring which was the first user. However, as it quickly turned out
the ability to create user workers inherting properties from a
userspace process is generally useful.
The vhost subsystem currently creates workers using the kthread api.
The consequences of using the kthread api are that RLIMITs don't work
correctly as they are inherited from khtreadd. This leads to bugs
where more workers are created than would be allowed by the RLIMITs of
the userspace process in lieu of which workers are created.
Problems like this disappear with user workers created from the
userspace processes for which they perform the work. In addition,
providing this api allows vhost to remove additional complexity. For
example, cgroup and mm sharing will just work out of the box with user
workers based on the relevant userspace process instead of manually
ensuring the correct cgroup and mm contexts are used.
So the vhost subsystem should simply be made to use the same mechanism
as io_uring. To this end the original mechanism used for
create_io_thread() is generalized into user workers:
- Introduce PF_USER_WORKER as a generic indicator that a given task
is a user worker, i.e., a kernel task that was created from a
userspace process. Now a PF_IO_WORKER thread is just a specialized
version of PF_USER_WORKER. So io_uring io workers raise both flags.
- Make copy_process() available to core kernel code
- Extend struct kernel_clone_args with the following bitfields
allowing to indicate to copy_process():
- to create a user worker (raise PF_USER_WORKER)
- to not inherit any files from the userspace process
- to ignore signals
After all generic changes are in place the vhost subsystem implements
a new dedicated vhost api based on user workers. Finally, vhost is
switched to rely on the new api moving it off of kthreads.
Thanks to Mike for sticking it out and making it through this rather
arduous journey"
* tag 'v6.4/kernel.user_worker' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
vhost: use vhost_tasks for worker threads
vhost: move worker thread fields to new struct
vhost_task: Allow vhost layer to use copy_process
fork: allow kernel code to call copy_process
fork: Add kernel_clone_args flag to ignore signals
fork: add kernel_clone_args flag to not dup/clone files
fork/vm: Move common PF_IO_WORKER behavior to new flag
kernel: Make io_thread and kthread bit fields
kthread: Pass in the thread's name during creation
kernel: Allow a kernel thread's name to be set in copy_process
csky: Remove kernel_thread declaration
o MAINTAINERS files additions and changes.
o Fix hotplug warning in nohz code.
o Tick dependency changes by Zqiang.
o Lazy-RCU shrinker fixes by Zqiang.
o rcu-tasks stall reporting improvements by Neeraj.
o Initial changes for renaming of k[v]free_rcu() to its new k[v]free_rcu_mightsleep()
name for robustness.
o Documentation Updates:
o Significant changes to srcu_struct size.
o Deadlock detection for srcu_read_lock() vs synchronize_srcu() from Boqun.
o rcutorture and rcu-related tool, which are targeted for v6.4 from Boqun's tree.
o Other misc changes.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEcoCIrlGe4gjE06JJqA4nf2o45hAFAmQuBnIACgkQqA4nf2o4
5hACVRAAoXu7/gfh5Pjw9O4E4pCdPJKsZZVYrcrVGrq6NAxRn6M1SgurAdC5grj2
96x0waoGaiO82V0H5iJMcKdAVu67x9R8WaQ1JoxN75Efn8h9W4TguB87TV1gk0xS
eZ18b/CyEaM5mNb80DFFF4FLohy5737p/kNTMqXQdUyR1BsDl16iRMgjiBiFhNUx
yPo8Y2kC2U2OTbldZgaE7s9bQO3xxEcifx93sGWsAex/gx54FYNisiwSlCOSgOE+
XkYo/OKk8Xvr82tLVX8XQVEPCMJ+rxea8T5zSs8/alvsPq7gA8wW3y6fsoa3vUU/
+Gd+W+Q/OsONIDtp8rQAY1qsD0ScDpaR8052RSH0zTa7pj8HsQgE5PjZ+cJW0SEi
cKN+Oe8+ETqKald+xZ6PDf58O212VLrru3RpQWrOQcJ7fmKmfT4REK0RcbLgg4qT
CBgOo6eg+ub4pxq2y11LZJBNTv1/S7xAEzFE0kArew64KB2gyVud0VJRZVAJnEfe
93QQVDFrwK2bhgWQZ6J6IbTvGeQW0L93IibuaU6jhZPR283VtUIIvM7vrOylN7Fq
4jsae0T7YGYfKUhgTpm7rCnm8A/D3Ni8MY0sKYYgDSyKmZUsnpI5wpx1xke4lwwV
ErrY46RCFa+k8wscc6iWfB4cGXyyFHyu+wtyg0KpFn5JAzcfz4A=
=Rgbj
-----END PGP SIGNATURE-----
Merge tag 'rcu.6.4.april5.2023.3' of git://git.kernel.org/pub/scm/linux/kernel/git/jfern/linux
Pull RCU updates from Joel Fernandes:
- Updates and additions to MAINTAINERS files, with Boqun being added to
the RCU entry and Zqiang being added as an RCU reviewer.
I have also transitioned from reviewer to maintainer; however, Paul
will be taking over sending RCU pull-requests for the next merge
window.
- Resolution of hotplug warning in nohz code, achieved by fixing
cpu_is_hotpluggable() through interaction with the nohz subsystem.
Tick dependency modifications by Zqiang, focusing on fixing usage of
the TICK_DEP_BIT_RCU_EXP bitmask.
- Avoid needless calls to the rcu-lazy shrinker for CONFIG_RCU_LAZY=n
kernels, fixed by Zqiang.
- Improvements to rcu-tasks stall reporting by Neeraj.
- Initial renaming of k[v]free_rcu() to k[v]free_rcu_mightsleep() for
increased robustness, affecting several components like mac802154,
drbd, vmw_vmci, tracing, and more.
A report by Eric Dumazet showed that the API could be unknowingly
used in an atomic context, so we'd rather make sure they know what
they're asking for by being explicit:
https://lore.kernel.org/all/20221202052847.2623997-1-edumazet@google.com/
- Documentation updates, including corrections to spelling,
clarifications in comments, and improvements to the srcu_size_state
comments.
- Better srcu_struct cache locality for readers, by adjusting the size
of srcu_struct in support of SRCU usage by Christoph Hellwig.
- Teach lockdep to detect deadlocks between srcu_read_lock() vs
synchronize_srcu() contributed by Boqun.
Previously lockdep could not detect such deadlocks, now it can.
- Integration of rcutorture and rcu-related tools, targeted for v6.4
from Boqun's tree, featuring new SRCU deadlock scenarios, test_nmis
module parameter, and more
- Miscellaneous changes, various code cleanups and comment improvements
* tag 'rcu.6.4.april5.2023.3' of git://git.kernel.org/pub/scm/linux/kernel/git/jfern/linux: (71 commits)
checkpatch: Error out if deprecated RCU API used
mac802154: Rename kfree_rcu() to kvfree_rcu_mightsleep()
rcuscale: Rename kfree_rcu() to kfree_rcu_mightsleep()
ext4/super: Rename kfree_rcu() to kfree_rcu_mightsleep()
net/mlx5: Rename kfree_rcu() to kfree_rcu_mightsleep()
net/sysctl: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
lib/test_vmalloc.c: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
tracing: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
misc: vmw_vmci: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
drbd: Rename kvfree_rcu() to kvfree_rcu_mightsleep()
rcu: Protect rcu_print_task_exp_stall() ->exp_tasks access
rcu: Avoid stack overflow due to __rcu_irq_enter_check_tick() being kprobe-ed
rcu-tasks: Report stalls during synchronize_srcu() in rcu_tasks_postscan()
rcu: Permit start_poll_synchronize_rcu_expedited() to be invoked early
rcu: Remove never-set needwake assignment from rcu_report_qs_rdp()
rcu: Register rcu-lazy shrinker only for CONFIG_RCU_LAZY=y kernels
rcu: Fix missing TICK_DEP_MASK_RCU_EXP dependency check
rcu: Fix set/clear TICK_DEP_BIT_RCU_EXP bitmask race
rcu/trace: use strscpy() to instead of strncpy()
tick/nohz: Fix cpu_is_hotpluggable() by checking with nohz subsystem
...
This update adds tests for nested locking and also adds support for
testing raw spinlocks in PREEMPT_RT kernels.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmQs8kETHHBhdWxtY2tA
a2VybmVsLm9yZwAKCRCevxLzctn7jImaEACFX7CPZyRUG32Yo6wdzxRHuZPid6cR
Si5GyRiTJzKuS9aDgl6jMYRvFXSXE9Xx1TVX0ad6fkNW40IMAkXprmUkQwN3ZtSb
K/pOLyOSFkm/XDrfDinPU46kh+DgSrAZtB3jhELa5doRxr9lWWSnwV4HoBx64T3/
84LEyIi47OSVxucaUWfimDUyBbNl4Oq95hdpD3hwxyxq5nsv2Q+oLWy2syXeegOz
3ru4Aswg40cwjYT9tjnrfZKZeteby2q55JYUDvP3kPfu/utyMyafUOda0DhHFdRB
dT1EISkY/zyqf3orTfghLpYJEplDNkSKhVtyn2dQcRHhoUJ9e/8xnRclqVo4tkqv
QWUZHJFar08P6iNBh9Z/YiM8D4kpeQNVCmR29h094BlQMbTLYbcZUjJ3YeE5nsz+
Bid7Ln6aBvGb3Ui6EWq7FVfcGzrPms3MUXw6nQLh6HaQg0F2g73MKS9Wd75OjEc/
cKPxkqzC35pM87eEf0xBlJzudZYxkYhP8Rt0bCGt/tq/pZAulCyOgnET2mcBv7Z0
94uEIGVvswVPB9/VKyqf7mHVrk/uJeygGKD1++4pzGumdhfsaM1dl3g6DkrSgK1j
A/kAApkhha8Zacj3oAAQuBPi8JuIqUFQvfbA8Os6d/8PXfTRaaMnV9DRS7wcohkP
7haDPwX8pHj+Gg==
=QAhX
-----END PGP SIGNATURE-----
Merge tag 'locktorture.2023.04.04a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull locktorture updates from Paul McKenney:
"This adds tests for nested locking and also adds support for testing
raw spinlocks in PREEMPT_RT kernels"
* tag 'locktorture.2023.04.04a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu:
locktorture: Add raw_spinlock* torture tests for PREEMPT_RT kernels
locktorture: With nested locks, occasionally skip main lock
locktorture: Add nested locking to rtmutex torture tests
locktorture: Add nested locking to mutex torture tests
locktorture: Add nested_[un]lock() hooks and nlocks parameter
This update fixes kernel-doc warnings and also updates instrumentation
from READ_ONCE() to volatile in order to avoid unaligned load-acquire
instructions on arm64 in kernels built with LTO.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmQsZnoTHHBhdWxtY2tA
a2VybmVsLm9yZwAKCRCevxLzctn7jPDUEACF3CXADzH1D1Z+dm5sxnF5BT9Mfzju
EXxeQ3bJ//fbgmnPOh4J/w6tQwwd8p0uRc8nbdxl+uqAgcPsgiIfN9FAsC9v0Hxu
xyt958sx8zz4FpbUckKQ6ab3/7tclGVN/0VLQdTfr2DstTkWIv7DePUxb/2s6Yst
6dT0vwapxqz1qB2NFN5ghkTFG0d1RUskEYu9CCHmh4chV+8nqwgmIyf9PPwcXRRC
waerO6lVKwXe/LqB4BA5hpDpMz1hP3WoPLI4DTR0wL+9gaoz6VEErqhqwiphT2J2
T9XwIMTqe32uP4g3cUSANIVgPUn9mD0CUg4H75BwiKgOXDsmPaPCKd/s5EczEBVS
mxMIxLrzFQ4D9YwxNR+QR9x9kGHt1oayY/G5YGFtDdxgm/Hb5badgtyBQK/KOLJm
DqOyUO96inAog6W4Mq48i74pq5Uz3iUnrJJqn/8X8Mo9eO5ywa0O83YXp980/J1Q
g9lPmyuceDtMimE20+p4IosNwXNjn/d3jDbxwoN5nWOhTumBzmtELarW9QRCTvOo
f97QPUD5glFSsGg9/TgZHd/iDkirZKdInXtjPergx0uzJPCbtd3KmbecPTeCt2Lj
ALUoNyDZT7U8zfphZeXJ4MgTXFnHI6N6S57ro8WEa4ZiZm90VJ9QhVlKA1zqoHVu
ET8Xhny+C67Izg==
=AH+i
-----END PGP SIGNATURE-----
Merge tag 'kcsan.2023.04.04a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull KCSAN updates from Paul McKenney:
"Kernel concurrency sanitizer (KCSAN) updates for v6.4
This fixes kernel-doc warnings and also updates instrumentation from
READ_ONCE() to volatile in order to avoid unaligned load-acquire
instructions on arm64 in kernels built with LTO"
* tag 'kcsan.2023.04.04a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu:
kcsan: Avoid READ_ONCE() in read_instrumented_memory()
instrumented.h: Fix all kernel-doc format warnings
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZELn8wAKCRDbK58LschI
g1khAQC1nmXPuKjM4EAfFK8Ysb3KoF8ADmpE97n+/HEDydCagwD/bX0+NABR75Nh
ueGcoU1TcfcbshDzrH0s+C95owZDZw4=
=BeZM
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:
====================
pull-request: bpf-next 2023-04-21
We've added 71 non-merge commits during the last 8 day(s) which contain
a total of 116 files changed, 13397 insertions(+), 8896 deletions(-).
The main changes are:
1) Add a new BPF netfilter program type and minimal support to hook
BPF programs to netfilter hooks such as prerouting or forward,
from Florian Westphal.
2) Fix race between btf_put and btf_idr walk which caused a deadlock,
from Alexei Starovoitov.
3) Second big batch to migrate test_verifier unit tests into test_progs
for ease of readability and debugging, from Eduard Zingerman.
4) Add support for refcounted local kptrs to the verifier for allowing
shared ownership, useful for adding a node to both the BPF list and
rbtree, from Dave Marchevsky.
5) Migrate bpf_for(), bpf_for_each() and bpf_repeat() macros from BPF
selftests into libbpf-provided bpf_helpers.h header and improve
kfunc handling, from Andrii Nakryiko.
6) Support 64-bit pointers to kfuncs needed for archs like s390x,
from Ilya Leoshkevich.
7) Support BPF progs under getsockopt with a NULL optval,
from Stanislav Fomichev.
8) Improve verifier u32 scalar equality checking in order to enable
LLVM transformations which earlier had to be disabled specifically
for BPF backend, from Yonghong Song.
9) Extend bpftool's struct_ops object loading to support links,
from Kui-Feng Lee.
10) Add xsk selftest follow-up fixes for hugepage allocated umem,
from Magnus Karlsson.
11) Support BPF redirects from tc BPF to ifb devices,
from Daniel Borkmann.
12) Add BPF support for integer type when accessing variable length
arrays, from Feng Zhou.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (71 commits)
selftests/bpf: verifier/value_ptr_arith converted to inline assembly
selftests/bpf: verifier/value_illegal_alu converted to inline assembly
selftests/bpf: verifier/unpriv converted to inline assembly
selftests/bpf: verifier/subreg converted to inline assembly
selftests/bpf: verifier/spin_lock converted to inline assembly
selftests/bpf: verifier/sock converted to inline assembly
selftests/bpf: verifier/search_pruning converted to inline assembly
selftests/bpf: verifier/runtime_jit converted to inline assembly
selftests/bpf: verifier/regalloc converted to inline assembly
selftests/bpf: verifier/ref_tracking converted to inline assembly
selftests/bpf: verifier/map_ptr_mixing converted to inline assembly
selftests/bpf: verifier/map_in_map converted to inline assembly
selftests/bpf: verifier/lwt converted to inline assembly
selftests/bpf: verifier/loops1 converted to inline assembly
selftests/bpf: verifier/jeq_infer_not_null converted to inline assembly
selftests/bpf: verifier/direct_packet_access converted to inline assembly
selftests/bpf: verifier/d_path converted to inline assembly
selftests/bpf: verifier/ctx converted to inline assembly
selftests/bpf: verifier/btf_ctx_access converted to inline assembly
selftests/bpf: verifier/bpf_get_stack converted to inline assembly
...
====================
Link: https://lore.kernel.org/r/20230421211035.9111-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Patch series "mm: process/cgroup ksm support", v9.
So far KSM can only be enabled by calling madvise for memory regions. To
be able to use KSM for more workloads, KSM needs to have the ability to be
enabled / disabled at the process / cgroup level.
Use case 1:
The madvise call is not available in the programming language. An
example for this are programs with forked workloads using a garbage
collected language without pointers. In such a language madvise cannot
be made available.
In addition the addresses of objects get moved around as they are
garbage collected. KSM sharing needs to be enabled "from the outside"
for these type of workloads.
Use case 2:
The same interpreter can also be used for workloads where KSM brings
no benefit or even has overhead. We'd like to be able to enable KSM on
a workload by workload basis.
Use case 3:
With the madvise call sharing opportunities are only enabled for the
current process: it is a workload-local decision. A considerable number
of sharing opportunities may exist across multiple workloads or jobs (if
they are part of the same security domain). Only a higler level entity
like a job scheduler or container can know for certain if its running
one or more instances of a job. That job scheduler however doesn't have
the necessary internal workload knowledge to make targeted madvise
calls.
Security concerns:
In previous discussions security concerns have been brought up. The
problem is that an individual workload does not have the knowledge about
what else is running on a machine. Therefore it has to be very
conservative in what memory areas can be shared or not. However, if the
system is dedicated to running multiple jobs within the same security
domain, its the job scheduler that has the knowledge that sharing can be
safely enabled and is even desirable.
Performance:
Experiments with using UKSM have shown a capacity increase of around 20%.
Here are the metrics from an instagram workload (taken from a machine
with 64GB main memory):
full_scans: 445
general_profit: 20158298048
max_page_sharing: 256
merge_across_nodes: 1
pages_shared: 129547
pages_sharing: 5119146
pages_to_scan: 4000
pages_unshared: 1760924
pages_volatile: 10761341
run: 1
sleep_millisecs: 20
stable_node_chains: 167
stable_node_chains_prune_millisecs: 2000
stable_node_dups: 2751
use_zero_pages: 0
zero_pages_sharing: 0
After the service is running for 30 minutes to an hour, 4 to 5 million
shared pages are common for this workload when using KSM.
Detailed changes:
1. New options for prctl system command
This patch series adds two new options to the prctl system call.
The first one allows to enable KSM at the process level and the second
one to query the setting.
The setting will be inherited by child processes.
With the above setting, KSM can be enabled for the seed process of a cgroup
and all processes in the cgroup will inherit the setting.
2. Changes to KSM processing
When KSM is enabled at the process level, the KSM code will iterate
over all the VMA's and enable KSM for the eligible VMA's.
When forking a process that has KSM enabled, the setting will be
inherited by the new child process.
3. Add general_profit metric
The general_profit metric of KSM is specified in the documentation,
but not calculated. This adds the general profit metric to
/sys/kernel/debug/mm/ksm.
4. Add more metrics to ksm_stat
This adds the process profit metric to /proc/<pid>/ksm_stat.
5. Add more tests to ksm_tests and ksm_functional_tests
This adds an option to specify the merge type to the ksm_tests.
This allows to test madvise and prctl KSM.
It also adds a two new tests to ksm_functional_tests: one to test
the new prctl options and the other one is a fork test to verify that
the KSM process setting is inherited by client processes.
This patch (of 3):
So far KSM can only be enabled by calling madvise for memory regions. To
be able to use KSM for more workloads, KSM needs to have the ability to be
enabled / disabled at the process / cgroup level.
1. New options for prctl system command
This patch series adds two new options to the prctl system call.
The first one allows to enable KSM at the process level and the second
one to query the setting.
The setting will be inherited by child processes.
With the above setting, KSM can be enabled for the seed process of a
cgroup and all processes in the cgroup will inherit the setting.
2. Changes to KSM processing
When KSM is enabled at the process level, the KSM code will iterate
over all the VMA's and enable KSM for the eligible VMA's.
When forking a process that has KSM enabled, the setting will be
inherited by the new child process.
1) Introduce new MMF_VM_MERGE_ANY flag
This introduces the new flag MMF_VM_MERGE_ANY flag. When this flag
is set, kernel samepage merging (ksm) gets enabled for all vma's of a
process.
2) Setting VM_MERGEABLE on VMA creation
When a VMA is created, if the MMF_VM_MERGE_ANY flag is set, the
VM_MERGEABLE flag will be set for this VMA.
3) support disabling of ksm for a process
This adds the ability to disable ksm for a process if ksm has been
enabled for the process with prctl.
4) add new prctl option to get and set ksm for a process
This adds two new options to the prctl system call
- enable ksm for all vmas of a process (if the vmas support it).
- query if ksm has been enabled for a process.
3. Disabling MMF_VM_MERGE_ANY for storage keys in s390
In the s390 architecture when storage keys are used, the
MMF_VM_MERGE_ANY will be disabled.
Link: https://lkml.kernel.org/r/20230418051342.1919757-1-shr@devkernel.io
Link: https://lkml.kernel.org/r/20230418051342.1919757-2-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Bagas Sanjaya <bagasdotme@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This adds minimal support for BPF_PROG_TYPE_NETFILTER bpf programs
that will be invoked via the NF_HOOK() points in the ip stack.
Invocation incurs an indirect call. This is not a necessity: Its
possible to add 'DEFINE_BPF_DISPATCHER(nf_progs)' and handle the
program invocation with the same method already done for xdp progs.
This isn't done here to keep the size of this chunk down.
Verifier restricts verdicts to either DROP or ACCEPT.
Signed-off-by: Florian Westphal <fw@strlen.de>
Link: https://lore.kernel.org/r/20230421170300.24115-3-fw@strlen.de
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add bpf_link support skeleton. To keep this reviewable, no bpf program
can be invoked yet, if a program is attached only a c-stub is called and
not the actual bpf program.
Defaults to 'y' if both netfilter and bpf syscall are enabled in kconfig.
Uapi example usage:
union bpf_attr attr = { };
attr.link_create.prog_fd = progfd;
attr.link_create.attach_type = 0; /* unused */
attr.link_create.netfilter.pf = PF_INET;
attr.link_create.netfilter.hooknum = NF_INET_LOCAL_IN;
attr.link_create.netfilter.priority = -128;
err = bpf(BPF_LINK_CREATE, &attr, sizeof(attr));
... this would attach progfd to ipv4:input hook.
Such hook gets removed automatically if the calling program exits.
BPF_NETFILTER program invocation is added in followup change.
NF_HOOK_OP_BPF enum will eventually be read from nfnetlink_hook, it
allows to tell userspace which program is attached at the given hook
when user runs 'nft hook list' command rather than just the priority
and not-very-helpful 'this hook runs a bpf prog but I can't tell which
one'.
Will also be used to disallow registration of two bpf programs with
same priority in a followup patch.
v4: arm32 cmpxchg only supports 32bit operand
s/prio/priority/
v3: restrict prog attachment to ip/ip6 for now, lets lift restrictions if
more use cases pop up (arptables, ebtables, netdev ingress/egress etc).
Signed-off-by: Florian Westphal <fw@strlen.de>
Link: https://lore.kernel.org/r/20230421170300.24115-2-fw@strlen.de
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When calculating the address of the refcount_t struct within a local
kptr, bpf_refcount_acquire_impl should add refcount_off bytes to the
address of the local kptr. Due to some missing parens, the function is
incorrectly adding sizeof(refcount_t) * refcount_off bytes. This patch
fixes the calculation.
Due to the incorrect calculation, bpf_refcount_acquire_impl was trying
to refcount_inc some memory well past the end of local kptrs, resulting
in kasan and refcount complaints, as reported in [0]. In that thread,
Florian and Eduard discovered that bpf selftests written in the new
style - with __success and an expected __retval, specifically - were
not actually being run. As a result, selftests added in bpf_refcount
series weren't really exercising this behavior, and thus didn't unearth
the bug.
With this fixed behavior it's safe to revert commit 7c4b96c000
("selftests/bpf: disable program test run for progs/refcounted_kptr.c"),
this patch does so.
[0] https://lore.kernel.org/bpf/ZEEp+j22imoN6rn9@strlen.de/
Fixes: 7c50b1cb76 ("bpf: Add bpf_refcount_acquire kfunc")
Reported-by: Florian Westphal <fw@strlen.de>
Reported-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20230421074431.3548349-1-davemarchevsky@fb.com
Florian and Eduard reported hard dead lock:
[ 58.433327] _raw_spin_lock_irqsave+0x40/0x50
[ 58.433334] btf_put+0x43/0x90
[ 58.433338] bpf_find_btf_id+0x157/0x240
[ 58.433353] btf_parse_fields+0x921/0x11c0
This happens since btf->refcount can be 1 at the time of btf_put() and
btf_put() will call btf_free_id() which will try to grab btf_idr_lock
and will dead lock.
Avoid the issue by doing btf_put() without locking.
Fixes: 3d78417b60 ("bpf: Add bpf_btf_find_by_name_kind() helper.")
Fixes: 1e89106da2 ("bpf: Add bpf_core_add_cands() and wire it into bpf_core_apply_relo_insn().")
Reported-by: Florian Westphal <fw@strlen.de>
Reported-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20230421014901.70908-1-alexei.starovoitov@gmail.com
For some unknown reason the introduction of the timer_wait_running callback
missed to fixup posix CPU timers, which went unnoticed for almost four years.
Marco reported recently that the WARN_ON() in timer_wait_running()
triggers with a posix CPU timer test case.
Posix CPU timers have two execution models for expiring timers depending on
CONFIG_POSIX_CPU_TIMERS_TASK_WORK:
1) If not enabled, the expiry happens in hard interrupt context so
spin waiting on the remote CPU is reasonably time bound.
Implement an empty stub function for that case.
2) If enabled, the expiry happens in task work before returning to user
space or guest mode. The expired timers are marked as firing and moved
from the timer queue to a local list head with sighand lock held. Once
the timers are moved, sighand lock is dropped and the expiry happens in
fully preemptible context. That means the expiring task can be scheduled
out, migrated, interrupted etc. So spin waiting on it is more than
suboptimal.
The timer wheel has a timer_wait_running() mechanism for RT, which uses
a per CPU timer-base expiry lock which is held by the expiry code and the
task waiting for the timer function to complete blocks on that lock.
This does not work in the same way for posix CPU timers as there is no
timer base and expiry for process wide timers can run on any task
belonging to that process, but the concept of waiting on an expiry lock
can be used too in a slightly different way:
- Add a mutex to struct posix_cputimers_work. This struct is per task
and used to schedule the expiry task work from the timer interrupt.
- Add a task_struct pointer to struct cpu_timer which is used to store
a the task which runs the expiry. That's filled in when the task
moves the expired timers to the local expiry list. That's not
affecting the size of the k_itimer union as there are bigger union
members already
- Let the task take the expiry mutex around the expiry function
- Let the waiter acquire a task reference with rcu_read_lock() held and
block on the expiry mutex
This avoids spin-waiting on a task which might not even be on a CPU and
works nicely for RT too.
Fixes: ec8f954a40 ("posix-timers: Use a callback for cancel synchronization on PREEMPT_RT")
Reported-by: Marco Elver <elver@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Marco Elver <elver@google.com>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/87zg764ojw.ffs@tglx
Have local_clock() return sched_clock() if sched_clock_init() has not
yet run. sched_clock_cpu() has this check but it was not included in the
new noinstr implementation of local_clock().
The effect can be seen on x86 with CONFIG_PRINTK_TIME enabled, for
instance. scd->clock quickly reaches the value of TICK_NSEC and that
value is returned until sched_clock_init() runs.
dmesg without this patch:
[ 0.000000] kvm-clock: ...
[ 0.000002] kvm-clock: ...
[ 0.000672] clocksource: ...
[ 0.001000] tsc: ...
[ 0.001000] e820: ...
[ 0.001000] e820: ...
...
[ 0.001000] ..TIMER: ...
[ 0.001000] clocksource: ...
[ 0.378956] Calibrating delay loop ...
[ 0.379955] pid_max: ...
dmesg with this patch:
[ 0.000000] kvm-clock: ...
[ 0.000001] kvm-clock: ...
[ 0.000675] clocksource: ...
[ 0.002685] tsc: ...
[ 0.003331] e820: ...
[ 0.004190] e820: ...
...
[ 0.421939] ..TIMER: ...
[ 0.422842] clocksource: ...
[ 0.424582] Calibrating delay loop ...
[ 0.425580] pid_max: ...
Fixes: 776f22913b ("sched/clock: Make local_clock() noinstr")
Signed-off-by: Aaron Thompson <dev@aaront.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230413175012.2201-1-dev@aaront.org
Commit 95158a89dd ("sched,rt: Use the full cpumask for balancing")
allows find_lock_lowest_rq() to pick a task with migration disabled.
The purpose of the commit is to push the current running task on the
CPU that has the migrate_disable() task away.
However, there is a race which allows a migrate_disable() task to be
migrated. Consider:
CPU0 CPU1
push_rt_task
check is_migration_disabled(next_task)
task not running and
migration_disabled == 0
find_lock_lowest_rq(next_task, rq);
_double_lock_balance(this_rq, busiest);
raw_spin_rq_unlock(this_rq);
double_rq_lock(this_rq, busiest);
<<wait for busiest rq>>
<wakeup>
task become running
migrate_disable();
<context out>
deactivate_task(rq, next_task, 0);
set_task_cpu(next_task, lowest_rq->cpu);
WARN_ON_ONCE(is_migration_disabled(p));
Fixes: 95158a89dd ("sched,rt: Use the full cpumask for balancing")
Signed-off-by: Schspa Shi <schspa@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: Dwaine Gonyier <dgonyier@redhat.com>
Introduce per-mm/cpu current concurrency id (mm_cid) to fix a PostgreSQL
sysbench regression reported by Aaron Lu.
Keep track of the currently allocated mm_cid for each mm/cpu rather than
freeing them immediately on context switch. This eliminates most atomic
operations when context switching back and forth between threads
belonging to different memory spaces in multi-threaded scenarios (many
processes, each with many threads). The per-mm/per-cpu mm_cid values are
serialized by their respective runqueue locks.
Thread migration is handled by introducing invocation to
sched_mm_cid_migrate_to() (with destination runqueue lock held) in
activate_task() for migrating tasks. If the destination cpu's mm_cid is
unset, and if the source runqueue is not actively using its mm_cid, then
the source cpu's mm_cid is moved to the destination cpu on migration.
Introduce a task-work executed periodically, similarly to NUMA work,
which delays reclaim of cid values when they are unused for a period of
time.
Keep track of the allocation time for each per-cpu cid, and let the task
work clear them when they are observed to be older than
SCHED_MM_CID_PERIOD_NS and unused. This task work also clears all
mm_cids which are greater or equal to the Hamming weight of the mm
cidmask to keep concurrency ids compact.
Because we want to ensure the mm_cid converges towards the smaller
values as migrations happen, the prior optimization that was done when
context switching between threads belonging to the same mm is removed,
because it could delay the lazy release of the destination runqueue
mm_cid after it has been replaced by a migration. Removing this prior
optimization is not an issue performance-wise because the introduced
per-mm/per-cpu mm_cid tracking also covers this more specific case.
Fixes: af7f588d8f ("sched: Introduce per-memory-map concurrency ID")
Reported-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Link: https://lore.kernel.org/lkml/20230327080502.GA570847@ziqianlu-desk2/
Current release - regressions:
- sched: clear actions pointer in miss cookie init fail
- mptcp: fix accept vs worker race
- bpf: fix bpf_arch_text_poke() with new_addr == NULL on s390
- eth: bnxt_en: fix a possible NULL pointer dereference in unload path
- eth: veth: take into account peer device for NETDEV_XDP_ACT_NDO_XMIT xdp_features flag
Current release - new code bugs:
- eth: revert "net/mlx5: Enable management PF initialization"
Previous releases - regressions:
- netfilter: fix recent physdev match breakage
- bpf: fix incorrect verifier pruning due to missing register precision taints
- eth: virtio_net: fix overflow inside xdp_linearize_page()
- eth: cxgb4: fix use after free bugs caused by circular dependency problem
- eth: mlxsw: pci: fix possible crash during initialization
Previous releases - always broken:
- sched: sch_qfq: prevent slab-out-of-bounds in qfq_activate_agg
- netfilter: validate catch-all set elements
- bridge: don't notify FDB entries with "master dynamic"
- eth: bonding: fix memory leak when changing bond type to ethernet
- eth: i40e: fix accessing vsi->active_filters without holding lock
Misc:
- Mat is back as MPTCP co-maintainer
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEEg1AjqC77wbdLX2LbKSR5jcyPE6QFAmRBF5ISHHBhYmVuaUBy
ZWRoYXQuY29tAAoJECkkeY3MjxOkj5sP/itK7DeAzufFIe1SUY+WYdbhAj7XTJso
q5bpF09wmLW9RLPxZ/hLMnCUniCSBBoJ/3oeBD8SgRBQJKSLjh1WTLYgFxfEZEeY
DvydMxiurH13pxgMBpCUSTlqDbiLkZ51Sy2sSGJcoJK8XRfA265/D7ZEBFJRIJS9
wr2prLspZmlN/5dnt8WIXubf83o5mkJ7DneSMBGuJXE2akJ7VBROz10pK1HVMALq
c6p/Kt92iffEiZZYCnqogrQOu3hLcSCLRTM7Wb3giIX9jaE84Hr9fV+zfG/JDeCJ
kgjEiKOExnusd8Nq91cClDt92ceRWU5s1M1UxJ5r4Mxjnq0Ug+I3ayItS9bXcEqH
0PmDql4bKFUue7QiJZkCsusKjlf5R1XxE0Zt+lANn+FWr8THKxvnrbpCjT0ZUvQv
7kI+Q4g7AFSNoWgM9SwtiTMQmxI8BUo7kgaBLz2IvFDzau4T+yDLKZ+3gyewwp0e
RN4pac8YyChuuMBmVrZGxVHPA3fKu7C7jCc/xGaMHcQSgFCsQtPpKZVa1SxLR/ZZ
efMB/J2+GIGv2i5YecH4DItNUd0QhZnXgBjLEaDmEGk4rHIlc9JDy3frD5Qrs4pW
Dq2zvveRVT30b52sOjkYzEvTU5R/s1nio3RGklUE4hDCV1DkehThAFaX68cIcgeR
63uRXDpogRs+
=xUNa
-----END PGP SIGNATURE-----
Merge tag 'net-6.3-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from Paolo Abeni:
"Including fixes from netfilter and bpf.
There are a few fixes for new code bugs, including the Mellanox one
noted in the last networking pull. No known regressions outstanding.
Current release - regressions:
- sched: clear actions pointer in miss cookie init fail
- mptcp: fix accept vs worker race
- bpf: fix bpf_arch_text_poke() with new_addr == NULL on s390
- eth: bnxt_en: fix a possible NULL pointer dereference in unload
path
- eth: veth: take into account peer device for
NETDEV_XDP_ACT_NDO_XMIT xdp_features flag
Current release - new code bugs:
- eth: revert "net/mlx5: Enable management PF initialization"
Previous releases - regressions:
- netfilter: fix recent physdev match breakage
- bpf: fix incorrect verifier pruning due to missing register
precision taints
- eth: virtio_net: fix overflow inside xdp_linearize_page()
- eth: cxgb4: fix use after free bugs caused by circular dependency
problem
- eth: mlxsw: pci: fix possible crash during initialization
Previous releases - always broken:
- sched: sch_qfq: prevent slab-out-of-bounds in qfq_activate_agg
- netfilter: validate catch-all set elements
- bridge: don't notify FDB entries with "master dynamic"
- eth: bonding: fix memory leak when changing bond type to ethernet
- eth: i40e: fix accessing vsi->active_filters without holding lock
Misc:
- Mat is back as MPTCP co-maintainer"
* tag 'net-6.3-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (33 commits)
net: bridge: switchdev: don't notify FDB entries with "master dynamic"
Revert "net/mlx5: Enable management PF initialization"
MAINTAINERS: Resume MPTCP co-maintainer role
mailmap: add entries for Mat Martineau
e1000e: Disable TSO on i219-LM card to increase speed
bnxt_en: fix free-runnig PHC mode
net: dsa: microchip: ksz8795: Correctly handle huge frame configuration
bpf: Fix incorrect verifier pruning due to missing register precision taints
hamradio: drop ISA_DMA_API dependency
mlxsw: pci: Fix possible crash during initialization
mptcp: fix accept vs worker race
mptcp: stops worker on unaccepted sockets at listener close
net: rpl: fix rpl header size calculation
net: vmxnet3: Fix NULL pointer dereference in vmxnet3_rq_rx_complete()
bonding: Fix memory leak when changing bond type to Ethernet
veth: take into account peer device for NETDEV_XDP_ACT_NDO_XMIT xdp_features flag
mlxfw: fix null-ptr-deref in mlxfw_mfa2_tlv_next()
bnxt_en: Fix a possible NULL pointer dereference in unload path
bnxt_en: Do not initialize PTP on older P3/P4 chips
netfilter: nf_tables: tighten netlink attribute requirements for catch-all elements
...
Userspace can't easily discover how much of a sleep cycle was spent in a
hardware sleep state without using kernel tracing and vendor specific sysfs
or debugfs files.
To make this information more discoverable, introduce 3 new sysfs files:
1) The time spent in a hw sleep state for last cycle.
2) The time spent in a hw sleep state since the kernel booted
3) The maximum time that the hardware can report for a sleep cycle.
All of these files will be present only if the system supports s2idle.
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The tracking of used_hiwater adds an atomic operation to the hot
path. This is acceptable only when debugging the kernel. To make
sure that the fields can never be used by mistake, do not even
include them in struct io_tlb_mem if CONFIG_DEBUG_FS is not set.
The build fails after doing that. To fix it, it is necessary to
remove all code specific to debugfs and instead provide a stub
implementation of swiotlb_create_debugfs_files(). As a bonus, this
change allows to remove one __maybe_unused attribute.
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
In the old days where each device had a custom kernel, the
android config fragments were useful to provide the required
and reccomended options expected by userland.
However, these days devices are expected to use the GKI kernel,
so these config fragments no longer needed, and out of date, so
they seem to only cause confusion.
So lets drop them. If folks are curious what configs are
expected by the Android environment, check out the gki_defconfig
file in the latest android common kernel tree.
Cc: Rob Herring <robh@kernel.org>
Cc: Amit Pundir <amit.pundir@linaro.org>
Cc: <kernel-team@android.com>
Signed-off-by: John Stultz <jstultz@google.com>
Link: https://lore.kernel.org/r/20230411180409.1706067-1-jstultz@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Factor out the code that fills the stack with the stackleak poison value
in order to allow architectures to provide a faster implementation.
Acked-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20230405130841.1350565-2-hca@linux.ibm.com
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
19 are cc:stable and the remainder address issues which were introduced
during this merge cycle, or aren't considered suitable for -stable
backporting.
19 are for MM and the remainder are for other subsystems.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZEB7GgAKCRDdBJ7gKXxA
jl4zAP9LxKisY8L29qrZG/SKoYbMMSM33ASOGZJRAuRRaOYL6QEAvS14pg/c22rL
4GCZbzvENY4xPRbz/6kc/s2Jnuww4wA=
=Kh/V
-----END PGP SIGNATURE-----
Merge tag 'mm-hotfixes-stable-2023-04-19-16-36' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull misc fixes from Andrew Morton:
"22 hotfixes.
19 are cc:stable and the remainder address issues which were
introduced during this merge cycle, or aren't considered suitable for
-stable backporting.
19 are for MM and the remainder are for other subsystems"
* tag 'mm-hotfixes-stable-2023-04-19-16-36' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (22 commits)
nilfs2: initialize unused bytes in segment summary blocks
mm: page_alloc: skip regions with hugetlbfs pages when allocating 1G pages
mm/mmap: regression fix for unmapped_area{_topdown}
maple_tree: fix mas_empty_area() search
maple_tree: make maple state reusable after mas_empty_area_rev()
mm: kmsan: handle alloc failures in kmsan_ioremap_page_range()
mm: kmsan: handle alloc failures in kmsan_vmap_pages_range_noflush()
tools/Makefile: do missed s/vm/mm/
mm: fix memory leak on mm_init error handling
mm/page_alloc: fix potential deadlock on zonelist_update_seq seqlock
kernel/sys.c: fix and improve control flow in __sys_setres[ug]id()
Revert "userfaultfd: don't fail on unrecognized features"
writeback, cgroup: fix null-ptr-deref write in bdi_split_work_to_wbs
maple_tree: fix a potential memory leak, OOB access, or other unpredictable bug
tools/mm/page_owner_sort.c: fix TGID output when cull=tg is used
mailmap: update jtoppins' entry to reference correct email
mm/mempolicy: fix use-after-free of VMA iterator
mm/huge_memory.c: warn with pr_warn_ratelimited instead of VM_WARN_ON_ONCE_FOLIO
mm/mprotect: fix do_mprotect_pkey() return on error
mm/khugepaged: check again on anon uffd-wp during isolation
...
The finit_module() system call can in the worst case use up to more than
twice of a module's size in virtual memory. Duplicate finit_module()
system calls are non fatal, however they unnecessarily strain virtual
memory during bootup and in the worst case can cause a system to fail
to boot. This is only known to currently be an issue on systems with
larger number of CPUs.
To help debug this situation we need to consider the different sources for
finit_module(). Requests from the kernel that rely on module auto-loading,
ie, the kernel's *request_module() API, are one source of calls. Although
modprobe checks to see if a module is already loaded prior to calling
finit_module() there is a small race possible allowing userspace to
trigger multiple modprobe calls racing against modprobe and this not
seeing the module yet loaded.
This adds debugging support to the kernel module auto-loader (*request_module()
calls) to easily detect duplicate module requests. To aid with possible bootup
failure issues incurred by this, it will converge duplicates requests to a
single request. This avoids any possible strain on virtual memory during
bootup which could be incurred by duplicate module autoloading requests.
Folks debugging virtual memory abuse on bootup can and should enable
this to see what pr_warn()s come on, to see if module auto-loading is to
blame for their wores. If they see duplicates they can further debug this
by enabling the module.enable_dups_trace kernel parameter or by enabling
CONFIG_MODULE_DEBUG_AUTOLOAD_DUPS_TRACE.
Current evidence seems to point to only a few duplicates for module
auto-loading. And so the source for other duplicates creating heavy
virtual memory pressure due to larger number of CPUs should becoming
from another place (likely udev).
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Juan Jose et al reported an issue found via fuzzing where the verifier's
pruning logic prematurely marks a program path as safe.
Consider the following program:
0: (b7) r6 = 1024
1: (b7) r7 = 0
2: (b7) r8 = 0
3: (b7) r9 = -2147483648
4: (97) r6 %= 1025
5: (05) goto pc+0
6: (bd) if r6 <= r9 goto pc+2
7: (97) r6 %= 1
8: (b7) r9 = 0
9: (bd) if r6 <= r9 goto pc+1
10: (b7) r6 = 0
11: (b7) r0 = 0
12: (63) *(u32 *)(r10 -4) = r0
13: (18) r4 = 0xffff888103693400 // map_ptr(ks=4,vs=48)
15: (bf) r1 = r4
16: (bf) r2 = r10
17: (07) r2 += -4
18: (85) call bpf_map_lookup_elem#1
19: (55) if r0 != 0x0 goto pc+1
20: (95) exit
21: (77) r6 >>= 10
22: (27) r6 *= 8192
23: (bf) r1 = r0
24: (0f) r0 += r6
25: (79) r3 = *(u64 *)(r0 +0)
26: (7b) *(u64 *)(r1 +0) = r3
27: (95) exit
The verifier treats this as safe, leading to oob read/write access due
to an incorrect verifier conclusion:
func#0 @0
0: R1=ctx(off=0,imm=0) R10=fp0
0: (b7) r6 = 1024 ; R6_w=1024
1: (b7) r7 = 0 ; R7_w=0
2: (b7) r8 = 0 ; R8_w=0
3: (b7) r9 = -2147483648 ; R9_w=-2147483648
4: (97) r6 %= 1025 ; R6_w=scalar()
5: (05) goto pc+0
6: (bd) if r6 <= r9 goto pc+2 ; R6_w=scalar(umin=18446744071562067969,var_off=(0xffffffff00000000; 0xffffffff)) R9_w=-2147483648
7: (97) r6 %= 1 ; R6_w=scalar()
8: (b7) r9 = 0 ; R9=0
9: (bd) if r6 <= r9 goto pc+1 ; R6=scalar(umin=1) R9=0
10: (b7) r6 = 0 ; R6_w=0
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 9
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff8ad3886c2a00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1 ; R0=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0)
19: (55) if r0 != 0x0 goto pc+1 ; R0=0
20: (95) exit
from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
21: (77) r6 >>= 10 ; R6_w=0
22: (27) r6 *= 8192 ; R6_w=0
23: (bf) r1 = r0 ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0)
24: (0f) r0 += r6
last_idx 24 first_idx 19
regs=40 stack=0 before 23: (bf) r1 = r0
regs=40 stack=0 before 22: (27) r6 *= 8192
regs=40 stack=0 before 21: (77) r6 >>= 10
regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1
parent didn't have regs=40 stack=0 marks: R0_rw=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) R6_rw=P0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
last_idx 18 first_idx 9
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff8ad3886c2a00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
regs=40 stack=0 before 10: (b7) r6 = 0
25: (79) r3 = *(u64 *)(r0 +0) ; R0_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
26: (7b) *(u64 *)(r1 +0) = r3 ; R1_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
27: (95) exit
from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 11
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff8ad3886c2a00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1
frame 0: propagating r6
last_idx 19 first_idx 11
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff8ad3886c2a00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_r=P0 R7=0 R8=0 R9=0 R10=fp0
last_idx 9 first_idx 9
regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1
parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar() R7_w=0 R8_w=0 R9_rw=0 R10=fp0
last_idx 8 first_idx 0
regs=40 stack=0 before 8: (b7) r9 = 0
regs=40 stack=0 before 7: (97) r6 %= 1
regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=40 stack=0 before 5: (05) goto pc+0
regs=40 stack=0 before 4: (97) r6 %= 1025
regs=40 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
19: safe
frame 0: propagating r6
last_idx 9 first_idx 0
regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=40 stack=0 before 5: (05) goto pc+0
regs=40 stack=0 before 4: (97) r6 %= 1025
regs=40 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
from 6 to 9: safe
verification time 110 usec
stack depth 4
processed 36 insns (limit 1000000) max_states_per_insn 0 total_states 3 peak_states 3 mark_read 2
The verifier considers this program as safe by mistakenly pruning unsafe
code paths. In the above func#0, code lines 0-10 are of interest. In line
0-3 registers r6 to r9 are initialized with known scalar values. In line 4
the register r6 is reset to an unknown scalar given the verifier does not
track modulo operations. Due to this, the verifier can also not determine
precisely which branches in line 6 and 9 are taken, therefore it needs to
explore them both.
As can be seen, the verifier starts with exploring the false/fall-through
paths first. The 'from 19 to 21' path has both r6=0 and r9=0 and the pointer
arithmetic on r0 += r6 is therefore considered safe. Given the arithmetic,
r6 is correctly marked for precision tracking where backtracking kicks in
where it walks back the current path all the way where r6 was set to 0 in
the fall-through branch.
Next, the pruning logics pops the path 'from 9 to 11' from the stack. Also
here, the state of the registers is the same, that is, r6=0 and r9=0, so
that at line 19 the path can be pruned as it is considered safe. It is
interesting to note that the conditional in line 9 turned r6 into a more
precise state, that is, in the fall-through path at the beginning of line
10, it is R6=scalar(umin=1), and in the branch-taken path (which is analyzed
here) at the beginning of line 11, r6 turned into a known const r6=0 as
r9=0 prior to that and therefore (unsigned) r6 <= 0 concludes that r6 must
be 0 (**):
[...] ; R6_w=scalar()
9: (bd) if r6 <= r9 goto pc+1 ; R6=scalar(umin=1) R9=0
[...]
from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0
[...]
The next path is 'from 6 to 9'. The verifier considers the old and current
state equivalent, and therefore prunes the search incorrectly. Looking into
the two states which are being compared by the pruning logic at line 9, the
old state consists of R6_rwD=Pscalar() R9_rwD=0 R10=fp0 and the new state
consists of R1=ctx(off=0,imm=0) R6_w=scalar(umax=18446744071562067968)
R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0. While r6 had the reg->precise flag
correctly set in the old state, r9 did not. Both r6'es are considered as
equivalent given the old one is a superset of the current, more precise one,
however, r9's actual values (0 vs 0x80000000) mismatch. Given the old r9
did not have reg->precise flag set, the verifier does not consider the
register as contributing to the precision state of r6, and therefore it
considered both r9 states as equivalent. However, for this specific pruned
path (which is also the actual path taken at runtime), register r6 will be
0x400 and r9 0x80000000 when reaching line 21, thus oob-accessing the map.
The purpose of precision tracking is to initially mark registers (including
spilled ones) as imprecise to help verifier's pruning logic finding equivalent
states it can then prune if they don't contribute to the program's safety
aspects. For example, if registers are used for pointer arithmetic or to pass
constant length to a helper, then the verifier sets reg->precise flag and
backtracks the BPF program instruction sequence and chain of verifier states
to ensure that the given register or stack slot including their dependencies
are marked as precisely tracked scalar. This also includes any other registers
and slots that contribute to a tracked state of given registers/stack slot.
This backtracking relies on recorded jmp_history and is able to traverse
entire chain of parent states. This process ends only when all the necessary
registers/slots and their transitive dependencies are marked as precise.
The backtrack_insn() is called from the current instruction up to the first
instruction, and its purpose is to compute a bitmask of registers and stack
slots that need precision tracking in the parent's verifier state. For example,
if a current instruction is r6 = r7, then r6 needs precision after this
instruction and r7 needs precision before this instruction, that is, in the
parent state. Hence for the latter r7 is marked and r6 unmarked.
For the class of jmp/jmp32 instructions, backtrack_insn() today only looks
at call and exit instructions and for all other conditionals the masks
remain as-is. However, in the given situation register r6 has a dependency
on r9 (as described above in **), so also that one needs to be marked for
precision tracking. In other words, if an imprecise register influences a
precise one, then the imprecise register should also be marked precise.
Meaning, in the parent state both dest and src register need to be tracked
for precision and therefore the marking must be more conservative by setting
reg->precise flag for both. The precision propagation needs to cover both
for the conditional: if the src reg was marked but not the dst reg and vice
versa.
After the fix the program is correctly rejected:
func#0 @0
0: R1=ctx(off=0,imm=0) R10=fp0
0: (b7) r6 = 1024 ; R6_w=1024
1: (b7) r7 = 0 ; R7_w=0
2: (b7) r8 = 0 ; R8_w=0
3: (b7) r9 = -2147483648 ; R9_w=-2147483648
4: (97) r6 %= 1025 ; R6_w=scalar()
5: (05) goto pc+0
6: (bd) if r6 <= r9 goto pc+2 ; R6_w=scalar(umin=18446744071562067969,var_off=(0xffffffff80000000; 0x7fffffff),u32_min=-2147483648) R9_w=-2147483648
7: (97) r6 %= 1 ; R6_w=scalar()
8: (b7) r9 = 0 ; R9=0
9: (bd) if r6 <= r9 goto pc+1 ; R6=scalar(umin=1) R9=0
10: (b7) r6 = 0 ; R6_w=0
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 9
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff9290dc5bfe00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1 ; R0=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0)
19: (55) if r0 != 0x0 goto pc+1 ; R0=0
20: (95) exit
from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
21: (77) r6 >>= 10 ; R6_w=0
22: (27) r6 *= 8192 ; R6_w=0
23: (bf) r1 = r0 ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0)
24: (0f) r0 += r6
last_idx 24 first_idx 19
regs=40 stack=0 before 23: (bf) r1 = r0
regs=40 stack=0 before 22: (27) r6 *= 8192
regs=40 stack=0 before 21: (77) r6 >>= 10
regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1
parent didn't have regs=40 stack=0 marks: R0_rw=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) R6_rw=P0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
last_idx 18 first_idx 9
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
regs=40 stack=0 before 10: (b7) r6 = 0
25: (79) r3 = *(u64 *)(r0 +0) ; R0_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
26: (7b) *(u64 *)(r1 +0) = r3 ; R1_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
27: (95) exit
from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 11
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff9290dc5bfe00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1
frame 0: propagating r6
last_idx 19 first_idx 11
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_r=P0 R7=0 R8=0 R9=0 R10=fp0
last_idx 9 first_idx 9
regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1
parent didn't have regs=240 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar() R7_w=0 R8_w=0 R9_rw=P0 R10=fp0
last_idx 8 first_idx 0
regs=240 stack=0 before 8: (b7) r9 = 0
regs=40 stack=0 before 7: (97) r6 %= 1
regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=240 stack=0 before 5: (05) goto pc+0
regs=240 stack=0 before 4: (97) r6 %= 1025
regs=240 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
19: safe
from 6 to 9: R1=ctx(off=0,imm=0) R6_w=scalar(umax=18446744071562067968) R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0
9: (bd) if r6 <= r9 goto pc+1
last_idx 9 first_idx 0
regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=240 stack=0 before 5: (05) goto pc+0
regs=240 stack=0 before 4: (97) r6 %= 1025
regs=240 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
last_idx 9 first_idx 0
regs=200 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=240 stack=0 before 5: (05) goto pc+0
regs=240 stack=0 before 4: (97) r6 %= 1025
regs=240 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
11: R6=scalar(umax=18446744071562067968) R9=-2147483648
11: (b7) r0 = 0 ; R0_w=0
12: (63) *(u32 *)(r10 -4) = r0
last_idx 12 first_idx 11
regs=1 stack=0 before 11: (b7) r0 = 0
13: R0_w=0 R10=fp0 fp-8=0000????
13: (18) r4 = 0xffff9290dc5bfe00 ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
15: (bf) r1 = r4 ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
16: (bf) r2 = r10 ; R2_w=fp0 R10=fp0
17: (07) r2 += -4 ; R2_w=fp-4
18: (85) call bpf_map_lookup_elem#1 ; R0_w=map_value_or_null(id=3,off=0,ks=4,vs=48,imm=0)
19: (55) if r0 != 0x0 goto pc+1 ; R0_w=0
20: (95) exit
from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=scalar(umax=18446744071562067968) R7=0 R8=0 R9=-2147483648 R10=fp0 fp-8=mmmm????
21: (77) r6 >>= 10 ; R6_w=scalar(umax=18014398507384832,var_off=(0x0; 0x3fffffffffffff))
22: (27) r6 *= 8192 ; R6_w=scalar(smax=9223372036854767616,umax=18446744073709543424,var_off=(0x0; 0xffffffffffffe000),s32_max=2147475456,u32_max=-8192)
23: (bf) r1 = r0 ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0)
24: (0f) r0 += r6
last_idx 24 first_idx 21
regs=40 stack=0 before 23: (bf) r1 = r0
regs=40 stack=0 before 22: (27) r6 *= 8192
regs=40 stack=0 before 21: (77) r6 >>= 10
parent didn't have regs=40 stack=0 marks: R0_rw=map_value(off=0,ks=4,vs=48,imm=0) R6_r=Pscalar(umax=18446744071562067968) R7=0 R8=0 R9=-2147483648 R10=fp0 fp-8=mmmm????
last_idx 19 first_idx 11
regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1
regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
regs=40 stack=0 before 17: (07) r2 += -4
regs=40 stack=0 before 16: (bf) r2 = r10
regs=40 stack=0 before 15: (bf) r1 = r4
regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00
regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
regs=40 stack=0 before 11: (b7) r0 = 0
parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar(umax=18446744071562067968) R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0
last_idx 9 first_idx 0
regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1
regs=240 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
regs=240 stack=0 before 5: (05) goto pc+0
regs=240 stack=0 before 4: (97) r6 %= 1025
regs=240 stack=0 before 3: (b7) r9 = -2147483648
regs=40 stack=0 before 2: (b7) r8 = 0
regs=40 stack=0 before 1: (b7) r7 = 0
regs=40 stack=0 before 0: (b7) r6 = 1024
math between map_value pointer and register with unbounded min value is not allowed
verification time 886 usec
stack depth 4
processed 49 insns (limit 1000000) max_states_per_insn 1 total_states 5 peak_states 5 mark_read 2
Fixes: b5dc0163d8 ("bpf: precise scalar_value tracking")
Reported-by: Juan Jose Lopez Jaimez <jjlopezjaimez@google.com>
Reported-by: Meador Inge <meadori@google.com>
Reported-by: Simon Scannell <simonscannell@google.com>
Reported-by: Nenad Stojanovski <thenenadx@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Co-developed-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Reviewed-by: Juan Jose Lopez Jaimez <jjlopezjaimez@google.com>
Reviewed-by: Meador Inge <meadori@google.com>
Reviewed-by: Simon Scannell <simonscannell@google.com>
Delay accounting does not track the delay of IRQ/SOFTIRQ. While
IRQ/SOFTIRQ could have obvious impact on some workloads productivity, such
as when workloads are running on system which is busy handling network
IRQ/SOFTIRQ.
Get the delay of IRQ/SOFTIRQ could help users to reduce such delay. Such
as setting interrupt affinity or task affinity, using kernel thread for
NAPI etc. This is inspired by "sched/psi: Add PSI_IRQ to track
IRQ/SOFTIRQ pressure"[1]. Also fix some code indent problems of older
code.
And update tools/accounting/getdelays.c:
/ # ./getdelays -p 156 -di
print delayacct stats ON
printing IO accounting
PID 156
CPU count real total virtual total delay total delay average
15 15836008 16218149 275700790 18.380ms
IO count delay total delay average
0 0 0.000ms
SWAP count delay total delay average
0 0 0.000ms
RECLAIM count delay total delay average
0 0 0.000ms
THRASHING count delay total delay average
0 0 0.000ms
COMPACT count delay total delay average
0 0 0.000ms
WPCOPY count delay total delay average
36 7586118 0.211ms
IRQ count delay total delay average
42 929161 0.022ms
[1] commit 52b1364ba0b1("sched/psi: Add PSI_IRQ to track IRQ/SOFTIRQ pressure")
Link: https://lkml.kernel.org/r/202304081728353557233@zte.com.cn
Signed-off-by: Yang Yang <yang.yang29@zte.com.cn>
Cc: Jiang Xuexin <jiang.xuexin@zte.com.cn>
Cc: wangyong <wang.yong12@zte.com.cn>
Cc: junhua huang <huang.junhua@zte.com.cn>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The console tracepoint is used by kcsan/kasan/kfence/kmsan test modules.
Since this tracepoint is not exported, these modules iterate over all
available tracepoints to find the console trace point. Export the trace
point so that it can be directly used.
Link: https://lkml.kernel.org/r/20230413100859.1492323-1-quic_pkondeti@quicinc.com
Signed-off-by: Pavankumar Kondeti <quic_pkondeti@quicinc.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Marco Elver <elver@google.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
If a library wants to get information from auxv (for instance,
AT_HWCAP/AT_HWCAP2), it has a few options, none of them perfectly reliable
or ideal:
- Be main or the pre-main startup code, and grub through the stack above
main. Doesn't work for a library.
- Call libc getauxval. Not ideal for libraries that are trying to be
libc-independent and/or don't otherwise require anything from other
libraries.
- Open and read /proc/self/auxv. Doesn't work for libraries that may run
in arbitrarily constrained environments that may not have /proc
mounted (e.g. libraries that might be used by an init program or a
container setup tool).
- Assume you're on the main thread and still on the original stack, and
try to walk the stack upwards, hoping to find auxv. Extremely bad
idea.
- Ask the caller to pass auxv in for you. Not ideal for a user-friendly
library, and then your caller may have the same problem.
Add a prctl that copies current->mm->saved_auxv to a userspace buffer.
Link: https://lkml.kernel.org/r/d81864a7f7f43bca6afa2a09fc2e850e4050ab42.1680611394.git.josh@joshtriplett.org
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "memcg: avoid flushing stats atomically where possible", v3.
rstat flushing is an expensive operation that scales with the number of
cpus and the number of cgroups in the system. The purpose of this series
is to minimize the contexts where we flush stats atomically.
Patches 1 and 2 are cleanups requested during reviews of prior versions of
this series.
Patch 3 makes sure we never try to flush from within an irq context.
Patches 4 to 7 introduce separate variants of mem_cgroup_flush_stats() for
atomic and non-atomic flushing, and make sure we only flush the stats
atomically when necessary.
Patch 8 is a slightly tangential optimization that limits the work done by
rstat flushing in some scenarios.
This patch (of 8):
cgroup_rstat_flush_irqsafe() can be a confusing name. It may read as
"irqs are disabled throughout", which is what the current implementation
does (currently under discussion [1]), but is not the intention. The
intention is that this function is safe to call from atomic contexts.
Name it as such.
Link: https://lkml.kernel.org/r/20230330191801.1967435-1-yosryahmed@google.com
Link: https://lkml.kernel.org/r/20230330191801.1967435-2-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vasily Averin <vasily.averin@linux.dev>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
commit f1a7941243 ("mm: convert mm's rss stats into percpu_counter")
introduces a memory leak by missing a call to destroy_context() when a
percpu_counter fails to allocate.
Before introducing the per-cpu counter allocations, init_new_context() was
the last call that could fail in mm_init(), and thus there was no need to
ever invoke destroy_context() in the error paths. Adding the following
percpu counter allocations adds error paths after init_new_context(),
which means its associated destroy_context() needs to be called when
percpu counters fail to allocate.
Link: https://lkml.kernel.org/r/20230330133822.66271-1-mathieu.desnoyers@efficios.com
Fixes: f1a7941243 ("mm: convert mm's rss stats into percpu_counter")
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Linux Security Modules (LSMs) that implement the "capable" hook will
usually emit an access denial message to the audit log whenever they
"block" the current task from using the given capability based on their
security policy.
The occurrence of a denial is used as an indication that the given task
has attempted an operation that requires the given access permission, so
the callers of functions that perform LSM permission checks must take care
to avoid calling them too early (before it is decided if the permission is
actually needed to perform the requested operation).
The __sys_setres[ug]id() functions violate this convention by first
calling ns_capable_setid() and only then checking if the operation
requires the capability or not. It means that any caller that has the
capability granted by DAC (task's capability set) but not by MAC (LSMs)
will generate a "denied" audit record, even if is doing an operation for
which the capability is not required.
Fix this by reordering the checks such that ns_capable_setid() is checked
last and -EPERM is returned immediately if it returns false.
While there, also do two small optimizations:
* move the capability check before prepare_creds() and
* bail out early in case of a no-op.
Link: https://lkml.kernel.org/r/20230217162154.837549-1-omosnace@redhat.com
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This was caught by randconfig builds but does not show up in
build testing without CONFIG_MODULE_DECOMPRESS:
kernel/module/stats.c: In function 'mod_stat_bump_invalid':
kernel/module/stats.c:229:42: error: 'invalid_mod_byte' undeclared (first use in this function); did you mean 'invalid_mod_bytes'?
229 | atomic_long_add(info->compressed_len, &invalid_mod_byte);
| ^~~~~~~~~~~~~~~~
| invalid_mod_bytes
Fixes: df3e764d8e ("module: add debug stats to help identify memory pressure")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
clang build reports
kernel/module/stats.c:307:34: error: variable
'len' is uninitialized when used here [-Werror,-Wuninitialized]
len = scnprintf(buf + 0, size - len,
^~~
At the start of this sequence, neither the '+ 0', nor the '- len' are needed.
So remove them and fix using 'len' uninitalized.
Fixes: df3e764d8e ("module: add debug stats to help identify memory pressure")
Signed-off-by: Tom Rix <trix@redhat.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
The new module statistics code mixes 64-bit types and wordsized 'long'
variables, which leads to build failures on 32-bit architectures:
kernel/module/stats.c: In function 'read_file_mod_stats':
kernel/module/stats.c:291:29: error: passing argument 1 of 'atomic64_read' from incompatible pointer type [-Werror=incompatible-pointer-types]
291 | total_size = atomic64_read(&total_mod_size);
x86_64-linux-ld: kernel/module/stats.o: in function `read_file_mod_stats':
stats.c:(.text+0x2b2): undefined reference to `__udivdi3'
To fix this, the code has to use one of the two types consistently.
Change them all to word-size types here.
Fixes: df3e764d8e ("module: add debug stats to help identify memory pressure")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
MODULE_INIT_COMPRESSED_FILE is defined in the uapi header, which
is not included indirectly from the normal linux/module.h, but
has to be pulled in explicitly:
kernel/module/stats.c: In function 'mod_stat_bump_invalid':
kernel/module/stats.c:227:14: error: 'MODULE_INIT_COMPRESSED_FILE' undeclared (first use in this function)
227 | if (flags & MODULE_INIT_COMPRESSED_FILE)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
The finit_module() system call can create unnecessary virtual memory
pressure for duplicate modules. This is because load_module() can in
the worse case allocate more than twice the size of a module in virtual
memory. This saves at least a full size of the module in wasted vmalloc
space memory by trying to avoid duplicates as soon as we can validate
the module name in the read module structure.
This can only be an issue if a system is getting hammered with userspace
loading modules. There are two ways to load modules typically on systems,
one is the kernel moduile auto-loading (*request_module*() calls in-kernel)
and the other is things like udev. The auto-loading is in-kernel, but that
pings back to userspace to just call modprobe. We already have a way to
restrict the amount of concurrent kernel auto-loads in a given time, however
that still allows multiple requests for the same module to go through
and force two threads in userspace racing to call modprobe for the same
exact module. Even though libkmod which both modprobe and udev does check
if a module is already loaded prior calling finit_module() races are
still possible and this is clearly evident today when you have multiple
CPUs.
To avoid memory pressure for such stupid cases put a stop gap for them.
The *earliest* we can detect duplicates from the modules side of things
is once we have blessed the module name, sadly after the first vmalloc
allocation. We can check for the module being present *before* a secondary
vmalloc() allocation.
There is a linear relationship between wasted virtual memory bytes and
the number of CPU counts. The reason is that udev ends up racing to call
tons of the same modules for each of the CPUs.
We can see the different linear relationships between wasted virtual
memory and CPU count during after boot in the following graph:
+----------------------------------------------------------------------------+
14GB |-+ + + + + *+ +-|
| **** |
| *** |
| ** |
12GB |-+ ** +-|
| ** |
| ** |
| ** |
| ** |
10GB |-+ ** +-|
| ** |
| ** |
| ** |
8GB |-+ ** +-|
waste | ** ### |
| ** #### |
| ** ####### |
6GB |-+ **** #### +-|
| * #### |
| * #### |
| ***** #### |
4GB |-+ ** #### +-|
| ** #### |
| ** #### |
| ** #### |
2GB |-+ ** ##### +-|
| * #### |
| * #### Before ******* |
| **## + + + + After ####### |
+----------------------------------------------------------------------------+
0 50 100 150 200 250 300
CPUs count
On the y-axis we can see gigabytes of wasted virtual memory during boot
due to duplicate module requests which just end up failing. Trying to
infer the slope this ends up being about ~463 MiB per CPU lost prior
to this patch. After this patch we only loose about ~230 MiB per CPU, for
a total savings of about ~233 MiB per CPU. This is all *just on bootup*!
On a 8vcpu 8 GiB RAM system using kdevops and testing against selftests
kmod.sh -t 0008 I see a saving in the *highest* side of memory
consumption of up to ~ 84 MiB with the Linux kernel selftests kmod
test 0008. With the new stress-ng module test I see a 145 MiB difference
in max memory consumption with 100 ops. The stress-ng module ops tests can be
pretty pathalogical -- it is not realistic, however it was used to
finally successfully reproduce issues which are only reported to happen on
system with over 400 CPUs [0] by just usign 100 ops on a 8vcpu 8 GiB RAM
system. Running out of virtual memory space is no surprise given the
above graph, since at least on x86_64 we're capped at 128 MiB, eventually
we'd hit a series of errors and once can use the above graph to
guestimate when. This of course will vary depending on the features
you have enabled. So for instance, enabling KASAN seems to make this
much worse.
The results with kmod and stress-ng can be observed and visualized below.
The time it takes to run the test is also not affected.
The kmod tests 0008:
The gnuplot is set to a range from 400000 KiB (390 Mib) - 580000 (566 Mib)
given the tests peak around that range.
cat kmod.plot
set term dumb
set output fileout
set yrange [400000:580000]
plot filein with linespoints title "Memory usage (KiB)"
Before:
root@kmod ~ # /data/linux-next/tools/testing/selftests/kmod/kmod.sh -t 0008
root@kmod ~ # free -k -s 1 -c 40 | grep Mem | awk '{print $3}' > log-0008-before.txt ^C
root@kmod ~ # sort -n -r log-0008-before.txt | head -1
528732
So ~516.33 MiB
After:
root@kmod ~ # /data/linux-next/tools/testing/selftests/kmod/kmod.sh -t 0008
root@kmod ~ # free -k -s 1 -c 40 | grep Mem | awk '{print $3}' > log-0008-after.txt ^C
root@kmod ~ # sort -n -r log-0008-after.txt | head -1
442516
So ~432.14 MiB
That's about 84 ~MiB in savings in the worst case. The graphs:
root@kmod ~ # gnuplot -e "filein='log-0008-before.txt'; fileout='graph-0008-before.txt'" kmod.plot
root@kmod ~ # gnuplot -e "filein='log-0008-after.txt'; fileout='graph-0008-after.txt'" kmod.plot
root@kmod ~ # cat graph-0008-before.txt
580000 +-----------------------------------------------------------------+
| + + + + + + + |
560000 |-+ Memory usage (KiB) ***A***-|
| |
540000 |-+ +-|
| |
| *A *AA*AA*A*AA *A*AA A*A*A *AA*A*AA*A A |
520000 |-+A*A*AA *AA*A *A*AA*A*AA *A*A A *A+-|
|*A |
500000 |-+ +-|
| |
480000 |-+ +-|
| |
460000 |-+ +-|
| |
| |
440000 |-+ +-|
| |
420000 |-+ +-|
| + + + + + + + |
400000 +-----------------------------------------------------------------+
0 5 10 15 20 25 30 35 40
root@kmod ~ # cat graph-0008-after.txt
580000 +-----------------------------------------------------------------+
| + + + + + + + |
560000 |-+ Memory usage (KiB) ***A***-|
| |
540000 |-+ +-|
| |
| |
520000 |-+ +-|
| |
500000 |-+ +-|
| |
480000 |-+ +-|
| |
460000 |-+ +-|
| |
| *A *A*A |
440000 |-+A*A*AA*A A A*A*AA A*A*AA*A*AA*A*AA*A*AA*AA*A*AA*A*AA-|
|*A *A*AA*A |
420000 |-+ +-|
| + + + + + + + |
400000 +-----------------------------------------------------------------+
0 5 10 15 20 25 30 35 40
The stress-ng module tests:
This is used to run the test to try to reproduce the vmap issues
reported by David:
echo 0 > /proc/sys/vm/oom_dump_tasks
./stress-ng --module 100 --module-name xfs
Prior to this commit:
root@kmod ~ # free -k -s 1 -c 40 | grep Mem | awk '{print $3}' > baseline-stress-ng.txt
root@kmod ~ # sort -n -r baseline-stress-ng.txt | head -1
5046456
After this commit:
root@kmod ~ # free -k -s 1 -c 40 | grep Mem | awk '{print $3}' > after-stress-ng.txt
root@kmod ~ # sort -n -r after-stress-ng.txt | head -1
4896972
5046456 - 4896972
149484
149484/1024
145.98046875000000000000
So this commit using stress-ng reveals saving about 145 MiB in memory
using 100 ops from stress-ng which reproduced the vmap issue reported.
cat kmod.plot
set term dumb
set output fileout
set yrange [4700000:5070000]
plot filein with linespoints title "Memory usage (KiB)"
root@kmod ~ # gnuplot -e "filein='baseline-stress-ng.txt'; fileout='graph-stress-ng-before.txt'" kmod-simple-stress-ng.plot
root@kmod ~ # gnuplot -e "filein='after-stress-ng.txt'; fileout='graph-stress-ng-after.txt'" kmod-simple-stress-ng.plot
root@kmod ~ # cat graph-stress-ng-before.txt
+---------------------------------------------------------------+
5.05e+06 |-+ + A + + + + + + +-|
| * Memory usage (KiB) ***A*** |
| * A |
5e+06 |-+ ** ** +-|
| ** * * A |
4.95e+06 |-+ * * A * A* +-|
| * * A A * * * * A |
| * * * * * * *A * * * A * |
4.9e+06 |-+ * * * A*A * A*AA*A A *A **A **A*A *+-|
| A A*A A * A * * A A * A * ** |
| * ** ** * * * * * * * |
4.85e+06 |-+ A A A ** * * ** *-|
| * * * * ** * |
| * A * * * * |
4.8e+06 |-+ * * * A A-|
| * * * |
4.75e+06 |-+ * * * +-|
| * ** |
| * + + + + + + ** + |
4.7e+06 +---------------------------------------------------------------+
0 5 10 15 20 25 30 35 40
root@kmod ~ # cat graph-stress-ng-after.txt
+---------------------------------------------------------------+
5.05e+06 |-+ + + + + + + + +-|
| Memory usage (KiB) ***A*** |
| |
5e+06 |-+ +-|
| |
4.95e+06 |-+ +-|
| |
| |
4.9e+06 |-+ *AA +-|
| A*AA*A*A A A*AA*AA*A*AA*A A A A*A *AA*A*A A A*AA*AA |
| * * ** * * * ** * *** * |
4.85e+06 |-+* *** * * * * *** A * * +-|
| * A * * ** * * A * * |
| * * * * ** * * |
4.8e+06 |-+* * * A * * * +-|
| * * * A * * |
4.75e+06 |-* * * * * +-|
| * * * * * |
| * + * *+ + + + + * *+ |
4.7e+06 +---------------------------------------------------------------+
0 5 10 15 20 25 30 35 40
[0] https://lkml.kernel.org/r/20221013180518.217405-1-david@redhat.com
Reported-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Loading modules with finit_module() can end up using vmalloc(), vmap()
and vmalloc() again, for a total of up to 3 separate allocations in the
worst case for a single module. We always kernel_read*() the module,
that's a vmalloc(). Then vmap() is used for the module decompression,
and if so the last read buffer is freed as we use the now decompressed
module buffer to stuff data into our copy module. The last allocation is
specific to each architectures but pretty much that's generally a series
of vmalloc() calls or a variation of vmalloc to handle ELF sections with
special permissions.
Evaluation with new stress-ng module support [1] with just 100 ops
is proving that you can end up using GiBs of data easily even with all
care we have in the kernel and userspace today in trying to not load modules
which are already loaded. 100 ops seems to resemble the sort of pressure a
system with about 400 CPUs can create on module loading. Although issues
relating to duplicate module requests due to each CPU inucurring a new
module reuest is silly and some of these are being fixed, we currently lack
proper tooling to help diagnose easily what happened, when it happened
and who likely is to blame -- userspace or kernel module autoloading.
Provide an initial set of stats which use debugfs to let us easily scrape
post-boot information about failed loads. This sort of information can
be used on production worklaods to try to optimize *avoiding* redundant
memory pressure using finit_module().
There's a few examples that can be provided:
A 255 vCPU system without the next patch in this series applied:
Startup finished in 19.143s (kernel) + 7.078s (userspace) = 26.221s
graphical.target reached after 6.988s in userspace
And 13.58 GiB of virtual memory space lost due to failed module loading:
root@big ~ # cat /sys/kernel/debug/modules/stats
Mods ever loaded 67
Mods failed on kread 0
Mods failed on decompress 0
Mods failed on becoming 0
Mods failed on load 1411
Total module size 11464704
Total mod text size 4194304
Failed kread bytes 0
Failed decompress bytes 0
Failed becoming bytes 0
Failed kmod bytes 14588526272
Virtual mem wasted bytes 14588526272
Average mod size 171115
Average mod text size 62602
Average fail load bytes 10339140
Duplicate failed modules:
module-name How-many-times Reason
kvm_intel 249 Load
kvm 249 Load
irqbypass 8 Load
crct10dif_pclmul 128 Load
ghash_clmulni_intel 27 Load
sha512_ssse3 50 Load
sha512_generic 200 Load
aesni_intel 249 Load
crypto_simd 41 Load
cryptd 131 Load
evdev 2 Load
serio_raw 1 Load
virtio_pci 3 Load
nvme 3 Load
nvme_core 3 Load
virtio_pci_legacy_dev 3 Load
virtio_pci_modern_dev 3 Load
t10_pi 3 Load
virtio 3 Load
crc32_pclmul 6 Load
crc64_rocksoft 3 Load
crc32c_intel 40 Load
virtio_ring 3 Load
crc64 3 Load
The following screen shot, of a simple 8vcpu 8 GiB KVM guest with the
next patch in this series applied, shows 226.53 MiB are wasted in virtual
memory allocations which due to duplicate module requests during boot.
It also shows an average module memory size of 167.10 KiB and an an
average module .text + .init.text size of 61.13 KiB. The end shows all
modules which were detected as duplicate requests and whether or not
they failed early after just the first kernel_read*() call or late after
we've already allocated the private space for the module in
layout_and_allocate(). A system with module decompression would reveal
more wasted virtual memory space.
We should put effort now into identifying the source of these duplicate
module requests and trimming these down as much possible. Larger systems
will obviously show much more wasted virtual memory allocations.
root@kmod ~ # cat /sys/kernel/debug/modules/stats
Mods ever loaded 67
Mods failed on kread 0
Mods failed on decompress 0
Mods failed on becoming 83
Mods failed on load 16
Total module size 11464704
Total mod text size 4194304
Failed kread bytes 0
Failed decompress bytes 0
Failed becoming bytes 228959096
Failed kmod bytes 8578080
Virtual mem wasted bytes 237537176
Average mod size 171115
Average mod text size 62602
Avg fail becoming bytes 2758544
Average fail load bytes 536130
Duplicate failed modules:
module-name How-many-times Reason
kvm_intel 7 Becoming
kvm 7 Becoming
irqbypass 6 Becoming & Load
crct10dif_pclmul 7 Becoming & Load
ghash_clmulni_intel 7 Becoming & Load
sha512_ssse3 6 Becoming & Load
sha512_generic 7 Becoming & Load
aesni_intel 7 Becoming
crypto_simd 7 Becoming & Load
cryptd 3 Becoming & Load
evdev 1 Becoming
serio_raw 1 Becoming
nvme 3 Becoming
nvme_core 3 Becoming
t10_pi 3 Becoming
virtio_pci 3 Becoming
crc32_pclmul 6 Becoming & Load
crc64_rocksoft 3 Becoming
crc32c_intel 3 Becoming
virtio_pci_modern_dev 2 Becoming
virtio_pci_legacy_dev 1 Becoming
crc64 2 Becoming
virtio 2 Becoming
virtio_ring 2 Becoming
[0] https://github.com/ColinIanKing/stress-ng.git
[1] echo 0 > /proc/sys/vm/oom_dump_tasks
./stress-ng --module 100 --module-name xfs
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
The patient module check inside add_unformed_module() is large
enough as we need it. It is a bit hard to read too, so just
move it to a helper and do the inverse checks first to help
shift the code and make it easier to read. The new helper then
is module_patient_check_exists().
To make this work we need to mvoe the finished_loading() up,
we do that without making any functional changes to that routine.
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Simplify the concurrency delimiter we use for kmod with the semaphore.
I had used the kmod strategy to try to implement a similar concurrency
delimiter for the kernel_read*() calls from the finit_module() path
so to reduce vmalloc() memory pressure. That effort didn't provide yet
conclusive results, but one thing that became clear is we can use
the suggested alternative solution with semaphores which Linus hinted
at instead of using the atomic / wait strategy.
I've stress tested this with kmod test 0008:
time /data/linux-next/tools/testing/selftests/kmod/kmod.sh -t 0008
And I get only a *slight* delay. That delay however is small, a few
seconds for a full test loop run that runs 150 times, for about ~30-40
seconds. The small delay is worth the simplfication IMHO.
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Fundamentally semaphores are a counted primitive, but
DEFINE_SEMAPHORE() does not expose this and explicitly creates a
binary semaphore.
Change DEFINE_SEMAPHORE() to take a number argument and use that in the
few places that open-coded it using __SEMAPHORE_INITIALIZER().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[mcgrof: add some tribal knowledge about why some folks prefer
binary sempahores over mutexes]
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
There is no need for the __tick_nohz_idle_stop_tick() function between
tick_nohz_idle_stop_tick() and its implementation. Remove that
unnecessary step.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230222144649.624380-6-frederic@kernel.org
The per-cpu iowait task counter is incremented locally upon sleeping.
But since the task can be woken to (and by) another CPU, the counter may
then be decremented remotely. This is the source of a race involving
readers VS writer of idle/iowait sleeptime.
The following scenario shows an example where a /proc/stat reader
observes a pending sleep time as IO whereas that pending sleep time
later eventually gets accounted as non-IO.
CPU 0 CPU 1 CPU 2
----- ----- ------
//io_schedule() TASK A
current->in_iowait = 1
rq(0)->nr_iowait++
//switch to idle
// READ /proc/stat
// See nr_iowait_cpu(0) == 1
return ts->iowait_sleeptime +
ktime_sub(ktime_get(), ts->idle_entrytime)
//try_to_wake_up(TASK A)
rq(0)->nr_iowait--
//idle exit
// See nr_iowait_cpu(0) == 0
ts->idle_sleeptime += ktime_sub(ktime_get(), ts->idle_entrytime)
As a result subsequent reads on /proc/stat may expose backward progress.
This is unfortunately hardly fixable. Just add a comment about that
condition.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230222144649.624380-5-frederic@kernel.org
Reading idle/IO sleep time (eg: from /proc/stat) can race with idle exit
updates because the state machine handling the stats is not atomic and
requires a coherent read batch.
As a result reading the sleep time may report irrelevant or backward
values.
Fix this with protecting the simple state machine within a seqcount.
This is expected to be cheap enough not to add measurable performance
impact on the idle path.
Note this only fixes reader VS writer condition partitially. A race
remains that involves remote updates of the CPU iowait task counter. It
can hardly be fixed.
Reported-by: Yu Liao <liaoyu15@huawei.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230222144649.624380-4-frederic@kernel.org
The idle and IO sleeptime statistics appearing in /proc/stat can be
currently updated from two sites: locally on idle exit and remotely
by cpufreq. However there is no synchronization mechanism protecting
concurrent updates. It is therefore possible to account the sleeptime
twice, among all the other possible broken scenarios.
To prevent from breaking the sleeptime accounting source, restrict the
sleeptime updates to the local idle exit site. If there is a delta to
add since the last update, IO/Idle sleep time readers will now only
compute the delta without actually writing it back to the internal idle
statistic fields.
This fixes a writer VS writer race. Note there are still two known
reader VS writer races to handle. A subsequent patch will fix one.
Reported-by: Yu Liao <liaoyu15@huawei.com>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230222144649.624380-3-frederic@kernel.org
Restructure and group fields by access in order to optimize cache
layout. While at it, also add missing kernel doc for two fields:
@last_jiffies and @idle_expires.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230222144649.624380-2-frederic@kernel.org
With HIGHRES enabled tick_sched_timer() is programmed every jiffy to
expire the timer_list timers. This timer is programmed accurate in
respect to CLOCK_MONOTONIC so that 0 seconds and nanoseconds is the
first tick and the next one is 1000/CONFIG_HZ ms later. For HZ=250 it is
every 4 ms and so based on the current time the next tick can be
computed.
This accuracy broke since the commit mentioned below because the jiffy
based clocksource is initialized with higher accuracy in
read_persistent_wall_and_boot_offset(). This higher accuracy is
inherited during the setup in tick_setup_device(). The timer still fires
every 4ms with HZ=250 but timer is no longer aligned with
CLOCK_MONOTONIC with 0 as it origin but has an offset in the us/ns part
of the timestamp. The offset differs with every boot and makes it
impossible for user land to align with the tick.
Align the tick period with CLOCK_MONOTONIC ensuring that it is always a
multiple of 1000/CONFIG_HZ ms.
Fixes: 857baa87b6 ("sched/clock: Enable sched clock early")
Reported-by: Gusenleitner Klaus <gus@keba.com>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/20230406095735.0_14edn3@linutronix.de
Link: https://lore.kernel.org/r/20230418122639.ikgfvu3f@linutronix.de
Make it possible to load lirc program type with just CAP_BPF. There is
nothing exceptional about lirc programs that means they require
SYS_CAP_ADMIN.
In order to attach or detach a lirc program type you need permission to
open /dev/lirc0; if you have permission to do that, you can alter all
sorts of lirc receiving options. Changing the IR protocol decoder is no
different.
Right now on a typical distribution /dev/lirc devices are only
read/write by root. Ideally we would make them group read/write like
other devices so that local users can use them without becoming root.
Signed-off-by: Sean Young <sean@mess.org>
Link: https://lore.kernel.org/r/ZD0ArKpwnDBJZsrE@gofer.mess.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
With changes to how Hyper-V guest VMs flip memory between private
(encrypted) and shared (decrypted), creating a second kernel virtual
mapping for shared memory is no longer necessary. Everything needed
for the transition to shared is handled by set_memory_decrypted().
As such, remove swiotlb_unencrypted_base and the associated
code.
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/1679838727-87310-8-git-send-email-mikelley@microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
higher than the average system load
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmQ76uAACgkQEsHwGGHe
VUpsNhAAt8FYuJD0oJs34mNIS75PrK6hd8zETj22BDW3QGdGvHT54DcgDkmCGwtC
w2bSyPuNR1ZtLmKWt3EfSGuTDZDE/NS6OwPFgliOe68o76YgeVUezSBeHnaAoRDb
38j5o7X3tvU5Qz1EqWhdiOX7EKUVy7tRK+W49HLHQCEZkpjISg96Qj2Rtu6iXRg2
VPoyxb39NdtSCLDq2+ZkT2NayogX6hESZGDQ3/g9NJeOm4+y2VLqUfA6o9V6Aq5Y
KRvWw/VsM6XiCLdkdjHAFMuiYCnXYKLAHuPKfxENqvCpXoA+5KxMadyG02hvAvo3
WGP4sEvfH+NWAtAvAf4wkIwxx420NsTV+GN+XpYTAlg/g9C9uT1OB06k6V7CunkV
3kA+WFyPYAcvd7onVkjQnJ3AI/muFZN+9uZKuBw0K/sjXnDzGHRW3cq0DoKpUDzp
3ehfL1d8reN9k/ZoIlycrsnLTuUxzQfPkG8Wfngw2RwsFJtyO3FcRkAZptTtVcmg
vW6Uzn35zhG8FLc5rLt4hHmoFhvbINu9KD3UXD3Ihst/fuvBE+Ys4WEP/UaRr9mg
ovHCq0RRcAuOiWeioJJhIw3jaat4yylOPXBkV7Wzd2kMmMyGcHmkFGJCXlzX9EPQ
9KaligBVyfr+SgM1sbob4jAA1ZUBIpUC/gN6Xim62o3W9PWG7tk=
=E+yZ
-----END PGP SIGNATURE-----
Merge tag 'sched_urgent_for_v6.3_rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fix from Borislav Petkov:
- Do not pull tasks to the local scheduling group if its average load
is higher than the average system load
* tag 'sched_urgent_for_v6.3_rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Fix imbalance overflow
We've managed to improve the UX for kptrs significantly over the last 9
months. All of the existing use cases which previously had KF_KPTR_GET
kfuncs (struct bpf_cpumask *, struct task_struct *, and struct cgroup *)
have all been updated to be synchronized using RCU. In other words,
their KF_KPTR_GET kfuncs have been removed in favor of KF_RCU |
KF_ACQUIRE kfuncs, with the pointers themselves also being readable from
maps in an RCU read region thanks to the types being RCU safe.
While KF_KPTR_GET was a logical starting point for kptrs, it's become
clear that they're not the correct abstraction. KF_KPTR_GET is a flag
that essentially does nothing other than enforcing that the argument to
a function is a pointer to a referenced kptr map value. At first glance,
that's a useful thing to guarantee to a kfunc. It gives kfuncs the
ability to try and acquire a reference on that kptr without requiring
the BPF prog to do something like this:
struct kptr_type *in_map, *new = NULL;
in_map = bpf_kptr_xchg(&map->value, NULL);
if (in_map) {
new = bpf_kptr_type_acquire(in_map);
in_map = bpf_kptr_xchg(&map->value, in_map);
if (in_map)
bpf_kptr_type_release(in_map);
}
That's clearly a pretty ugly (and racy) UX, and if using KF_KPTR_GET is
the only alternative, it's better than nothing. However, the problem
with any KF_KPTR_GET kfunc lies in the fact that it always requires some
kind of synchronization in order to safely do an opportunistic acquire
of the kptr in the map. This is because a BPF program running on another
CPU could do a bpf_kptr_xchg() on that map value, and free the kptr
after it's been read by the KF_KPTR_GET kfunc. For example, the
now-removed bpf_task_kptr_get() kfunc did the following:
struct task_struct *bpf_task_kptr_get(struct task_struct **pp)
{
struct task_struct *p;
rcu_read_lock();
p = READ_ONCE(*pp);
/* If p is non-NULL, it could still be freed by another CPU,
* so we have to do an opportunistic refcount_inc_not_zero()
* and return NULL if the task will be freed after the
* current RCU read region.
*/
|f (p && !refcount_inc_not_zero(&p->rcu_users))
p = NULL;
rcu_read_unlock();
return p;
}
In other words, the kfunc uses RCU to ensure that the task remains valid
after it's been peeked from the map. However, this is completely
redundant with just defining a KF_RCU kfunc that itself does a
refcount_inc_not_zero(), which is exactly what bpf_task_acquire() now
does.
So, the question of whether KF_KPTR_GET is useful is actually, "Are
there any synchronization mechanisms / safety flags that are required by
certain kptrs, but which are not provided by the verifier to kfuncs?"
The answer to that question today is "No", because every kptr we
currently care about is RCU protected.
Even if the answer ever became "yes", the proper way to support that
referenced kptr type would be to add support for whatever
synchronization mechanism it requires in the verifier, rather than
giving kfuncs a flag that says, "Here's a pointer to a referenced kptr
in a map, do whatever you need to do."
With all that said -- so as to allow us to consolidate the kfunc API,
and simplify the verifier a bit, this patch removes KF_KPTR_GET, and all
relevant logic from the verifier.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230416084928.326135-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The syscall user dispatch configuration can only be set by the task itself,
but lacks a ptrace set/get interface which makes it impossible to implement
checkpoint/restore for it.
Add the required ptrace requests and the get/set functions in the syscall
user dispatch code to make that possible.
Signed-off-by: Gregory Price <gregory.price@memverge.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lore.kernel.org/r/20230407171834.3558-4-gregory.price@memverge.com
To support checkpoint/restart, ptrace must be able to set the selector
of the tracee. The selector is a user pointer that may be subject to
memory tagging extensions on some architectures (namely ARM MTE).
access_ok() clears memory tags for tagged addresses if the current task has
memory tagging enabled.
This obviously fails when ptrace modifies the selector of a tracee when
tracer and tracee do not have the same memory tagging enabled state.
Solve this by untagging the selector address before handing it to
access_ok(), like other ptrace functions which modify tracee pointers do.
Obviously a tracer can set an invalid selector address for the tracee, but
that's independent of tagging and a general capability of the tracer.
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Gregory Price <gregory.price@memverge.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lore.kernel.org/all/ZCWXE04nLZ4pXEtM@arm.com/
Link: https://lore.kernel.org/r/20230407171834.3558-3-gregory.price@memverge.com
syscall user dispatch configuration is not covered by checkpoint/restore.
To prepare for ptrace access to the syscall user dispatch configuration,
move the inner working of set_syscall_user_dispatch() into a helper
function. Make the helper function task pointer based and let
set_syscall_user_dispatch() invoke it with task=current.
No functional change.
Signed-off-by: Gregory Price <gregory.price@memverge.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lore.kernel.org/r/20230407171834.3558-2-gregory.price@memverge.com
POSIX timers using the CLOCK_PROCESS_CPUTIME_ID clock prefer the main
thread of a thread group for signal delivery. However, this has a
significant downside: it requires waking up a potentially idle thread.
Instead, prefer to deliver signals to the current thread (in the same
thread group) if SIGEV_THREAD_ID is not set by the user. This does not
change guaranteed semantics, since POSIX process CPU time timers have
never guaranteed that signal delivery is to a specific thread (without
SIGEV_THREAD_ID set).
The effect is that queueing the signal no longer wakes up potentially idle
threads, and the kernel is no longer biased towards delivering the timer
signal to any particular thread (which better distributes the timer signals
esp. when multiple timers fire concurrently).
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230316123028.2890338-1-elver@google.com
swiotlb currently reports the total number of slabs and the instantaneous
in-use slabs in debugfs. But with increased usage of swiotlb for all I/O
in Confidential Computing (coco) VMs, it has become difficult to know
how much memory to allocate for swiotlb bounce buffers, either via the
automatic algorithm in the kernel or by specifying a value on the
kernel boot line. The current automatic algorithm generously allocates
swiotlb bounce buffer memory, and may be wasting significant memory in
many use cases.
To support better understanding of swiotlb usage, add tracking of the
the high water mark for usage of the default swiotlb bounce buffer memory
pool and any reserved memory pools. Report these high water marks in
debugfs along with the other swiotlb pool metrics. Allow the high water
marks to be reset to zero at runtime by writing to them.
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
For io_tlb_nslabs, the debugfs code reports the correct value for a
specific reserved memory pool. But for io_tlb_used, the value reported
is always for the default pool, not the specific reserved pool. Fix this.
Fixes: 5c850d3188 ("swiotlb: fix passing local variable to debugfs_create_ulong()")
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
The reservedmem_of_init_fn's are invoked very early at boot before the
memory zones have even been defined. This makes it inappropriate to test
whether the page corresponding to a PFN is in ZONE_HIGHMEM from within
one.
Removing the check allows an ARM 32-bit kernel with SPARSEMEM enabled to
boot properly since otherwise we would be de-referencing an
uninitialized sparsemem map to perform pfn_to_page() check.
The arm64 architecture happens to work (and also has no high memory) but
other 32-bit architectures could also be having similar issues.
While it would be nice to provide early feedback about a reserved DMA
pool residing in highmem, it is not possible to do that until the first
time we try to use it, which is where the check is moved to.
Fixes: 0b84e4f8b7 ("swiotlb: Add restricted DMA pool initialization")
Signed-off-by: Doug Berger <opendmb@gmail.com>
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
All btf_fields in an object are 0-initialized by memset in
bpf_obj_init. This might not be a valid initial state for some field
types, in which case kfuncs that use the type will properly initialize
their input if it's been 0-initialized. Some BPF graph collection types
and kfuncs do this: bpf_list_{head,node} and bpf_rb_node.
An earlier patch in this series added the bpf_refcount field, for which
the 0 state indicates that the refcounted object should be free'd.
bpf_obj_init treats this field specially, setting refcount to 1 instead
of relying on scattered "refcount is 0? Must have just been initialized,
let's set to 1" logic in kfuncs.
This patch extends this treatment to list and rbtree field types,
allowing most scattered initialization logic in kfuncs to be removed.
Note that bpf_{list_head,rb_root} may be inside a BPF map, in which case
they'll be 0-initialized without passing through the newly-added logic,
so scattered initialization logic must remain for these collection root
types.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-9-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch modifies bpf_rbtree_remove to account for possible failure
due to the input rb_node already not being in any collection.
The function can now return NULL, and does when the aforementioned
scenario occurs. As before, on successful removal an owning reference to
the removed node is returned.
Adding KF_RET_NULL to bpf_rbtree_remove's kfunc flags - now KF_RET_NULL |
KF_ACQUIRE - provides the desired verifier semantics:
* retval must be checked for NULL before use
* if NULL, retval's ref_obj_id is released
* retval is a "maybe acquired" owning ref, not a non-owning ref,
so it will live past end of critical section (bpf_spin_unlock), and
thus can be checked for NULL after the end of the CS
BPF programs must add checks
============================
This does change bpf_rbtree_remove's verifier behavior. BPF program
writers will need to add NULL checks to their programs, but the
resulting UX looks natural:
bpf_spin_lock(&glock);
n = bpf_rbtree_first(&ghead);
if (!n) { /* ... */}
res = bpf_rbtree_remove(&ghead, &n->node);
bpf_spin_unlock(&glock);
if (!res) /* Newly-added check after this patch */
return 1;
n = container_of(res, /* ... */);
/* Do something else with n */
bpf_obj_drop(n);
return 0;
The "if (!res)" check above is the only addition necessary for the above
program to pass verification after this patch.
bpf_rbtree_remove no longer clobbers non-owning refs
====================================================
An issue arises when bpf_rbtree_remove fails, though. Consider this
example:
struct node_data {
long key;
struct bpf_list_node l;
struct bpf_rb_node r;
struct bpf_refcount ref;
};
long failed_sum;
void bpf_prog()
{
struct node_data *n = bpf_obj_new(/* ... */);
struct bpf_rb_node *res;
n->key = 10;
bpf_spin_lock(&glock);
bpf_list_push_back(&some_list, &n->l); /* n is now a non-owning ref */
res = bpf_rbtree_remove(&some_tree, &n->r, /* ... */);
if (!res)
failed_sum += n->key; /* not possible */
bpf_spin_unlock(&glock);
/* if (res) { do something useful and drop } ... */
}
The bpf_rbtree_remove in this example will always fail. Similarly to
bpf_spin_unlock, bpf_rbtree_remove is a non-owning reference
invalidation point. The verifier clobbers all non-owning refs after a
bpf_rbtree_remove call, so the "failed_sum += n->key" line will fail
verification, and in fact there's no good way to get information about
the node which failed to add after the invalidation. This patch removes
non-owning reference invalidation from bpf_rbtree_remove to allow the
above usecase to pass verification. The logic for why this is now
possible is as follows:
Before this series, bpf_rbtree_add couldn't fail and thus assumed that
its input, a non-owning reference, was in the tree. But it's easy to
construct an example where two non-owning references pointing to the same
underlying memory are acquired and passed to rbtree_remove one after
another (see rbtree_api_release_aliasing in
selftests/bpf/progs/rbtree_fail.c).
So it was necessary to clobber non-owning refs to prevent this
case and, more generally, to enforce "non-owning ref is definitely
in some collection" invariant. This series removes that invariant and
the failure / runtime checking added in this patch provide a clean way
to deal with the aliasing issue - just fail to remove.
Because the aliasing issue prevented by clobbering non-owning refs is no
longer an issue, this patch removes the invalidate_non_owning_refs
call from verifier handling of bpf_rbtree_remove. Note that
bpf_spin_unlock - the other caller of invalidate_non_owning_refs -
clobbers non-owning refs for a different reason, so its clobbering
behavior remains unchanged.
No BPF program changes are necessary for programs to remain valid as a
result of this clobbering change. A valid program before this patch
passed verification with its non-owning refs having shorter (or equal)
lifetimes due to more aggressive clobbering.
Also, update existing tests to check bpf_rbtree_remove retval for NULL
where necessary, and move rbtree_api_release_aliasing from
progs/rbtree_fail.c to progs/rbtree.c since it's now expected to pass
verification.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-8-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Consider this code snippet:
struct node {
long key;
bpf_list_node l;
bpf_rb_node r;
bpf_refcount ref;
}
int some_bpf_prog(void *ctx)
{
struct node *n = bpf_obj_new(/*...*/), *m;
bpf_spin_lock(&glock);
bpf_rbtree_add(&some_tree, &n->r, /* ... */);
m = bpf_refcount_acquire(n);
bpf_rbtree_add(&other_tree, &m->r, /* ... */);
bpf_spin_unlock(&glock);
/* ... */
}
After bpf_refcount_acquire, n and m point to the same underlying memory,
and that node's bpf_rb_node field is being used by the some_tree insert,
so overwriting it as a result of the second insert is an error. In order
to properly support refcounted nodes, the rbtree and list insert
functions must be allowed to fail. This patch adds such support.
The kfuncs bpf_rbtree_add, bpf_list_push_{front,back} are modified to
return an int indicating success/failure, with 0 -> success, nonzero ->
failure.
bpf_obj_drop on failure
=======================
Currently the only reason an insert can fail is the example above: the
bpf_{list,rb}_node is already in use. When such a failure occurs, the
insert kfuncs will bpf_obj_drop the input node. This allows the insert
operations to logically fail without changing their verifier owning ref
behavior, namely the unconditional release_reference of the input
owning ref.
With insert that always succeeds, ownership of the node is always passed
to the collection, since the node always ends up in the collection.
With a possibly-failed insert w/ bpf_obj_drop, ownership of the node
is always passed either to the collection (success), or to bpf_obj_drop
(failure). Regardless, it's correct to continue unconditionally
releasing the input owning ref, as something is always taking ownership
from the calling program on insert.
Keeping owning ref behavior unchanged results in a nice default UX for
insert functions that can fail. If the program's reaction to a failed
insert is "fine, just get rid of this owning ref for me and let me go
on with my business", then there's no reason to check for failure since
that's default behavior. e.g.:
long important_failures = 0;
int some_bpf_prog(void *ctx)
{
struct node *n, *m, *o; /* all bpf_obj_new'd */
bpf_spin_lock(&glock);
bpf_rbtree_add(&some_tree, &n->node, /* ... */);
bpf_rbtree_add(&some_tree, &m->node, /* ... */);
if (bpf_rbtree_add(&some_tree, &o->node, /* ... */)) {
important_failures++;
}
bpf_spin_unlock(&glock);
}
If we instead chose to pass ownership back to the program on failed
insert - by returning NULL on success or an owning ref on failure -
programs would always have to do something with the returned ref on
failure. The most likely action is probably "I'll just get rid of this
owning ref and go about my business", which ideally would look like:
if (n = bpf_rbtree_add(&some_tree, &n->node, /* ... */))
bpf_obj_drop(n);
But bpf_obj_drop isn't allowed in a critical section and inserts must
occur within one, so in reality error handling would become a
hard-to-parse mess.
For refcounted nodes, we can replicate the "pass ownership back to
program on failure" logic with this patch's semantics, albeit in an ugly
way:
struct node *n = bpf_obj_new(/* ... */), *m;
bpf_spin_lock(&glock);
m = bpf_refcount_acquire(n);
if (bpf_rbtree_add(&some_tree, &n->node, /* ... */)) {
/* Do something with m */
}
bpf_spin_unlock(&glock);
bpf_obj_drop(m);
bpf_refcount_acquire is used to simulate "return owning ref on failure".
This should be an uncommon occurrence, though.
Addition of two verifier-fixup'd args to collection inserts
===========================================================
The actual bpf_obj_drop kfunc is
bpf_obj_drop_impl(void *, struct btf_struct_meta *), with bpf_obj_drop
macro populating the second arg with 0 and the verifier later filling in
the arg during insn fixup.
Because bpf_rbtree_add and bpf_list_push_{front,back} now might do
bpf_obj_drop, these kfuncs need a btf_struct_meta parameter that can be
passed to bpf_obj_drop_impl.
Similarly, because the 'node' param to those insert functions is the
bpf_{list,rb}_node within the node type, and bpf_obj_drop expects a
pointer to the beginning of the node, the insert functions need to be
able to find the beginning of the node struct. A second
verifier-populated param is necessary: the offset of {list,rb}_node within the
node type.
These two new params allow the insert kfuncs to correctly call
__bpf_obj_drop_impl:
beginning_of_node = bpf_rb_node_ptr - offset
if (already_inserted)
__bpf_obj_drop_impl(beginning_of_node, btf_struct_meta->record);
Similarly to other kfuncs with "hidden" verifier-populated params, the
insert functions are renamed with _impl prefix and a macro is provided
for common usage. For example, bpf_rbtree_add kfunc is now
bpf_rbtree_add_impl and bpf_rbtree_add is now a macro which sets
"hidden" args to 0.
Due to the two new args BPF progs will need to be recompiled to work
with the new _impl kfuncs.
This patch also rewrites the "hidden argument" explanation to more
directly say why the BPF program writer doesn't need to populate the
arguments with anything meaningful.
How does this new logic affect non-owning references?
=====================================================
Currently, non-owning refs are valid until the end of the critical
section in which they're created. We can make this guarantee because, if
a non-owning ref exists, the referent was added to some collection. The
collection will drop() its nodes when it goes away, but it can't go away
while our program is accessing it, so that's not a problem. If the
referent is removed from the collection in the same CS that it was added
in, it can't be bpf_obj_drop'd until after CS end. Those are the only
two ways to free the referent's memory and neither can happen until
after the non-owning ref's lifetime ends.
On first glance, having these collection insert functions potentially
bpf_obj_drop their input seems like it breaks the "can't be
bpf_obj_drop'd until after CS end" line of reasoning. But we care about
the memory not being _freed_ until end of CS end, and a previous patch
in the series modified bpf_obj_drop such that it doesn't free refcounted
nodes until refcount == 0. So the statement can be more accurately
rewritten as "can't be free'd until after CS end".
We can prove that this rewritten statement holds for any non-owning
reference produced by collection insert functions:
* If the input to the insert function is _not_ refcounted
* We have an owning reference to the input, and can conclude it isn't
in any collection
* Inserting a node in a collection turns owning refs into
non-owning, and since our input type isn't refcounted, there's no
way to obtain additional owning refs to the same underlying
memory
* Because our node isn't in any collection, the insert operation
cannot fail, so bpf_obj_drop will not execute
* If bpf_obj_drop is guaranteed not to execute, there's no risk of
memory being free'd
* Otherwise, the input to the insert function is refcounted
* If the insert operation fails due to the node's list_head or rb_root
already being in some collection, there was some previous successful
insert which passed refcount to the collection
* We have an owning reference to the input, it must have been
acquired via bpf_refcount_acquire, which bumped the refcount
* refcount must be >= 2 since there's a valid owning reference and the
node is already in a collection
* Insert triggering bpf_obj_drop will decr refcount to >= 1, never
resulting in a free
So although we may do bpf_obj_drop during the critical section, this
will never result in memory being free'd, and no changes to non-owning
ref logic are needed in this patch.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-6-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, BPF programs can interact with the lifetime of refcounted
local kptrs in the following ways:
bpf_obj_new - Initialize refcount to 1 as part of new object creation
bpf_obj_drop - Decrement refcount and free object if it's 0
collection add - Pass ownership to the collection. No change to
refcount but collection is responsible for
bpf_obj_dropping it
In order to be able to add a refcounted local kptr to multiple
collections we need to be able to increment the refcount and acquire a
new owning reference. This patch adds a kfunc, bpf_refcount_acquire,
implementing such an operation.
bpf_refcount_acquire takes a refcounted local kptr and returns a new
owning reference to the same underlying memory as the input. The input
can be either owning or non-owning. To reinforce why this is safe,
consider the following code snippets:
struct node *n = bpf_obj_new(typeof(*n)); // A
struct node *m = bpf_refcount_acquire(n); // B
In the above snippet, n will be alive with refcount=1 after (A), and
since nothing changes that state before (B), it's obviously safe. If
n is instead added to some rbtree, we can still safely refcount_acquire
it:
struct node *n = bpf_obj_new(typeof(*n));
struct node *m;
bpf_spin_lock(&glock);
bpf_rbtree_add(&groot, &n->node, less); // A
m = bpf_refcount_acquire(n); // B
bpf_spin_unlock(&glock);
In the above snippet, after (A) n is a non-owning reference, and after
(B) m is an owning reference pointing to the same memory as n. Although
n has no ownership of that memory's lifetime, it's guaranteed to be
alive until the end of the critical section, and n would be clobbered if
we were past the end of the critical section, so it's safe to bump
refcount.
Implementation details:
* From verifier's perspective, bpf_refcount_acquire handling is similar
to bpf_obj_new and bpf_obj_drop. Like the former, it returns a new
owning reference matching input type, although like the latter, type
can be inferred from concrete kptr input. Verifier changes in
{check,fixup}_kfunc_call and check_kfunc_args are largely copied from
aforementioned functions' verifier changes.
* An exception to the above is the new KF_ARG_PTR_TO_REFCOUNTED_KPTR
arg, indicated by new "__refcounted_kptr" kfunc arg suffix. This is
necessary in order to handle both owning and non-owning input without
adding special-casing to "__alloc" arg handling. Also a convenient
place to confirm that input type has bpf_refcount field.
* The implemented kfunc is actually bpf_refcount_acquire_impl, with
'hidden' second arg that the verifier sets to the type's struct_meta
in fixup_kfunc_call.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
A local kptr is considered 'refcounted' when it is of a type that has a
bpf_refcount field. When such a kptr is created, its refcount should be
initialized to 1; when destroyed, the object should be free'd only if a
refcount decr results in 0 refcount.
Existing logic always frees the underlying memory when destroying a
local kptr, and 0-initializes all btf_record fields. This patch adds
checks for "is local kptr refcounted?" and new logic for that case in
the appropriate places.
This patch focuses on changing existing semantics and thus conspicuously
does _not_ provide a way for BPF programs in increment refcount. That
follows later in the series.
__bpf_obj_drop_impl is modified to do the right thing when it sees a
refcounted type. Container types for graph nodes (list, tree, stashed in
map) are migrated to use __bpf_obj_drop_impl as a destructor for their
nodes instead of each having custom destruction code in their _free
paths. Now that "drop" isn't a synonym for "free" when the type is
refcounted it makes sense to centralize this logic.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-4-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
A 'struct bpf_refcount' is added to the set of opaque uapi/bpf.h types
meant for use in BPF programs. Similarly to other opaque types like
bpf_spin_lock and bpf_rbtree_node, the verifier needs to know where in
user-defined struct types a bpf_refcount can be located, so necessary
btf_record plumbing is added to enable this. bpf_refcount is sized to
hold a refcount_t.
Similarly to bpf_spin_lock, the offset of a bpf_refcount is cached in
btf_record as refcount_off in addition to being in the field array.
Caching refcount_off makes sense for this field because further patches
in the series will modify functions that take local kptrs (e.g.
bpf_obj_drop) to change their behavior if the type they're operating on
is refcounted. So enabling fast "is this type refcounted?" checks is
desirable.
No such verifier behavior changes are introduced in this patch, just
logic to recognize 'struct bpf_refcount' in btf_record.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The btf_field_offs struct contains (offset, size) for btf_record fields,
sorted by offset. btf_field_offs is always used in conjunction with
btf_record, which has btf_field 'fields' array with (offset, type), the
latter of which btf_field_offs' size is derived from via
btf_field_type_size.
This patch adds a size field to struct btf_field and sorts btf_record's
fields by offset, making it possible to get rid of btf_field_offs. Less
data duplication and less code complexity results.
Since btf_field_offs' lifetime closely followed the btf_record used to
populate it, most complexity wins are from removal of initialization
code like:
if (btf_record_successfully_initialized) {
foffs = btf_parse_field_offs(rec);
if (IS_ERR_OR_NULL(foffs))
// free the btf_record and return err
}
Other changes in this patch are pretty mechanical:
* foffs->field_off[i] -> rec->fields[i].offset
* foffs->field_sz[i] -> rec->fields[i].size
* Sort rec->fields in btf_parse_fields before returning
* It's possible that this is necessary independently of other
changes in this patch. btf_record_find in syscall.c expects
btf_record's fields to be sorted by offset, yet there's no
explicit sorting of them before this patch, record's fields are
populated in the order they're read from BTF struct definition.
BTF docs don't say anything about the sortedness of struct fields.
* All functions taking struct btf_field_offs * input now instead take
struct btf_record *. All callsites of these functions already have
access to the correct btf_record.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For interrupts with secondary threads, the affinity is applied when the
thread is created but if the interrupts affinity is changed later only
the primary thread is updated.
Update the secondary thread's affinity as well to keep all the interrupts
activity on the assigned CPUs.
Signed-off-by: John Keeping <john@metanate.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230406180857.588682-1-john@metanate.com
Tasklets are supposed to finish their work quickly and should not block the
current running process, but it is not guaranteed that they do so.
Currently softirq_entry/exit can be used to analyse the total tasklets
execution time, but that's not helpful to track individual tasklets
execution time. That makes it hard to identify tasklet functions, which
take more time than expected.
Add tasklet_entry/exit trace point support to track individual tasklet
execution.
Trivial usage example:
# echo 1 > /sys/kernel/debug/tracing/events/irq/tasklet_entry/enable
# echo 1 > /sys/kernel/debug/tracing/events/irq/tasklet_exit/enable
# cat /sys/kernel/debug/tracing/trace
# tracer: nop
#
# entries-in-buffer/entries-written: 4/4 #P:4
#
# _-----=> irqs-off/BH-disabled
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / _-=> migrate-disable
# |||| / delay
# TASK-PID CPU# ||||| TIMESTAMP FUNCTION
# | | | ||||| | |
<idle>-0 [003] ..s1. 314.011428: tasklet_entry: tasklet=0xffffa01ef8db2740 function=tcp_tasklet_func
<idle>-0 [003] ..s1. 314.011432: tasklet_exit: tasklet=0xffffa01ef8db2740 function=tcp_tasklet_func
<idle>-0 [003] ..s1. 314.017369: tasklet_entry: tasklet=0xffffa01ef8db2740 function=tcp_tasklet_func
<idle>-0 [003] ..s1. 314.017371: tasklet_exit: tasklet=0xffffa01ef8db2740 function=tcp_tasklet_func
Signed-off-by: Lingutla Chandrasekhar <clingutla@codeaurora.org>
Signed-off-by: J. Avila <elavila@google.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20230407230526.1685443-1-jstultz@google.com
[elavila: Port to android-mainline]
[jstultz: Rebased to upstream, cut unused trace points, added
comments for the tracepoints, reworded commit]
Commit ac3b432839 ("module: replace module_layout with module_memory")
reworked the way to handle memory allocations to make it clearer. But it
lost in translation how we handled kmemleak_ignore() or kmemleak_not_leak()
for different ELF sections.
Fix this and clarify the comments a bit more. Contrary to the old way
of using kmemleak_ignore() for init.* ELF sections we stick now only to
kmemleak_not_leak() as per suggestion by Catalin Marinas so to avoid
any false positives and simplify the code.
Fixes: ac3b432839 ("module: replace module_layout with module_memory")
Reported-by: Jim Cromie <jim.cromie@gmail.com>
Acked-by: Song Liu <song@kernel.org>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
commit e050e3f0a7 ("perf: Fix broken interrupt rate throttling")
introduces a change in throttling threshold judgment. Before this,
compare hwc->interrupts and max_samples_per_tick, then increase
hwc->interrupts by 1, but this commit reverses order of these two
behaviors, causing the semantics of max_samples_per_tick to change.
In literal sense of "max_samples_per_tick", if hwc->interrupts ==
max_samples_per_tick, it should not be throttled, therefore, the judgment
condition should be changed to "hwc->interrupts > max_samples_per_tick".
In fact, this may cause the hardlockup to fail, The minimum value of
max_samples_per_tick may be 1, in this case, the return value of
__perf_event_account_interrupt function is 1.
As a result, nmi_watchdog gets throttled, which would stop PMU (Use x86
architecture as an example, see x86_pmu_handle_irq).
Fixes: e050e3f0a7 ("perf: Fix broken interrupt rate throttling")
Signed-off-by: Yang Jihong <yangjihong1@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230227023508.102230-1-yangjihong1@huawei.com
test_ksyms_module fails to emit a kfunc call targeting a module on
s390x, because the verifier stores the difference between kfunc
address and __bpf_call_base in bpf_insn.imm, which is s32, and modules
are roughly (1 << 42) bytes away from the kernel on s390x.
Fix by keeping BTF id in bpf_insn.imm for BPF_PSEUDO_KFUNC_CALLs,
and storing the absolute address in bpf_kfunc_desc.
Introduce bpf_jit_supports_far_kfunc_call() in order to limit this new
behavior to the s390x JIT. Otherwise other JITs need to be modified,
which is not desired.
Introduce bpf_get_kfunc_addr() instead of exposing both
find_kfunc_desc() and struct bpf_kfunc_desc.
In addition to sorting kfuncs by imm, also sort them by offset, in
order to handle conflicting imms from different modules. Do this on
all architectures in order to simplify code.
Factor out resolving specialized kfuncs (XPD and dynptr) from
fixup_kfunc_call(). This was required in the first place, because
fixup_kfunc_call() uses find_kfunc_desc(), which returns a const
pointer, so it's not possible to modify kfunc addr without stripping
const, which is not nice. It also removes repetition of code like:
if (bpf_jit_supports_far_kfunc_call())
desc->addr = func;
else
insn->imm = BPF_CALL_IMM(func);
and separates kfunc_desc_tab fixups from kfunc_call fixups.
Suggested-by: Jiri Olsa <olsajiri@gmail.com>
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230412230632.885985-1-iii@linux.ibm.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The recursion check in __bpf_prog_enter* and __bpf_prog_exit*
leave preempt_count_{sub,add} unprotected. When attaching trampoline to
them we get panic as follows,
[ 867.843050] BUG: TASK stack guard page was hit at 0000000009d325cf (stack is 0000000046a46a15..00000000537e7b28)
[ 867.843064] stack guard page: 0000 [#1] PREEMPT SMP NOPTI
[ 867.843067] CPU: 8 PID: 11009 Comm: trace Kdump: loaded Not tainted 6.2.0+ #4
[ 867.843100] Call Trace:
[ 867.843101] <TASK>
[ 867.843104] asm_exc_int3+0x3a/0x40
[ 867.843108] RIP: 0010:preempt_count_sub+0x1/0xa0
[ 867.843135] __bpf_prog_enter_recur+0x17/0x90
[ 867.843148] bpf_trampoline_6442468108_0+0x2e/0x1000
[ 867.843154] ? preempt_count_sub+0x1/0xa0
[ 867.843157] preempt_count_sub+0x5/0xa0
[ 867.843159] ? migrate_enable+0xac/0xf0
[ 867.843164] __bpf_prog_exit_recur+0x2d/0x40
[ 867.843168] bpf_trampoline_6442468108_0+0x55/0x1000
...
[ 867.843788] preempt_count_sub+0x5/0xa0
[ 867.843793] ? migrate_enable+0xac/0xf0
[ 867.843829] __bpf_prog_exit_recur+0x2d/0x40
[ 867.843837] BUG: IRQ stack guard page was hit at 0000000099bd8228 (stack is 00000000b23e2bc4..000000006d95af35)
[ 867.843841] BUG: IRQ stack guard page was hit at 000000005ae07924 (stack is 00000000ffd69623..0000000014eb594c)
[ 867.843843] BUG: IRQ stack guard page was hit at 00000000028320f0 (stack is 00000000034b6438..0000000078d1bcec)
[ 867.843842] bpf_trampoline_6442468108_0+0x55/0x1000
...
That is because in __bpf_prog_exit_recur, the preempt_count_{sub,add} are
called after prog->active is decreased.
Fixing this by adding these two functions into btf ids deny list.
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Yafang <laoar.shao@gmail.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/r/20230413025248.79764-1-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The L0 symbol is generated when build module on LoongArch, ignore it in
modpost and when looking at module symbols, otherwise we can not see the
expected call trace.
Now is_arm_mapping_symbol() is not only for ARM, in order to reflect the
reality, rename is_arm_mapping_symbol() to is_mapping_symbol().
This is related with commit c17a253870 ("mksysmap: Fix the mismatch of
'L0' symbols in System.map").
(1) Simple test case
[loongson@linux hello]$ cat hello.c
#include <linux/init.h>
#include <linux/module.h>
#include <linux/printk.h>
static void test_func(void)
{
pr_info("This is a test\n");
dump_stack();
}
static int __init hello_init(void)
{
pr_warn("Hello, world\n");
test_func();
return 0;
}
static void __exit hello_exit(void)
{
pr_warn("Goodbye\n");
}
module_init(hello_init);
module_exit(hello_exit);
MODULE_LICENSE("GPL");
[loongson@linux hello]$ cat Makefile
obj-m:=hello.o
ccflags-y += -g -Og
all:
make -C /lib/modules/$(shell uname -r)/build/ M=$(PWD) modules
clean:
make -C /lib/modules/$(shell uname -r)/build/ M=$(PWD) clean
(2) Test environment
system: LoongArch CLFS 5.5
https://github.com/sunhaiyong1978/CLFS-for-LoongArch/releases/tag/5.0
It needs to update grub to avoid booting error "invalid magic number".
kernel: 6.3-rc1 with loongson3_defconfig + CONFIG_DYNAMIC_FTRACE=y
(3) Test result
Without this patch:
[root@linux hello]# insmod hello.ko
[root@linux hello]# dmesg
...
Hello, world
This is a test
...
Call Trace:
[<9000000000223728>] show_stack+0x68/0x18c
[<90000000013374cc>] dump_stack_lvl+0x60/0x88
[<ffff800002050028>] L0\x01+0x20/0x2c [hello]
[<ffff800002058028>] L0\x01+0x20/0x30 [hello]
[<900000000022097c>] do_one_initcall+0x88/0x288
[<90000000002df890>] do_init_module+0x54/0x200
[<90000000002e1e18>] __do_sys_finit_module+0xc4/0x114
[<90000000013382e8>] do_syscall+0x7c/0x94
[<9000000000221e3c>] handle_syscall+0xbc/0x158
With this patch:
[root@linux hello]# insmod hello.ko
[root@linux hello]# dmesg
...
Hello, world
This is a test
...
Call Trace:
[<9000000000223728>] show_stack+0x68/0x18c
[<90000000013374cc>] dump_stack_lvl+0x60/0x88
[<ffff800002050028>] test_func+0x28/0x34 [hello]
[<ffff800002058028>] hello_init+0x28/0x38 [hello]
[<900000000022097c>] do_one_initcall+0x88/0x288
[<90000000002df890>] do_init_module+0x54/0x200
[<90000000002e1e18>] __do_sys_finit_module+0xc4/0x114
[<90000000013382e8>] do_syscall+0x7c/0x94
[<9000000000221e3c>] handle_syscall+0xbc/0x158
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Tested-by: Youling Tang <tangyouling@loongson.cn> # for LoongArch
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
In order to avoid duplicated code, move is_arm_mapping_symbol() to
include/linux/module_symbol.h, then remove is_arm_mapping_symbol()
in the other places.
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
After commit 2e3a10a155 ("ARM: avoid ARM binutils leaking ELF local
symbols") and commit d6b732666a ("modpost: fix undefined behavior of
is_arm_mapping_symbol()"), many differences of is_arm_mapping_symbol()
exist in kernel/module/kallsyms.c and scripts/mod/modpost.c, just sync
the code to keep consistent.
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZDhSiwAKCRDbK58LschI
g8cbAQCH4xrquOeDmYyGXFQGchHZAIj++tKg8ABU4+hYeJtrlwEA6D4W6wjoSZRk
mLSptZ9qro8yZA86BvyPvlBT1h9ELQA=
=StAc
-----END PGP SIGNATURE-----
Daniel Borkmann says:
====================
pull-request: bpf-next 2023-04-13
We've added 260 non-merge commits during the last 36 day(s) which contain
a total of 356 files changed, 21786 insertions(+), 11275 deletions(-).
The main changes are:
1) Rework BPF verifier log behavior and implement it as a rotating log
by default with the option to retain old-style fixed log behavior,
from Andrii Nakryiko.
2) Adds support for using {FOU,GUE} encap with an ipip device operating
in collect_md mode and add a set of BPF kfuncs for controlling encap
params, from Christian Ehrig.
3) Allow BPF programs to detect at load time whether a particular kfunc
exists or not, and also add support for this in light skeleton,
from Alexei Starovoitov.
4) Optimize hashmap lookups when key size is multiple of 4,
from Anton Protopopov.
5) Enable RCU semantics for task BPF kptrs and allow referenced kptr
tasks to be stored in BPF maps, from David Vernet.
6) Add support for stashing local BPF kptr into a map value via
bpf_kptr_xchg(). This is useful e.g. for rbtree node creation
for new cgroups, from Dave Marchevsky.
7) Fix BTF handling of is_int_ptr to skip modifiers to work around
tracing issues where a program cannot be attached, from Feng Zhou.
8) Migrate a big portion of test_verifier unit tests over to
test_progs -a verifier_* via inline asm to ease {read,debug}ability,
from Eduard Zingerman.
9) Several updates to the instruction-set.rst documentation
which is subject to future IETF standardization
(https://lwn.net/Articles/926882/), from Dave Thaler.
10) Fix BPF verifier in the __reg_bound_offset's 64->32 tnum sub-register
known bits information propagation, from Daniel Borkmann.
11) Add skb bitfield compaction work related to BPF with the overall goal
to make more of the sk_buff bits optional, from Jakub Kicinski.
12) BPF selftest cleanups for build id extraction which stand on its own
from the upcoming integration work of build id into struct file object,
from Jiri Olsa.
13) Add fixes and optimizations for xsk descriptor validation and several
selftest improvements for xsk sockets, from Kal Conley.
14) Add BPF links for struct_ops and enable switching implementations
of BPF TCP cong-ctls under a given name by replacing backing
struct_ops map, from Kui-Feng Lee.
15) Remove a misleading BPF verifier env->bypass_spec_v1 check on variable
offset stack read as earlier Spectre checks cover this,
from Luis Gerhorst.
16) Fix issues in copy_from_user_nofault() for BPF and other tracers
to resemble copy_from_user_nmi() from safety PoV, from Florian Lehner
and Alexei Starovoitov.
17) Add --json-summary option to test_progs in order for CI tooling to
ease parsing of test results, from Manu Bretelle.
18) Batch of improvements and refactoring to prep for upcoming
bpf_local_storage conversion to bpf_mem_cache_{alloc,free} allocator,
from Martin KaFai Lau.
19) Improve bpftool's visual program dump which produces the control
flow graph in a DOT format by adding C source inline annotations,
from Quentin Monnet.
20) Fix attaching fentry/fexit/fmod_ret/lsm to modules by extracting
the module name from BTF of the target and searching kallsyms of
the correct module, from Viktor Malik.
21) Improve BPF verifier handling of '<const> <cond> <non_const>'
to better detect whether in particular jmp32 branches are taken,
from Yonghong Song.
22) Allow BPF TCP cong-ctls to write app_limited of struct tcp_sock.
A built-in cc or one from a kernel module is already able to write
to app_limited, from Yixin Shen.
Conflicts:
Documentation/bpf/bpf_devel_QA.rst
b7abcd9c65 ("bpf, doc: Link to submitting-patches.rst for general patch submission info")
0f10f647f4 ("bpf, docs: Use internal linking for link to netdev subsystem doc")
https://lore.kernel.org/all/20230307095812.236eb1be@canb.auug.org.au/
include/net/ip_tunnels.h
bc9d003dc4 ("ip_tunnel: Preserve pointer const in ip_tunnel_info_opts")
ac931d4cde ("ipip,ip_tunnel,sit: Add FOU support for externally controlled ipip devices")
https://lore.kernel.org/all/20230413161235.4093777-1-broonie@kernel.org/
net/bpf/test_run.c
e5995bc7e2 ("bpf, test_run: fix crashes due to XDP frame overwriting/corruption")
294635a816 ("bpf, test_run: fix &xdp_frame misplacement for LIVE_FRAMES")
https://lore.kernel.org/all/20230320102619.05b80a98@canb.auug.org.au/
====================
Link: https://lore.kernel.org/r/20230413191525.7295-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
* Fix several cpuset bugs including one where it wasn't applying the target
cgroup when tasks are created with CLONE_INTO_CGROUP.
* Fix inversed locking order in cgroup1 freezer implementation.
* Fix garbage cpu.stat::core_sched.forceidle_usec reporting in the root
cgroup.
This is a relatively big pull request this late in the cycle but the major
contributor is the above mentioned cpuset bug which is rather significant.
-----BEGIN PGP SIGNATURE-----
iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZDiJuw4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGbUfAQCLYhxijWvCpRYlQ3mfd1pgyvWNB90o4lnFkltz
D0iSpwD/SOL5zwkR7WBeejJDKVIsezPpz3SZvxzzKMSk1VODkgo=
=eOCG
-----END PGP SIGNATURE-----
Merge tag 'cgroup-for-6.3-rc6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup fixes from Tejun Heo:
"This is a relatively big pull request this late in the cycle but the
major contributor is the cpuset bug which is rather significant:
- Fix several cpuset bugs including one where it wasn't applying the
target cgroup when tasks are created with CLONE_INTO_CGROUP
With a few smaller fixes:
- Fix inversed locking order in cgroup1 freezer implementation
- Fix garbage cpu.stat::core_sched.forceidle_usec reporting in the
root cgroup"
* tag 'cgroup-for-6.3-rc6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup/cpuset: Make cpuset_attach_task() skip subpartitions CPUs for top_cpuset
cgroup/cpuset: Add cpuset_can_fork() and cpuset_cancel_fork() methods
cgroup/cpuset: Make cpuset_fork() handle CLONE_INTO_CGROUP properly
cgroup/cpuset: Wake up cpuset_attach_wq tasks in cpuset_cancel_attach()
cgroup,freezer: hold cpu_hotplug_lock before freezer_mutex
cgroup/cpuset: Fix partition root's cpuset.cpus update bug
cgroup: fix display of forceidle time at root
Since commit 8b41fc4454 ("kbuild: create modules.builtin without
Makefile.modbuiltin or tristate.conf"), MODULE_LICENSE declarations
are used to identify modules. As a consequence, uses of the macro
in non-modules will cause modprobe to misidentify their containing
object file as a module when it is not (false positives), and modprobe
might succeed rather than failing with a suitable error message.
So remove it in the files in this commit, none of which can be built as
modules.
Signed-off-by: Nick Alcock <nick.alcock@oracle.com>
Suggested-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: linux-modules@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Hitomi Hasegawa <hasegawa-hitomi@fujitsu.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Since commit 8b41fc4454 ("kbuild: create modules.builtin without
Makefile.modbuiltin or tristate.conf"), MODULE_LICENSE declarations
are used to identify modules. As a consequence, uses of the macro
in non-modules will cause modprobe to misidentify their containing
object file as a module when it is not (false positives), and modprobe
might succeed rather than failing with a suitable error message.
So remove it in the files in this commit, none of which can be built as
modules.
Signed-off-by: Nick Alcock <nick.alcock@oracle.com>
Suggested-by: Luis Chamberlain <mcgrof@kernel.org>
Acked-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: linux-modules@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Hitomi Hasegawa <hasegawa-hitomi@fujitsu.com>
Cc: Daniel Bristot de Oliveira <bristot@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: linux-trace-devel@vger.kernel.org
Cc: linux-trace-kernel@vger.kernel.org
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Since commit 8b41fc4454 ("kbuild: create modules.builtin without
Makefile.modbuiltin or tristate.conf"), MODULE_LICENSE declarations
are used to identify modules. As a consequence, uses of the macro
in non-modules will cause modprobe to misidentify their containing
object file as a module when it is not (false positives), and modprobe
might succeed rather than failing with a suitable error message.
So remove it in the files in this commit, none of which can be built as
modules.
Signed-off-by: Nick Alcock <nick.alcock@oracle.com>
Suggested-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: linux-modules@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Hitomi Hasegawa <hasegawa-hitomi@fujitsu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: linux-perf-users@vger.kernel.org
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Since commit 8b41fc4454 ("kbuild: create modules.builtin without
Makefile.modbuiltin or tristate.conf"), MODULE_LICENSE declarations
are used to identify modules. As a consequence, uses of the macro
in non-modules will cause modprobe to misidentify their containing
object file as a module when it is not (false positives), and modprobe
might succeed rather than failing with a suitable error message.
So remove it in the files in this commit, none of which can be built as
modules.
Signed-off-by: Nick Alcock <nick.alcock@oracle.com>
Suggested-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: linux-modules@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Hitomi Hasegawa <hasegawa-hitomi@fujitsu.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: iommu@lists.linux.dev
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
This moves all compaction sysctls to its own file.
Move sysctl to where the functionality truly belongs to improve
readability, reduce merge conflicts, and facilitate maintenance.
I use x86_defconfig and linux-next-20230327 branch
$ make defconfig;make all -jn
CONFIG_COMPACTION=y
add/remove: 1/0 grow/shrink: 1/1 up/down: 350/-256 (94)
Function old new delta
vm_compaction - 320 +320
kcompactd_init 180 210 +30
vm_table 2112 1856 -256
Total: Before=21119987, After=21120081, chg +0.00%
Despite the addition of 94 bytes the patch still seems a worthwile
cleanup.
Link: https://lore.kernel.org/lkml/067f7347-ba10-5405-920c-0f5f985c84f4@suse.cz/
Signed-off-by: Minghao Chi <chi.minghao@zte.com.cn>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
The sysctl_memory_failure_early_kill and memory_failure_recovery
are only used in memory-failure.c, move them to its own file.
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
[mcgrof: fix by adding empty ctl entry, this caused a crash]
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
There is no need to declare an extra tables to just create directory,
this can be easily be done with a prefix path with register_sysctl().
Simplify this registration.
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
register_sysctl_paths() is only needed if you have childs (directories)
with entries. Just use register_sysctl_init() as it also does the
kmemleak check for you.
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Now that bpf_cgroup_acquire() is KF_RCU | KF_RET_NULL,
bpf_cgroup_kptr_get() is redundant. Let's remove it, and update
selftests to instead use bpf_cgroup_acquire() where appropriate. The
next patch will update the BPF documentation to not mention
bpf_cgroup_kptr_get().
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230411041633.179404-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
struct cgroup is already an RCU-safe type in the verifier. We can
therefore update bpf_cgroup_acquire() to be KF_RCU | KF_RET_NULL, and
subsequently remove bpf_cgroup_kptr_get(). This patch does the first of
these by updating bpf_cgroup_acquire() to be KF_RCU | KF_RET_NULL, and
also updates selftests accordingly.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230411041633.179404-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
It is found that attaching a task to the top_cpuset does not currently
ignore CPUs allocated to subpartitions in cpuset_attach_task(). So the
code is changed to fix that.
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
In the case of CLONE_INTO_CGROUP, not all cpusets are ready to accept
new tasks. It is too late to check that in cpuset_fork(). So we need
to add the cpuset_can_fork() and cpuset_cancel_fork() methods to
pre-check it before we can allow attachment to a different cpuset.
We also need to set the attach_in_progress flag to alert other code
that a new task is going to be added to the cpuset.
Fixes: ef2c41cf38 ("clone3: allow spawning processes into cgroups")
Suggested-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Cc: stable@vger.kernel.org # v5.7+
Signed-off-by: Tejun Heo <tj@kernel.org>
By default, the clone(2) syscall spawn a child process into the same
cgroup as its parent. With the use of the CLONE_INTO_CGROUP flag
introduced by commit ef2c41cf38 ("clone3: allow spawning processes
into cgroups"), the child will be spawned into a different cgroup which
is somewhat similar to writing the child's tid into "cgroup.threads".
The current cpuset_fork() method does not properly handle the
CLONE_INTO_CGROUP case where the cpuset of the child may be different
from that of its parent. Update the cpuset_fork() method to treat the
CLONE_INTO_CGROUP case similar to cpuset_attach().
Since the newly cloned task has not been running yet, its actual
memory usage isn't known. So it is not necessary to make change to mm
in cpuset_fork().
Fixes: ef2c41cf38 ("clone3: allow spawning processes into cgroups")
Reported-by: Giuseppe Scrivano <gscrivan@redhat.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Cc: stable@vger.kernel.org # v5.7+
Signed-off-by: Tejun Heo <tj@kernel.org>
After a successful cpuset_can_attach() call which increments the
attach_in_progress flag, either cpuset_cancel_attach() or cpuset_attach()
will be called later. In cpuset_attach(), tasks in cpuset_attach_wq,
if present, will be woken up at the end. That is not the case in
cpuset_cancel_attach(). So missed wakeup is possible if the attach
operation is somehow cancelled. Fix that by doing the wakeup in
cpuset_cancel_attach() as well.
Fixes: e44193d39e ("cpuset: let hotplug propagation work wait for task attaching")
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Cc: stable@vger.kernel.org # v3.11+
Signed-off-by: Tejun Heo <tj@kernel.org>
The sched_dynamic_mutex is only used within the file. Make it static.
Fixes: e3ff7c609f ("livepatch,sched: Add livepatch task switching to cond_resched()")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/oe-kbuild-all/202304062335.tNuUjgsl-lkp@intel.com/
When local group is fully busy but its average load is above system load,
computing the imbalance will overflow and local group is not the best
target for pulling this load.
Fixes: 0b0695f2b3 ("sched/fair: Rework load_balance()")
Reported-by: Tingjia Cao <tjcao980311@gmail.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Tingjia Cao <tjcao980311@gmail.com>
Link: https://lore.kernel.org/lkml/CABcWv9_DAhVBOq2=W=2ypKE9dKM5s2DvoV8-U0+GDwwuKZ89jQ@mail.gmail.com/T/
When tracing a kernel function with arg type is u32*, btf_ctx_access()
would report error: arg2 type INT is not a struct.
The commit bb6728d756 ("bpf: Allow access to int pointer arguments
in tracing programs") added support for int pointer, but did not skip
modifiers before checking it's type. This patch fixes it.
Fixes: bb6728d756 ("bpf: Allow access to int pointer arguments in tracing programs")
Co-developed-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Feng Zhou <zhoufeng.zf@bytedance.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20230410085908.98493-2-zhoufeng.zf@bytedance.com
Drop the log_size>0 and log_buf!=NULL condition when log_level>0. This
allows users to request log_true_size of a full log without providing
actual (even if small) log buffer. Verifier log handling code was mostly
ready to handle NULL log->ubuf, so only few small changes were necessary
to prevent NULL log->ubuf from causing problems.
Note, that if user provided NULL log_buf with log_level>0 we don't
consider this a log truncation, and thus won't return -ENOSPC.
We also enforce that either (log_buf==NULL && log_size==0) or
(log_buf!=NULL && log_size>0).
Suggested-by: Lorenz Bauer <lmb@isovalent.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-15-andrii@kernel.org
Simplify internal verifier log API down to bpf_vlog_init() and
bpf_vlog_finalize(). The former handles input arguments validation in
one place and makes it easier to change it. The latter subsumes -ENOSPC
(truncation) and -EFAULT handling and simplifies both caller's code
(bpf_check() and btf_parse()).
For btf_parse(), this patch also makes sure that verifier log
finalization happens even if there is some error condition during BTF
verification process prior to normal finalization step.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-14-andrii@kernel.org
Add output-only log_true_size and btf_log_true_size field to
BPF_PROG_LOAD and BPF_BTF_LOAD commands, respectively. It will return
the size of log buffer necessary to fit in all the log contents at
specified log_level. This is very useful for BPF loader libraries like
libbpf to be able to size log buffer correctly, but could be used by
users directly, if necessary, as well.
This patch plumbs all this through the code, taking into account actual
bpf_attr size provided by user to determine if these new fields are
expected by users. And if they are, set them from kernel on return.
We refactory btf_parse() function to accommodate this, moving attr and
uattr handling inside it. The rest is very straightforward code, which
is split from the logging accounting changes in the previous patch to
make it simpler to review logic vs UAPI changes.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-13-andrii@kernel.org
Change how we do accounting in BPF_LOG_FIXED mode and adopt log->end_pos
as *logical* log position. This means that we can go beyond physical log
buffer size now and be able to tell what log buffer size should be to
fit entire log contents without -ENOSPC.
To do this for BPF_LOG_FIXED mode, we need to remove a short-circuiting
logic of not vsnprintf()'ing further log content once we filled up
user-provided buffer, which is done by bpf_verifier_log_needed() checks.
We modify these checks to always keep going if log->level is non-zero
(i.e., log is requested), even if log->ubuf was NULL'ed out due to
copying data to user-space, or if entire log buffer is physically full.
We adopt bpf_verifier_vlog() routine to work correctly with
log->ubuf == NULL condition, performing log formatting into temporary
kernel buffer, doing all the necessary accounting, but just avoiding
copying data out if buffer is full or NULL'ed out.
With these changes, it's now possible to do this sort of determination of
log contents size in both BPF_LOG_FIXED and default rolling log mode.
We need to keep in mind bpf_vlog_reset(), though, which shrinks log
contents after successful verification of a particular code path. This
log reset means that log->end_pos isn't always increasing, so to return
back to users what should be the log buffer size to fit all log content
without causing -ENOSPC even in the presence of log resetting, we need
to keep maximum over "lifetime" of logging. We do this accounting in
bpf_vlog_update_len_max() helper.
A related and subtle aspect is that with this logical log->end_pos even in
BPF_LOG_FIXED mode we could temporary "overflow" buffer, but then reset
it back with bpf_vlog_reset() to a position inside user-supplied
log_buf. In such situation we still want to properly maintain
terminating zero. We will eventually return -ENOSPC even if final log
buffer is small (we detect this through log->len_max check). This
behavior is simpler to reason about and is consistent with current
behavior of verifier log. Handling of this required a small addition to
bpf_vlog_reset() logic to avoid doing put_user() beyond physical log
buffer dimensions.
Another issue to keep in mind is that we limit log buffer size to 32-bit
value and keep such log length as u32, but theoretically verifier could
produce huge log stretching beyond 4GB. Instead of keeping (and later
returning) 64-bit log length, we cap it at UINT_MAX. Current UAPI makes
it impossible to specify log buffer size bigger than 4GB anyways, so we
don't really loose anything here and keep everything consistently 32-bit
in UAPI. This property will be utilized in next patch.
Doing the same determination of maximum log buffer for rolling mode is
trivial, as log->end_pos and log->start_pos are already logical
positions, so there is nothing new there.
These changes do incidentally fix one small issue with previous logging
logic. Previously, if use provided log buffer of size N, and actual log
output was exactly N-1 bytes + terminating \0, kernel logic coun't
distinguish this condition from log truncation scenario which would end
up with truncated log contents of N-1 bytes + terminating \0 as well.
But now with log->end_pos being logical position that could go beyond
actual log buffer size, we can distinguish these two conditions, which
we do in this patch. This plays nicely with returning log_size_actual
(implemented in UAPI in the next patch), as we can now guarantee that if
user takes such log_size_actual and provides log buffer of that exact
size, they will not get -ENOSPC in return.
All in all, all these changes do conceptually unify fixed and rolling
log modes much better, and allow a nice feature requested by users:
knowing what should be the size of the buffer to avoid -ENOSPC.
We'll plumb this through the UAPI and the code in the next patch.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-12-andrii@kernel.org
If verifier log is in BPF_LOG_KERNEL mode, no log->ubuf is expected and
it stays NULL throughout entire verification process. Don't erroneously
return -EFAULT in such case.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-10-andrii@kernel.org
btf_parse() is missing -EFAULT error return if log->ubuf was NULL-ed out
due to error while copying data into user-provided buffer. Add it, but
handle a special case of BPF_LOG_KERNEL in which log->ubuf is always NULL.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-9-andrii@kernel.org
Verifier log position reset is meaningless in BPF_LOG_KERNEL mode, so
just exit early in bpf_vlog_reset() if log->level is BPF_LOG_KERNEL.
This avoid meaningless put_user() into NULL log->ubuf.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-8-andrii@kernel.org
Currently, if user-supplied log buffer to collect BPF verifier log turns
out to be too small to contain full log, bpf() syscall returns -ENOSPC,
fails BPF program verification/load, and preserves first N-1 bytes of
the verifier log (where N is the size of user-supplied buffer).
This is problematic in a bunch of common scenarios, especially when
working with real-world BPF programs that tend to be pretty complex as
far as verification goes and require big log buffers. Typically, it's
when debugging tricky cases at log level 2 (verbose). Also, when BPF program
is successfully validated, log level 2 is the only way to actually see
verifier state progression and all the important details.
Even with log level 1, it's possible to get -ENOSPC even if the final
verifier log fits in log buffer, if there is a code path that's deep
enough to fill up entire log, even if normally it would be reset later
on (there is a logic to chop off successfully validated portions of BPF
verifier log).
In short, it's not always possible to pre-size log buffer. Also, what's
worse, in practice, the end of the log most often is way more important
than the beginning, but verifier stops emitting log as soon as initial
log buffer is filled up.
This patch switches BPF verifier log behavior to effectively behave as
rotating log. That is, if user-supplied log buffer turns out to be too
short, verifier will keep overwriting previously written log,
effectively treating user's log buffer as a ring buffer. -ENOSPC is
still going to be returned at the end, to notify user that log contents
was truncated, but the important last N bytes of the log would be
returned, which might be all that user really needs. This consistent
-ENOSPC behavior, regardless of rotating or fixed log behavior, allows
to prevent backwards compatibility breakage. The only user-visible
change is which portion of verifier log user ends up seeing *if buffer
is too small*. Given contents of verifier log itself is not an ABI,
there is no breakage due to this behavior change. Specialized tools that
rely on specific contents of verifier log in -ENOSPC scenario are
expected to be easily adapted to accommodate old and new behaviors.
Importantly, though, to preserve good user experience and not require
every user-space application to adopt to this new behavior, before
exiting to user-space verifier will rotate log (in place) to make it
start at the very beginning of user buffer as a continuous
zero-terminated string. The contents will be a chopped off N-1 last
bytes of full verifier log, of course.
Given beginning of log is sometimes important as well, we add
BPF_LOG_FIXED (which equals 8) flag to force old behavior, which allows
tools like veristat to request first part of verifier log, if necessary.
BPF_LOG_FIXED flag is also a simple and straightforward way to check if
BPF verifier supports rotating behavior.
On the implementation side, conceptually, it's all simple. We maintain
64-bit logical start and end positions. If we need to truncate the log,
start position will be adjusted accordingly to lag end position by
N bytes. We then use those logical positions to calculate their matching
actual positions in user buffer and handle wrap around the end of the
buffer properly. Finally, right before returning from bpf_check(), we
rotate user log buffer contents in-place as necessary, to make log
contents contiguous. See comments in relevant functions for details.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-4-andrii@kernel.org
It's not clear why we have 128 as minimum size, but it makes testing
harder and seems unnecessary, as we carefully handle truncation
scenarios and use proper snprintf variants. So remove this limitation
and just enforce positive length for log buffer.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-3-andrii@kernel.org
kernel/bpf/verifier.c file is large and growing larger all the time. So
it's good to start splitting off more or less self-contained parts into
separate files to keep source code size (somewhat) somewhat under
control.
This patch is a one step in this direction, moving some of BPF verifier log
routines into a separate kernel/bpf/log.c. Right now it's most low-level
and isolated routines to append data to log, reset log to previous
position, etc. Eventually we could probably move verifier state
printing logic here as well, but this patch doesn't attempt to do that
yet.
Subsequent patches will add more logic to verifier log management, so
having basics in a separate file will make sure verifier.c doesn't grow
more with new changes.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-2-andrii@kernel.org
This commit fixes a pair of bugs in which an improbable but very real
sequence of events can cause kfree_rcu() to be a bit too quick about
freeing the memory passed to it. It turns out that this pair of bugs
is about two years old, and so this is not a v6.3 regression. However:
(1) It just started showing up in the wild and (2) Its consequences are
dire, so its fix needs to go in sooner rather than later.
Testing is of course being upgraded, and the upgraded tests detect this
situation very quickly. But to the best of my knowledge right now, the
tests are not particularly urgent and will thus most likely show up in
the v6.5 merge window (the one after this coming one).
Kudos to Ziwei Dai and his group for tracking this one down the hard way!
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmQwt4UTHHBhdWxtY2tA
a2VybmVsLm9yZwAKCRCevxLzctn7jNupD/sG0OTsQ+8zjAG9VhtdkGt3UwXod6z8
8yiM4fMJxECLtFwBD6kvM5jSs87AoSnUNWO2/Ii4v1VymhvzR4i/4+mQ9D6Cr4cQ
yYdo3A1MlcZcjc7Po5KlX7y3JT8kLr8ijaA8XPxGHwVqHNQ6RF64gFercaeDykNv
IFSrqylMvkqhReCFaDGgsVjR8jI4wso8b9IQAO1vnReJLRydui99ibRCWoMH54ev
KO4kPc6QTuqFFHy7o7GgeNty09vLIN/QdEL7sTWUpLBStEzTsAdt5rARx47y+nuw
Gh99s+abPFhO5Iy8nQin6MuBCdua1PbJM0yclU3UvmrhgkjoS9GMjiXP9bZ8t9AX
ltiTvcippo1NpDcfNLaK5kt7FA2hlk8631jqPL0h558935vP8rlmgEddtEkqhOWv
muHh1M4IMc/kix26hvLRf3aE8pszxU0b1NIuPkdEUakrvdXE32GlxMmlFZz4ApQ4
DnWlb3Vqof2AjAEUoh7jp4/7tgQaA8Hh1xERuqftQP/NjxNM1naaTwqdKryQFu5c
V3lpn1t5G1xchHkAtuxDh2oVgWBlz5GPtga6AWuxrYPxxbzbl7eb1gEsZpXs0BF/
AB8/KSPcG0Is3yp4Gfet76n0SMWcFVw/g0ISXrTlXkPauXpll15f7PF22154M9f8
EinobMxu9DPT6Q==
=VsnL
-----END PGP SIGNATURE-----
Merge tag 'urgent-rcu.2023.04.07a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull RCU fix from Paul McKenney:
"This fixes a pair of bugs in which an improbable but very real
sequence of events can cause kfree_rcu() to be a bit too quick about
freeing the memory passed to it.
It turns out that this pair of bugs is about two years old, and so
this is not a v6.3 regression. However: (1) It just started showing up
in the wild and (2) Its consequences are dire, so its fix needs to go
in sooner rather than later.
Testing is of course being upgraded, and the upgraded tests detect
this situation very quickly. But to the best of my knowledge right
now, the tests are not particularly urgent and will thus most likely
show up in the v6.5 merge window (the one after this coming one).
Kudos to Ziwei Dai and his group for tracking this one down the hard
way!"
* tag 'urgent-rcu.2023.04.07a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu:
rcu/kvfree: Avoid freeing new kfree_rcu() memory after old grace period
- Do not wait unconditionally for RCU on the event migration path if
there are no events to migrate
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmQynB4ACgkQEsHwGGHe
VUpZ+xAAl85pXfn/uXM4LUy5rqvKXZA/Ytw4sL5XGNA6t31jtEyjlpCXev3clOss
unV/nalV6mXoVu8eOPzlOdQYCqDaq8e5IvGEyKKuvHpl9xfUy4hf6FwsYRkOoTce
CVpw7gegnIJC6MGXxwMlvMKAA9260Pssp/FVgcKzZaJN4ooB/pmYnXHpv65LPtRT
eMdlmdSBw88vIG6wJSgng+Q7fd98h09Vp4l8X2DTyjLmsGPuwn33taAGnZCb9zIH
R6tMUDSz5PuzT0f88ScZewxdI2kmMfxoo60yQMWXQ/+CMbe1ZVgm82g066zE1pfs
ZxqlcNDjH6R2rmfaUq/96OPgPO4ivSpoEKNjlGQ/R8a4nb/ETNHlaKB/Zrrf36ph
9S04pGQm5lEUiSIwnN7eSDuOW5oomyorpeozYGRTOeQ+8n6hMEfOBS9dtCpoUCmz
KjNvuFQ8E6lnvct0TF+gaYbqadwvp/dkUnniyfUVEJihGxdXK8ipgFHZb2uSmE2u
M7Wk0zdUsKx4GRb2u7GGZBRNnxappFVUno4TxUmbeoA8XxVc81O5/p+WbLaZwauF
klyVgWjZOrVV1R5FjeHk/6PbbU3KLa2hdk7ILZFLQJ5swjr85PGfupjn0KHB4CuB
AycfstdaWJQspmtZodct/xmIngXbeacF58O7uRzUlZqkqx1jD/E=
=m8RR
-----END PGP SIGNATURE-----
Merge tag 'perf_urgent_for_v6.3_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Borislav Petkov:
- Fix "same task" check when redirecting event output
- Do not wait unconditionally for RCU on the event migration path if
there are no events to migrate
* tag 'perf_urgent_for_v6.3_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/core: Fix the same task check in perf_event_set_output
perf: Optimize perf_pmu_migrate_context()
arch_kexec_kernel_image_load() only calls kexec_image_load_default(), and
there are no arch-specific implementations.
Remove the unnecessary arch_kexec_kernel_image_load() and make
kexec_image_load_default() static.
No functional change intended.
Link: https://lkml.kernel.org/r/20230307224416.907040-3-helgaas@kernel.org
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Simon Horman <horms@kernel.org>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently there is no way to show the callback names for registered,
unregistered or executed notifiers. This is very useful for debug
purposes, hence add this functionality here in the form of notifiers'
tracepoints, one per operation.
[akpm@linux-foundation.org: coding-style cleanups]
Link: https://lkml.kernel.org/r/20230314200058.1326909-1-gpiccoli@igalia.com
Signed-off-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Xiaoming Ni <nixiaoming@huawei.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Cc: Guilherme G. Piccoli <gpiccoli@igalia.com>
Cc: Guilherme G. Piccoli <kernel@gpiccoli.net>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
smatch reports several warnings
kernel/hung_task.c:31:19: warning:
symbol 'sysctl_hung_task_check_count' was not declared. Should it be static?
kernel/hung_task.c:50:29: warning:
symbol 'sysctl_hung_task_check_interval_secs' was not declared. Should it be static?
kernel/hung_task.c:52:19: warning:
symbol 'sysctl_hung_task_warnings' was not declared. Should it be static?
kernel/hung_task.c:75:28: warning:
symbol 'sysctl_hung_task_panic' was not declared. Should it be static?
These variables are only used in hung_task.c, so they should be static
Link: https://lkml.kernel.org/r/20230312164645.471259-1-trix@redhat.com
Signed-off-by: Tom Rix <trix@redhat.com>
Cc: Ben Dooks <ben.dooks@sifive.com>
Cc: fuyuanli <fuyuanli@didiglobal.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
- fix a braino in the swiotlb alignment check fix (Petr Tesarik)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAmQxA5oLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYMaXg//TiN+oJ1xKg9XnctW/0bmDzADtk6L7dNiBxfRZiVU
kQE/crRCOod+dfkrnyqlxx2SC24RyPRouDYJGbBH10qP3flYYl101Ol6BVbEUxU+
/+QTHAT2+nwWEOLDgi59FlkdiIi8jvpzY4ANCwvSEW/y2BgJXy8KS5MUnrzWqi7B
hzTv4gO8y1yyt65w9tZCax/EmQkL8U08e0l1U+OFDsiU2ZEmcwFfeETQ80183tEl
h80XieijGIKQc7HtmUJWtGX+loiLPuy3emAH+2N9w/7OOQMpHuWwJj3Lp+oX5qFn
ryB22oBWH+zRuxiAV/sp48mAl3W1hYf2q2tsu7lHVmPRdttScYIL556iozYaXHbt
2Vykhs2VISG/2v7foRNklrkz11IL9w0/oY8/dbvhLscTBKmtWSolMlaTJRBwMVQw
xL7pcP6KJrWSRP/xmTDVpomNOFqTVh/sbMC6KEThIoOIdTXuvVucz9Btnqr8JruK
CyzrRp8VkHoYReJYRWIs2QB9t584vssiMAMJOuelOZlBRF69j2BWQktJI6dthaJM
/qqBnkOsef48bzRjCvIZgSDmgJnNYzDRBBkdjx1WqLJjcFlUd9CWEK6ZdNFNd04s
KP3Pp0b9xQa6rkSKGJc55aqmWs755cp6v/AANnQLW/lZwxlw+l4fXuC+yWxXYuTh
+Qc=
=T0n5
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-6.3-2023-04-08' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping fix from Christoph Hellwig:
- fix a braino in the swiotlb alignment check fix (Petr Tesarik)
* tag 'dma-mapping-6.3-2023-04-08' of git://git.infradead.org/users/hch/dma-mapping:
swiotlb: fix a braino in the alignment check fix
- Reset direct->addr back to its original value on error in updating
the direct trampoline code.
- Make lastcmd_mutex static.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZDB1JhQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qqihAQC6vNG/QFthBVj6++2O5+h+AGe3mIIv
+SVs3GpL+Gr1MAEA/Q+zK7niLHrWSMsyq3eYY63J10AhI/ZHuFm28MbjKQM=
=khcF
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.3-rc5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing fixes from Steven Rostedt:
"A couple more minor fixes:
- Reset direct->addr back to its original value on error in updating
the direct trampoline code
- Make lastcmd_mutex static"
* tag 'trace-v6.3-rc5-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing/synthetic: Make lastcmd_mutex static
ftrace: Fix issue that 'direct->addr' not restored in modify_ftrace_direct()
23 are cc:stable and the other 5 address issues which were introduced
during this merge cycle.
20 are for MM and the remainder are for other subsystems.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZDCmIAAKCRDdBJ7gKXxA
jhZuAQDn8ErAotUpLn1Pq6WU1liPenGoraBo/a2ubpOjguSINwD+J7L85vgVmA78
YzoKHObW18yBW7JSzpWZ2zw8q2gLQwQ=
=a1n7
-----END PGP SIGNATURE-----
Merge tag 'mm-hotfixes-stable-2023-04-07-16-23' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM fixes from Andrew Morton:
"28 hotfixes.
23 are cc:stable and the other five address issues which were
introduced during this merge cycle.
20 are for MM and the remainder are for other subsystems"
* tag 'mm-hotfixes-stable-2023-04-07-16-23' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (28 commits)
maple_tree: fix a potential concurrency bug in RCU mode
maple_tree: fix get wrong data_end in mtree_lookup_walk()
mm/swap: fix swap_info_struct race between swapoff and get_swap_pages()
nilfs2: fix sysfs interface lifetime
mm: take a page reference when removing device exclusive entries
mm: vmalloc: avoid warn_alloc noise caused by fatal signal
nilfs2: initialize "struct nilfs_binfo_dat"->bi_pad field
nilfs2: fix potential UAF of struct nilfs_sc_info in nilfs_segctor_thread()
zsmalloc: document freeable stats
zsmalloc: document new fullness grouping
fsdax: force clear dirty mark if CoW
mm/hugetlb: fix uffd wr-protection for CoW optimization path
mm: enable maple tree RCU mode by default
maple_tree: add RCU lock checking to rcu callback functions
maple_tree: add smp_rmb() to dead node detection
maple_tree: fix write memory barrier of nodes once dead for RCU mode
maple_tree: remove extra smp_wmb() from mas_dead_leaves()
maple_tree: fix freeing of nodes in rcu mode
maple_tree: detect dead nodes in mas_start()
maple_tree: be more cautious about dead nodes
...
Provide a kconfig option to allow arches to manipulate default
value of dma_default_coherent in Kconfig.
Signed-off-by: Jiaxun Yang <jiaxun.yang@flygoat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
dma_default_coherent was decleared unconditionally at kernel/dma/mapping.c
but only decleared when any of non-coherent options is enabled in
dma-map-ops.h.
Guard the declaration in mapping.c with non-coherent options and provide
a fallback definition.
Signed-off-by: Jiaxun Yang <jiaxun.yang@flygoat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
BPF helpers that take an ARG_PTR_TO_UNINIT_MEM must ensure that all of
the memory is set, including beyond the end of the string.
Signed-off-by: Barret Rhoden <brho@google.com>
Link: https://lore.kernel.org/r/20230407001808.1622968-1-brho@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, the verifier does not handle '<const> <cond_op> <non_const>' well.
For example,
...
10: (79) r1 = *(u64 *)(r10 -16) ; R1_w=scalar() R10=fp0
11: (b7) r2 = 0 ; R2_w=0
12: (2d) if r2 > r1 goto pc+2
13: (b7) r0 = 0
14: (95) exit
15: (65) if r1 s> 0x1 goto pc+3
16: (0f) r0 += r1
...
At insn 12, verifier decides both true and false branch are possible, but
actually only false branch is possible.
Currently, the verifier already supports patterns '<non_const> <cond_op> <const>.
Add support for patterns '<const> <cond_op> <non_const>' in a similar way.
Also fix selftest 'verifier_bounds_mix_sign_unsign/bounds checks mixing signed and unsigned, variant 10'
due to this change.
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230406164505.1046801-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, for BPF_JEQ/BPF_JNE insn, verifier determines
whether the branch is taken or not only if both operands
are constants. Therefore, for the following code snippet,
0: (85) call bpf_ktime_get_ns#5 ; R0_w=scalar()
1: (a5) if r0 < 0x3 goto pc+2 ; R0_w=scalar(umin=3)
2: (b7) r2 = 2 ; R2_w=2
3: (1d) if r0 == r2 goto pc+2 6
At insn 3, since r0 is not a constant, verifier assumes both branch
can be taken which may lead inproper verification failure.
Add comparing umin/umax value and the constant. If the umin value
is greater than the constant, or umax value is smaller than the constant,
for JEQ the branch must be not-taken, and for JNE the branch must be taken.
The jmp32 mode JEQ/JNE branch taken checking is also handled similarly.
The following lists the veristat result w.r.t. changed number
of processes insns during verification:
File Program Insns (A) Insns (B) Insns (DIFF)
----------------------------------------------------- ---------------------------------------------------- --------- --------- ---------------
test_cls_redirect.bpf.linked3.o cls_redirect 64980 73472 +8492 (+13.07%)
test_seg6_loop.bpf.linked3.o __add_egr_x 12425 12423 -2 (-0.02%)
test_tcp_hdr_options.bpf.linked3.o estab 2634 2558 -76 (-2.89%)
test_parse_tcp_hdr_opt.bpf.linked3.o xdp_ingress_v6 1421 1420 -1 (-0.07%)
test_parse_tcp_hdr_opt_dynptr.bpf.linked3.o xdp_ingress_v6 1238 1237 -1 (-0.08%)
test_tc_dtime.bpf.linked3.o egress_fwdns_prio100 414 411 -3 (-0.72%)
Mostly a small improvement but test_cls_redirect.bpf.linked3.o has a 13% regression.
I checked with verifier log and found it this is due to pruning.
For some JEQ/JNE branches impacted by this patch,
one branch is explored and the other has state equivalence and
pruned.
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230406164455.1045294-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Memory passed to kvfree_rcu() that is to be freed is tracked by a
per-CPU kfree_rcu_cpu structure, which in turn contains pointers
to kvfree_rcu_bulk_data structures that contain pointers to memory
that has not yet been handed to RCU, along with an kfree_rcu_cpu_work
structure that tracks the memory that has already been handed to RCU.
These structures track three categories of memory: (1) Memory for
kfree(), (2) Memory for kvfree(), and (3) Memory for both that arrived
during an OOM episode. The first two categories are tracked in a
cache-friendly manner involving a dynamically allocated page of pointers
(the aforementioned kvfree_rcu_bulk_data structures), while the third
uses a simple (but decidedly cache-unfriendly) linked list through the
rcu_head structures in each block of memory.
On a given CPU, these three categories are handled as a unit, with that
CPU's kfree_rcu_cpu_work structure having one pointer for each of the
three categories. Clearly, new memory for a given category cannot be
placed in the corresponding kfree_rcu_cpu_work structure until any old
memory has had its grace period elapse and thus has been removed. And
the kfree_rcu_monitor() function does in fact check for this.
Except that the kfree_rcu_monitor() function checks these pointers one
at a time. This means that if the previous kfree_rcu() memory passed
to RCU had only category 1 and the current one has only category 2, the
kfree_rcu_monitor() function will send that current category-2 memory
along immediately. This can result in memory being freed too soon,
that is, out from under unsuspecting RCU readers.
To see this, consider the following sequence of events, in which:
o Task A on CPU 0 calls rcu_read_lock(), then uses "from_cset",
then is preempted.
o CPU 1 calls kfree_rcu(cset, rcu_head) in order to free "from_cset"
after a later grace period. Except that "from_cset" is freed
right after the previous grace period ended, so that "from_cset"
is immediately freed. Task A resumes and references "from_cset"'s
member, after which nothing good happens.
In full detail:
CPU 0 CPU 1
---------------------- ----------------------
count_memcg_event_mm()
|rcu_read_lock() <---
|mem_cgroup_from_task()
|// css_set_ptr is the "from_cset" mentioned on CPU 1
|css_set_ptr = rcu_dereference((task)->cgroups)
|// Hard irq comes, current task is scheduled out.
cgroup_attach_task()
|cgroup_migrate()
|cgroup_migrate_execute()
|css_set_move_task(task, from_cset, to_cset, true)
|cgroup_move_task(task, to_cset)
|rcu_assign_pointer(.., to_cset)
|...
|cgroup_migrate_finish()
|put_css_set_locked(from_cset)
|from_cset->refcount return 0
|kfree_rcu(cset, rcu_head) // free from_cset after new gp
|add_ptr_to_bulk_krc_lock()
|schedule_delayed_work(&krcp->monitor_work, ..)
kfree_rcu_monitor()
|krcp->bulk_head[0]'s work attached to krwp->bulk_head_free[]
|queue_rcu_work(system_wq, &krwp->rcu_work)
|if rwork->rcu.work is not in WORK_STRUCT_PENDING_BIT state,
|call_rcu(&rwork->rcu, rcu_work_rcufn) <--- request new gp
// There is a perious call_rcu(.., rcu_work_rcufn)
// gp end, rcu_work_rcufn() is called.
rcu_work_rcufn()
|__queue_work(.., rwork->wq, &rwork->work);
|kfree_rcu_work()
|krwp->bulk_head_free[0] bulk is freed before new gp end!!!
|The "from_cset" is freed before new gp end.
// the task resumes some time later.
|css_set_ptr->subsys[(subsys_id) <--- Caused kernel crash, because css_set_ptr is freed.
This commit therefore causes kfree_rcu_monitor() to refrain from moving
kfree_rcu() memory to the kfree_rcu_cpu_work structure until the RCU
grace period has completed for all three categories.
v2: Use helper function instead of inserted code block at kfree_rcu_monitor().
Fixes: 34c8817455 ("rcu: Support kfree_bulk() interface in kfree_rcu()")
Fixes: 5f3c8d6204 ("rcu/tree: Maintain separate array for vmalloc ptrs")
Reported-by: Mukesh Ojha <quic_mojha@quicinc.com>
Signed-off-by: Ziwei Dai <ziwei.dai@unisoc.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Tested-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Syzkaller report a WARNING: "WARN_ON(!direct)" in modify_ftrace_direct().
Root cause is 'direct->addr' was changed from 'old_addr' to 'new_addr' but
not restored if error happened on calling ftrace_modify_direct_caller().
Then it can no longer find 'direct' by that 'old_addr'.
To fix it, restore 'direct->addr' to 'old_addr' explicitly in error path.
Link: https://lore.kernel.org/linux-trace-kernel/20230330025223.1046087-1-zhengyejian1@huawei.com
Cc: stable@vger.kernel.org
Cc: <mhiramat@kernel.org>
Cc: <mark.rutland@arm.com>
Cc: <ast@kernel.org>
Cc: <daniel@iogearbox.net>
Fixes: 8a141dd7f7 ("ftrace: Fix modify_ftrace_direct.")
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The alignment mask in swiotlb_do_find_slots() masks off the high
bits which are not relevant for the alignment, so multiple
requirements are combined with a bitwise OR rather than AND.
In plain English, the stricter the alignment, the more bits must
be set in iotlb_align_mask.
Confusion may arise from the fact that the same variable is also
used to mask off the offset within a swiotlb slot, which is
achieved with a bitwise AND.
Fixes: 0eee5ae102 ("swiotlb: fix slot alignment checks")
Reported-by: Dexuan Cui <decui@microsoft.com>
Link: https://lore.kernel.org/all/CAA42JLa1y9jJ7BgQvXeUYQh-K2mDNHd2BYZ4iZUz33r5zY7oAQ@mail.gmail.com/
Reported-by: Kelsey Steele <kelseysteele@linux.microsoft.com>
Link: https://lore.kernel.org/all/20230405003549.GA21326@linuxonhyperv3.guj3yctzbm1etfxqx2vob5hsef.xx.internal.cloudapp.net/
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Tested-by: Dexuan Cui <decui@microsoft.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
before: last 6 bits of PID is used as index to store information about
tasks accessing VMA's.
after: hash_32 is used to take of cases where tasks are created over a
period of time, and thus improve collision probability.
Result:
The patch series overall improves autonuma cost.
Kernbench around more than 5% improvement and system time in mmtest
autonuma showed more than 80% improvement
Link: https://lkml.kernel.org/r/d5a9f75513300caed74e5c8570bba9317b963c2b.1677672277.git.raghavendra.kt@amd.com
Signed-off-by: Raghavendra K T <raghavendra.kt@amd.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Cc: Bharata B Rao <bharata@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Disha Talreja <dishaa.talreja@amd.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This helps to ensure that only recently accessed PIDs scan the VMAs.
Current implementation: (idea supported by PeterZ)
1. Accessing PID information is maintained in two windows.
access_pids[1] being newest.
2. Reset old access PID info i.e. access_pid[0] every (4 *
sysctl_numa_balancing_scan_delay) interval after initial scan delay
period expires.
The above interval seemed to be experimentally optimum since it avoids
frequent reset of access info as well as helps clearing the old access
info regularly. The reset logic is implemented in scan path.
Link: https://lkml.kernel.org/r/f7a675f66d1442d048b4216b2baf94515012c405.1677672277.git.raghavendra.kt@amd.com
Signed-off-by: Raghavendra K T <raghavendra.kt@amd.com>
Suggested-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Bharata B Rao <bharata@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Disha Talreja <dishaa.talreja@amd.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
During Numa scanning make sure only relevant vmas of the tasks are
scanned.
Before:
All the tasks of a process participate in scanning the vma even if they
do not access vma in it's lifespan.
Now:
Except cases of first few unconditional scans, if a process do
not touch vma (exluding false positive cases of PID collisions)
tasks no longer scan all vma
Logic used:
1) 6 bits of PID used to mark active bit in vma numab status during
fault to remember PIDs accessing vma. (Thanks Mel)
2) Subsequently in scan path, vma scanning is skipped if current PID
had not accessed vma.
3) First two times we do allow unconditional scan to preserve earlier
behaviour of scanning.
Acknowledgement to Bharata B Rao <bharata@amd.com> for initial patch to
store pid information and Peter Zijlstra <peterz@infradead.org> (Usage of
test and set bit)
Link: https://lkml.kernel.org/r/092f03105c7c1d3450f4636b1ea350407f07640e.1677672277.git.raghavendra.kt@amd.com
Signed-off-by: Raghavendra K T <raghavendra.kt@amd.com>
Suggested-by: Mel Gorman <mgorman@techsingularity.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: Disha Talreja <dishaa.talreja@amd.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Pach series "sched/numa: Enhance vma scanning", v3.
The patchset proposes one of the enhancements to numa vma scanning
suggested by Mel. This is continuation of [3].
Reposting the rebased patchset to akpm mm-unstable tree (March 1)
Existing mechanism of scan period involves, scan period derived from
per-thread stats. Process Adaptive autoNUMA [1] proposed to gather NUMA
fault stats at per-process level to capture aplication behaviour better.
During that course of discussion, Mel proposed several ideas to enhance
current numa balancing. One of the suggestion was below
Track what threads access a VMA. The suggestion was to use an unsigned
long pid_mask and use the lower bits to tag approximately what threads
access a VMA. Skip VMAs that did not trap a fault. This would be
approximate because of PID collisions but would reduce scanning of areas
the thread is not interested in. The above suggestion intends not to
penalize threads that has no interest in the vma, thus reduce scanning
overhead.
V3 changes are mostly based on PeterZ comments (details below in changes)
Summary of patchset:
Current patchset implements:
1. Delay the vma scanning logic for newly created VMA's so that
additional overhead of scanning is not incurred for short lived tasks
(implementation by Mel)
2. Store the information of tasks accessing VMA in 2 windows. It is
regularly cleared in (4*sysctl_numa_balancing_scan_delay) interval.
The above time is derived from experimenting (Suggested by PeterZ) to
balance between frequent clearing vs obsolete access data
3. hash_32 used to encode task index accessing VMA information
4. VMA's acess information is used to skip scanning for the tasks
which had not accessed VMA
Changes since V2:
patch1:
- Renaming of structure, macro to function,
- Add explanation to heuristics
- Adding more details from result (PeterZ)
Patch2:
- Usage of test and set bit (PeterZ)
- Move storing access PID info to numa_migrate_prep()
- Add a note on fainess among tasks allowed to scan
(PeterZ)
Patch3:
- Maintain two windows of access PID information
(PeterZ supported implementation and Gave idea to extend
to N if needed)
Patch4:
- Apply hash_32 function to track VMA accessing PIDs (PeterZ)
Changes since RFC V1:
- Include Mel's vma scan delay patch
- Change the accessing pid store logic (Thanks Mel)
- Fencing structure / code to NUMA_BALANCING (David, Mel)
- Adding clearing access PID logic (Mel)
- Descriptive change log ( Mike Rapoport)
Things to ponder over:
==========================================
- Improvement to clearing accessing PIDs logic (discussed in-detail in
patch3 itself (Done in this patchset by implementing 2 window history)
- Current scan period is not changed in the patchset, so we do see
frequent tries to scan. Relaxing scan period dynamically could improve
results further.
[1] sched/numa: Process Adaptive autoNUMA
Link: https://lore.kernel.org/lkml/20220128052851.17162-1-bharata@amd.com/T/
[2] RFC V1 Link:
https://lore.kernel.org/all/cover.1673610485.git.raghavendra.kt@amd.com/
[3] V2 Link:
https://lore.kernel.org/lkml/cover.1675159422.git.raghavendra.kt@amd.com/
Results:
Summary: Huge autonuma cost reduction seen in mmtest. Kernbench improvement
is more than 5% and huge system time (80%+) improvement from mmtest autonuma.
(dbench had huge std deviation to post)
kernbench
===========
6.2.0-mmunstable-base 6.2.0-mmunstable-patched
Amean user-256 22002.51 ( 0.00%) 22649.95 * -2.94%*
Amean syst-256 10162.78 ( 0.00%) 8214.13 * 19.17%*
Amean elsp-256 160.74 ( 0.00%) 156.92 * 2.38%*
Duration User 66017.43 67959.84
Duration System 30503.15 24657.03
Duration Elapsed 504.61 493.12
6.2.0-mmunstable-base 6.2.0-mmunstable-patched
Ops NUMA alloc hit 1738835089.00 1738780310.00
Ops NUMA alloc local 1738834448.00 1738779711.00
Ops NUMA base-page range updates 477310.00 392566.00
Ops NUMA PTE updates 477310.00 392566.00
Ops NUMA hint faults 96817.00 87555.00
Ops NUMA hint local faults % 10150.00 2192.00
Ops NUMA hint local percent 10.48 2.50
Ops NUMA pages migrated 86660.00 85363.00
Ops AutoNUMA cost 489.07 442.14
autonumabench
===============
6.2.0-mmunstable-base 6.2.0-mmunstable-patched
Amean syst-NUMA01 399.50 ( 0.00%) 52.05 * 86.97%*
Amean syst-NUMA01_THREADLOCAL 0.21 ( 0.00%) 0.22 * -5.41%*
Amean syst-NUMA02 0.80 ( 0.00%) 0.78 * 2.68%*
Amean syst-NUMA02_SMT 0.65 ( 0.00%) 0.68 * -3.95%*
Amean elsp-NUMA01 313.26 ( 0.00%) 313.11 * 0.05%*
Amean elsp-NUMA01_THREADLOCAL 1.06 ( 0.00%) 1.08 * -1.76%*
Amean elsp-NUMA02 3.19 ( 0.00%) 3.24 * -1.52%*
Amean elsp-NUMA02_SMT 3.72 ( 0.00%) 3.61 * 2.92%*
Duration User 396433.47 324835.96
Duration System 2808.70 376.66
Duration Elapsed 2258.61 2258.12
6.2.0-mmunstable-base 6.2.0-mmunstable-patched
Ops NUMA alloc hit 59921806.00 49623489.00
Ops NUMA alloc miss 0.00 0.00
Ops NUMA interleave hit 0.00 0.00
Ops NUMA alloc local 59920880.00 49622594.00
Ops NUMA base-page range updates 152259275.00 50075.00
Ops NUMA PTE updates 152259275.00 50075.00
Ops NUMA PMD updates 0.00 0.00
Ops NUMA hint faults 154660352.00 39014.00
Ops NUMA hint local faults % 138550501.00 23139.00
Ops NUMA hint local percent 89.58 59.31
Ops NUMA pages migrated 8179067.00 14147.00
Ops AutoNUMA cost 774522.98 195.69
This patch (of 4):
Currently whenever a new task is created we wait for
sysctl_numa_balancing_scan_delay to avoid unnessary scanning overhead.
Extend the same logic to new or very short-lived VMAs.
[raghavendra.kt@amd.com: add initialization in vm_area_dup())]
Link: https://lkml.kernel.org/r/cover.1677672277.git.raghavendra.kt@amd.com
Link: https://lkml.kernel.org/r/7a6fbba87c8b51e67efd3e74285bb4cb311a16ca.1677672277.git.raghavendra.kt@amd.com
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Raghavendra K T <raghavendra.kt@amd.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Disha Talreja <dishaa.talreja@amd.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
vma->lock being part of the vm_area_struct causes performance regression
during page faults because during contention its count and owner fields
are constantly updated and having other parts of vm_area_struct used
during page fault handling next to them causes constant cache line
bouncing. Fix that by moving the lock outside of the vm_area_struct.
All attempts to keep vma->lock inside vm_area_struct in a separate cache
line still produce performance regression especially on NUMA machines.
Smallest regression was achieved when lock is placed in the fourth cache
line but that bloats vm_area_struct to 256 bytes.
Considering performance and memory impact, separate lock looks like the
best option. It increases memory footprint of each VMA but that can be
optimized later if the new size causes issues. Note that after this
change vma_init() does not allocate or initialize vma->lock anymore. A
number of drivers allocate a pseudo VMA on the stack but they never use
the VMA's lock, therefore it does not need to be allocated. The future
drivers which might need the VMA lock should use
vm_area_alloc()/vm_area_free() to allocate the VMA.
Link: https://lkml.kernel.org/r/20230227173632.3292573-34-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
call_rcu() can take a long time when callback offloading is enabled. Its
use in the vm_area_free can cause regressions in the exit path when
multiple VMAs are being freed.
Because exit_mmap() is called only after the last mm user drops its
refcount, the page fault handlers can't be racing with it. Any other
possible user like oom-reaper or process_mrelease are already synchronized
using mmap_lock. Therefore exit_mmap() can free VMAs directly, without
the use of call_rcu().
Expose __vm_area_free() and use it from exit_mmap() to avoid possible
call_rcu() floods and performance regressions caused by it.
Link: https://lkml.kernel.org/r/20230227173632.3292573-33-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Introduce per-VMA locking. The lock implementation relies on a per-vma
and per-mm sequence counters to note exclusive locking:
- read lock - (implemented by vma_start_read) requires the vma
(vm_lock_seq) and mm (mm_lock_seq) sequence counters to differ.
If they match then there must be a vma exclusive lock held somewhere.
- read unlock - (implemented by vma_end_read) is a trivial vma->lock
unlock.
- write lock - (vma_start_write) requires the mmap_lock to be held
exclusively and the current mm counter is assigned to the vma counter.
This will allow multiple vmas to be locked under a single mmap_lock
write lock (e.g. during vma merging). The vma counter is modified
under exclusive vma lock.
- write unlock - (vma_end_write_all) is a batch release of all vma
locks held. It doesn't pair with a specific vma_start_write! It is
done before exclusive mmap_lock is released by incrementing mm
sequence counter (mm_lock_seq).
- write downgrade - if the mmap_lock is downgraded to the read lock, all
vma write locks are released as well (effectivelly same as write
unlock).
Link: https://lkml.kernel.org/r/20230227173632.3292573-13-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This prepares for page faults handling under VMA lock, looking up VMAs
under protection of an rcu read lock, instead of the usual mmap read lock.
Link: https://lkml.kernel.org/r/20230227173632.3292573-11-surenb@google.com
Signed-off-by: Michel Lespinasse <michel@lespinasse.org>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
MAX_ORDER is not inclusive: the maximum allocation order buddy allocator
can deliver is MAX_ORDER-1.
Fix MAX_ORDER usage in rb_alloc_aux_page().
Link: https://lkml.kernel.org/r/20230315113133.11326-7-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use the maple tree in RCU mode for VMA tracking.
The maple tree tracks the stack and is able to update the pivot
(lower/upper boundary) in-place to allow the page fault handler to write
to the tree while holding just the mmap read lock. This is safe as the
writes to the stack have a guard VMA which ensures there will always be a
NULL in the direction of the growth and thus will only update a pivot.
It is possible, but not recommended, to have VMAs that grow up/down
without guard VMAs. syzbot has constructed a testcase which sets up a VMA
to grow and consume the empty space. Overwriting the entire NULL entry
causes the tree to be altered in a way that is not safe for concurrent
readers; the readers may see a node being rewritten or one that does not
match the maple state they are using.
Enabling RCU mode allows the concurrent readers to see a stable node and
will return the expected result.
[Liam.Howlett@Oracle.com: we don't need to free the nodes with RCU[
Link: https://lore.kernel.org/linux-mm/000000000000b0a65805f663ace6@google.com/
Link: https://lkml.kernel.org/r/20230227173632.3292573-9-surenb@google.com
Fixes: d4af56c5c7 ("mm: start tracking VMAs with maple tree")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reported-by: syzbot+8d95422d3537159ca390@syzkaller.appspotmail.com
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The kfree_rcu() and kvfree_rcu() macros' single-argument forms are
deprecated. Therefore switch to the new kfree_rcu_mightsleep() and
kvfree_rcu_mightsleep() variants. The goal is to avoid accidental use
of the single-argument forms, which can introduce functionality bugs in
atomic contexts and latency bugs in non-atomic contexts.
Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
The kvfree_rcu() macro's single-argument form is deprecated. Therefore
switch to the new kvfree_rcu_mightsleep() variant. The goal is to
avoid accidental use of the single-argument forms, which can introduce
functionality bugs in atomic contexts and latency bugs in non-atomic
contexts.
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
For kernels built with CONFIG_PREEMPT_RCU=y, the following scenario can
result in a NULL-pointer dereference:
CPU1 CPU2
rcu_preempt_deferred_qs_irqrestore rcu_print_task_exp_stall
if (special.b.blocked) READ_ONCE(rnp->exp_tasks) != NULL
raw_spin_lock_rcu_node
np = rcu_next_node_entry(t, rnp)
if (&t->rcu_node_entry == rnp->exp_tasks)
WRITE_ONCE(rnp->exp_tasks, np)
....
raw_spin_unlock_irqrestore_rcu_node
raw_spin_lock_irqsave_rcu_node
t = list_entry(rnp->exp_tasks->prev,
struct task_struct, rcu_node_entry)
(if rnp->exp_tasks is NULL, this
will dereference a NULL pointer)
The problem is that CPU2 accesses the rcu_node structure's->exp_tasks
field without holding the rcu_node structure's ->lock and CPU2 did
not observe CPU1's change to rcu_node structure's ->exp_tasks in time.
Therefore, if CPU1 sets rcu_node structure's->exp_tasks pointer to NULL,
then CPU2 might dereference that NULL pointer.
This commit therefore holds the rcu_node structure's ->lock while
accessing that structure's->exp_tasks field.
[ paulmck: Apply Frederic Weisbecker feedback. ]
Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
The call to synchronize_srcu() from rcu_tasks_postscan() can be stalled
by a task getting stuck in do_exit() between that function's calls to
exit_tasks_rcu_start() and exit_tasks_rcu_finish(). To ease diagnosis
of this situation, print a stall warning message every rcu_task_stall_info
period when rcu_tasks_postscan() is stalled.
[ paulmck: Adjust to handle CONFIG_SMP=n. ]
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reported-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/rcu/20230111212736.GA1062057@paulmck-ThinkPad-P17-Gen-1/
Signed-off-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
According to the commit log of the patch that added it to the kernel,
start_poll_synchronize_rcu_expedited() can be invoked very early, as
in long before rcu_init() has been invoked. But before rcu_init(),
the rcu_data structure's ->mynode field has not yet been initialized.
This means that the start_poll_synchronize_rcu_expedited() function's
attempt to set the CPU's leaf rcu_node structure's ->exp_seq_poll_rq
field will result in a segmentation fault.
This commit therefore causes start_poll_synchronize_rcu_expedited() to
set ->exp_seq_poll_rq only after rcu_init() has initialized all CPUs'
rcu_data structures' ->mynode fields. It also removes the check from
the rcu_init() function so that start_poll_synchronize_rcu_expedited(
is unconditionally invoked. Yes, this might result in an unnecessary
boot-time grace period, but this is down in the noise.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
The rcu_accelerate_cbs() function is invoked by rcu_report_qs_rdp()
only if there is a grace period in progress that is still blocked
by at least one CPU on this rcu_node structure. This means that
rcu_accelerate_cbs() should never return the value true, and thus that
this function should never set the needwake variable and in turn never
invoke rcu_gp_kthread_wake().
This commit therefore removes the needwake variable and the invocation
of rcu_gp_kthread_wake() in favor of a WARN_ON_ONCE() on the call to
rcu_accelerate_cbs(). The purpose of this new WARN_ON_ONCE() is to
detect situations where the system's opinion differs from ours.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
The lazy_rcu_shrink_count() shrinker function is registered even in
kernels built with CONFIG_RCU_LAZY=n, in which case this function
uselessly consumes cycles learning that no CPU has any lazy callbacks
queued.
This commit therefore registers this shrinker function only in the kernels
built with CONFIG_RCU_LAZY=y, where it might actually do something useful.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
For kernels built with CONFIG_NO_HZ_FULL=y, the following scenario can result
in the scheduling-clock interrupt remaining enabled on a holdout CPU after
its quiescent state has been reported:
CPU1 CPU2
rcu_report_exp_cpu_mult synchronize_rcu_expedited_wait
acquires rnp->lock mask = rnp->expmask;
for_each_leaf_node_cpu_mask(rnp, cpu, mask)
rnp->expmask = rnp->expmask & ~mask; rdp = per_cpu_ptr(&rcu_data, cpu1);
for_each_leaf_node_cpu_mask(rnp, cpu, mask)
rdp = per_cpu_ptr(&rcu_data, cpu1);
if (!rdp->rcu_forced_tick_exp)
continue; rdp->rcu_forced_tick_exp = true;
tick_dep_set_cpu(cpu1, TICK_DEP_BIT_RCU_EXP);
The problem is that CPU2's sampling of rnp->expmask is obsolete by the
time it invokes tick_dep_set_cpu(), and CPU1 is not guaranteed to see
CPU2's store to ->rcu_forced_tick_exp in time to clear it. And even if
CPU1 does see that store, it might invoke tick_dep_clear_cpu() before
CPU2 got around to executing its tick_dep_set_cpu(), which would still
leave the victim CPU with its scheduler-clock tick running.
Either way, an nohz_full real-time application running on the victim
CPU would have its latency needlessly degraded.
Note that expedited RCU grace periods look at context-tracking
information, and so if the CPU is executing in nohz_full usermode
throughout, that CPU cannot be victimized in this manner.
This commit therefore causes synchronize_rcu_expedited_wait to hold
the rcu_node structure's ->lock when checking for holdout CPUs, setting
TICK_DEP_BIT_RCU_EXP, and invoking tick_dep_set_cpu(), thus preventing
this race.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
For CONFIG_NO_HZ_FULL systems, the tick_do_timer_cpu cannot be offlined.
However, cpu_is_hotpluggable() still returns true for those CPUs. This causes
torture tests that do offlining to end up trying to offline this CPU causing
test failures. Such failure happens on all architectures.
Fix the repeated error messages thrown by this (even if the hotplug errors are
harmless) by asking the opinion of the nohz subsystem on whether the CPU can be
hotplugged.
[ Apply Frederic Weisbecker feedback on refactoring tick_nohz_cpu_down(). ]
For drivers/base/ portion:
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Zhouyi Zhou <zhouzhouyi@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: rcu <rcu@vger.kernel.org>
Cc: stable@vger.kernel.org
Fixes: 2987557f52 ("driver-core/cpu: Expose hotpluggability to the rest of the kernel")
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Now that all references to CONFIG_SRCU have been removed, it is time to
remove CONFIG_SRCU itself.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Petr Mladek <pmladek@suse.com>
Reviewed-by: John Ogness <john.ogness@linutronix.de>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
This commit adds a comment to help explain why the "else" clause of the
in_serving_softirq() "if" statement does not need to enforce a time limit.
The reason is that this "else" clause handles rcuoc kthreads that do not
block handlers for other softirq vectors.
Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
There is an smp_mb() named "E" in srcu_flip() immediately before the
increment (flip) of the srcu_struct structure's ->srcu_idx.
The purpose of E is to order the preceding scan's read of lock counters
against the flipping of the ->srcu_idx, in order to prevent new readers
from continuing to use the old ->srcu_idx value, which might needlessly
extend the grace period.
However, this ordering is already enforced because of the control
dependency between the preceding scan and the ->srcu_idx flip.
This control dependency exists because atomic_long_read() is used
to scan the counts, because WRITE_ONCE() is used to flip ->srcu_idx,
and because ->srcu_idx is not flipped until the ->srcu_lock_count[] and
->srcu_unlock_count[] counts match. And such a match cannot happen when
there is an in-flight reader that started before the flip (observation
courtesy Mathieu Desnoyers).
The litmus test below (courtesy of Frederic Weisbecker, with changes
for ctrldep by Boqun and Joel) shows this:
C srcu
(*
* bad condition: P0's first scan (SCAN1) saw P1's idx=0 LOCK count inc, though P1 saw flip.
*
* So basically, the ->po ordering on both P0 and P1 is enforced via ->ppo
* (control deps) on both sides, and both P0 and P1 are interconnected by ->rf
* relations. Combining the ->ppo with ->rf, a cycle is impossible.
*)
{}
// updater
P0(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1)
{
int lock1;
int unlock1;
int lock0;
int unlock0;
// SCAN1
unlock1 = READ_ONCE(*UNLOCK1);
smp_mb(); // A
lock1 = READ_ONCE(*LOCK1);
// FLIP
if (lock1 == unlock1) { // Control dep
smp_mb(); // E // Remove E and still passes.
WRITE_ONCE(*IDX, 1);
smp_mb(); // D
// SCAN2
unlock0 = READ_ONCE(*UNLOCK0);
smp_mb(); // A
lock0 = READ_ONCE(*LOCK0);
}
}
// reader
P1(int *IDX, int *LOCK0, int *UNLOCK0, int *LOCK1, int *UNLOCK1)
{
int tmp;
int idx1;
int idx2;
// 1st reader
idx1 = READ_ONCE(*IDX);
if (idx1 == 0) { // Control dep
tmp = READ_ONCE(*LOCK0);
WRITE_ONCE(*LOCK0, tmp + 1);
smp_mb(); /* B and C */
tmp = READ_ONCE(*UNLOCK0);
WRITE_ONCE(*UNLOCK0, tmp + 1);
} else {
tmp = READ_ONCE(*LOCK1);
WRITE_ONCE(*LOCK1, tmp + 1);
smp_mb(); /* B and C */
tmp = READ_ONCE(*UNLOCK1);
WRITE_ONCE(*UNLOCK1, tmp + 1);
}
}
exists (0:lock1=1 /\ 1:idx1=1)
More complicated litmus tests with multiple SRCU readers also show that
memory barrier E is not needed.
This commit therefore clarifies the comment on memory barrier E.
Why not also remove that redundant smp_mb()?
Because control dependencies are quite fragile due to their not being
recognized by most compilers and tools. Control dependencies therefore
exact an ongoing maintenance burden, and such a burden cannot be justified
in this slowpath. Therefore, that smp_mb() stays until such time as
its overhead becomes a measurable problem in a real workload running on
a real production system, or until such time as compilers start paying
attention to this sort of control dependency.
Co-developed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Co-developed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Co-developed-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
The state space of the GP sequence number isn't documented and the
definitions of its special values are scattered. This commit therefore
gathers some common knowledge near the grace-period sequence-number
definitions.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
PSI offers 2 mechanisms to get information about a specific resource
pressure. One is reading from /proc/pressure/<resource>, which gives
average pressures aggregated every 2s. The other is creating a pollable
fd for a specific resource and cgroup.
The trigger creation requires CAP_SYS_RESOURCE, and gives the
possibility to pick specific time window and threshold, spawing an RT
thread to aggregate the data.
Systemd would like to provide containers the option to monitor pressure
on their own cgroup and sub-cgroups. For example, if systemd launches a
container that itself then launches services, the container should have
the ability to poll() for pressure in individual services. But neither
the container nor the services are privileged.
This patch implements a mechanism to allow unprivileged users to create
pressure triggers. The difference with privileged triggers creation is
that unprivileged ones must have a time window that's a multiple of 2s.
This is so that we can avoid unrestricted spawning of rt threads, and
use instead the same aggregation mechanism done for the averages, which
runs independently of any triggers.
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/r/20230330105418.77061-5-cerasuolodomenico@gmail.com
This change moves update_total flag out of update_triggers function,
currently called only in psi_poll_work.
In the next patch, update_triggers will be called also in psi_avgs_work,
but the total update information is specific to psi_poll_work.
Returning update_total value to the caller let us avoid differentiating
the implementation of update_triggers for different aggregators.
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/r/20230330105418.77061-4-cerasuolodomenico@gmail.com
Renaming in PSI implementation to make a clear distinction between
privileged and unprivileged triggers code to be implemented in the
next patch.
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/r/20230330105418.77061-3-cerasuolodomenico@gmail.com
Move a few functions up in the file to avoid forward declaration needed
in the patch implementing unprivileged PSI triggers.
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/r/20230330105418.77061-2-cerasuolodomenico@gmail.com
There are scenarios where non-affine wakeups are incorrectly counted as
affine wakeups by schedstats.
When wake_affine_idle() returns prev_cpu which doesn't equal to
nr_cpumask_bits, it will slip through the check: target == nr_cpumask_bits
in wake_affine() and be counted as if target == this_cpu in schedstats.
Replace target == nr_cpumask_bits with target != this_cpu to make sure
affine wakeups are accurately tallied.
Fixes: 806486c377 (sched/fair: Do not migrate if the prev_cpu is idle)
Suggested-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Libo Chen <libo.chen@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com>
Link: https://lore.kernel.org/r/20220810223313.386614-1-libo.chen@oracle.com
The same task check in perf_event_set_output has some potential issues
for some usages.
For the current perf code, there is a problem if using of
perf_event_open() to have multiple samples getting into the same mmap’d
memory when they are both attached to the same process.
https://lore.kernel.org/all/92645262-D319-4068-9C44-2409EF44888E@gmail.com/
Because the event->ctx is not ready when the perf_event_set_output() is
invoked in the perf_event_open().
Besides the above issue, before the commit bd27568117 ("perf: Rewrite
core context handling"), perf record can errors out when sampling with
a hardware event and a software event as below.
$ perf record -e cycles,dummy --per-thread ls
failed to mmap with 22 (Invalid argument)
That's because that prior to the commit a hardware event and a software
event are from different task context.
The problem should be a long time issue since commit c3f00c7027
("perk: Separate find_get_context() from event initialization").
The task struct is stored in the event->hw.target for each per-thread
event. It is a more reliable way to determine whether two events are
attached to the same task.
The event->hw.target was also introduced several years ago by the
commit 50f16a8bf9 ("perf: Remove type specific target pointers"). It
can not only be used to fix the issue with the current code, but also
back port to fix the issues with an older kernel.
Note: The event->hw.target was introduced later than commit
c3f00c7027. The patch may cannot be applied between the commit
c3f00c7027 and commit 50f16a8bf9. Anybody that wants to back-port
this at that period may have to find other solutions.
Fixes: c3f00c7027 ("perf: Separate find_get_context() from event initialization")
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Zhengjun Xing <zhengjun.xing@linux.intel.com>
Link: https://lkml.kernel.org/r/20230322202449.512091-1-kan.liang@linux.intel.com
Thomas reported that offlining CPUs spends a lot of time in
synchronize_rcu() as called from perf_pmu_migrate_context() even though
he's not actually using uncore events.
Turns out, the thing is unconditionally waiting for RCU, even if there's
no actual events to migrate.
Fixes: 0cda4c0231 ("perf: Introduce perf_pmu_migrate_context()")
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lkml.kernel.org/r/20230403090858.GT4253@hirez.programming.kicks-ass.net
The kernel command line ftrace_boot_snapshot by itself is supposed to
trigger a snapshot at the end of boot up of the main top level trace
buffer. A ftrace_boot_snapshot=foo will do the same for an instance called
foo that was created by trace_instance=foo,...
The logic was broken where if ftrace_boot_snapshot was by itself, it would
trigger a snapshot for all instances that had tracing enabled, regardless
if it asked for a snapshot or not.
When a snapshot is requested for a buffer, the buffer's
tr->allocated_snapshot is set to true. Use that to know if a trace buffer
wants a snapshot at boot up or not.
Since the top level buffer is part of the ftrace_trace_arrays list,
there's no reason to treat it differently than the other buffers. Just
iterate the list if ftrace_boot_snapshot was specified.
Link: https://lkml.kernel.org/r/20230405022341.895334039@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ross Zwisler <zwisler@google.com>
Fixes: 9c1c251d67 ("tracing: Allow boot instances to have snapshot buffers")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
If a trace instance has a failure with its snapshot code, the error
message is to be written to that instance's buffer. But currently, the
message is written to the top level buffer. Worse yet, it may also disable
the top level buffer and not the instance that had the issue.
Link: https://lkml.kernel.org/r/20230405022341.688730321@goodmis.org
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ross Zwisler <zwisler@google.com>
Fixes: 2824f50332 ("tracing: Make the snapshot trigger work with instances")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The commit 6fcd486b3a ("bpf: Refactor RCU enforcement in the verifier.")
broke several tracing bpf programs. Even in clang compiled kernels there are
many fields that are not marked with __rcu that are safe to read and pass into
helpers, but the verifier doesn't know that they're safe. Aggressively marking
them as PTR_UNTRUSTED was premature.
Fixes: 6fcd486b3a ("bpf: Refactor RCU enforcement in the verifier.")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230404045029.82870-8-alexei.starovoitov@gmail.com
check_reg_type() unconditionally disallows PTR_TO_BTF_ID | PTR_MAYBE_NULL.
It's problematic for helpers that allow ARG_PTR_TO_BTF_ID_OR_NULL like
bpf_sk_storage_get(). Allow passing PTR_TO_BTF_ID | PTR_MAYBE_NULL into such
helpers. That technically includes bpf_kptr_xchg() helper, but in practice:
bpf_kptr_xchg(..., bpf_cpumask_create());
is still disallowed because bpf_cpumask_create() returns ref counted pointer
with ref_obj_id > 0.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230404045029.82870-6-alexei.starovoitov@gmail.com
bpf_[sk|inode|task|cgrp]_storage_[get|delete]() and bpf_get_socket_cookie() helpers
perform run-time check that sk|inode|task|cgrp pointer != NULL.
Teach verifier about this fact and allow bpf programs to pass
PTR_TO_BTF_ID | PTR_MAYBE_NULL into such helpers.
It will be used in the subsequent patch that will do
bpf_sk_storage_get(.., skb->sk, ...);
Even when 'skb' pointer is trusted the 'sk' pointer may be NULL.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230404045029.82870-5-alexei.starovoitov@gmail.com
btf_nested_type_is_trusted() tries to find a struct member at corresponding offset.
It works for flat structures and falls apart in more complex structs with nested structs.
The offset->member search is already performed by btf_struct_walk() including nested structs.
Reuse this work and pass {field name, field btf id} into btf_nested_type_is_trusted()
instead of offset to make BTF_TYPE_SAFE*() logic more robust.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230404045029.82870-4-alexei.starovoitov@gmail.com
Remove duplicated if (atype == BPF_READ) btf_struct_access() from
btf_struct_access() callback and invoke it only for writes. This is
possible to do because currently btf_struct_access() custom callback
always delegates to generic btf_struct_access() helper for BPF_READ
accesses.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230404045029.82870-2-alexei.starovoitov@gmail.com
This commit creates an srcu_usage pointer named "sup" as a shorter
synonym for the "ssp->srcu_sup" that was bloating several lines of code.
Cc: Christoph Hellwig <hch@lst.de>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit creates an srcu_usage pointer named "sup" as a shorter
synonym for the "ssp->srcu_sup" that was bloating several lines of code.
Cc: Christoph Hellwig <hch@lst.de>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit creates an srcu_usage pointer named "sup" as a shorter
synonym for the "ssp->srcu_sup" that was bloating several lines of code.
Cc: Christoph Hellwig <hch@lst.de>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit creates an srcu_usage pointer named "sup" as a shorter
synonym for the "ssp->srcu_sup" that was bloating several lines of code.
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
If a given statically allocated in-module srcu_struct structure was ever
used for updates, srcu_module_going() will invoke cleanup_srcu_struct()
at module-exit time. This will check for the error case of SRCU readers
persisting past module-exit time. On the other hand, if this srcu_struct
structure never went through a grace period, srcu_module_going() only
invokes free_percpu(), which would result in strange failures if SRCU
readers persisted past module-exit time.
This commit therefore adds a srcu_readers_active() check to
srcu_module_going(), splatting if readers have persisted and refraining
from invoking free_percpu() in that case. Better to leak memory than
to suffer silent memory corruption!
[ paulmck: Apply Zhang, Qiang1 feedback on memory leak. ]
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit moves the ->reschedule_jiffies, ->reschedule_count, and
->work fields from the srcu_struct structure to the srcu_usage structure
to reduce the size of the former in order to improve cache locality.
However, this means that the container_of() calls cannot get a pointer
to the srcu_struct because they are no longer in the srcu_struct.
This issue is addressed by adding a ->srcu_ssp field in the srcu_usage
structure that references the corresponding srcu_struct structure.
And given the presence of the sup pointer to the srcu_usage structure,
replace some ssp->srcu_usage-> instances with sup->.
[ paulmck Apply feedback from kernel test robot. ]
Link: https://lore.kernel.org/oe-kbuild-all/202303191400.iO5BOqka-lkp@intel.com/
Suggested-by: Christoph Hellwig <hch@lst.de>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit moves the ->srcu_barrier_seq, ->srcu_barrier_mutex,
->srcu_barrier_completion, and ->srcu_barrier_cpu_cnt fields from the
srcu_struct structure to the srcu_usage structure to reduce the size of
the former in order to improve cache locality.
Suggested-by: Christoph Hellwig <hch@lst.de>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit moves the ->sda_is_static field from the srcu_struct structure
to the srcu_usage structure to reduce the size of the former in order
to improve cache locality.
Suggested-by: Christoph Hellwig <hch@lst.de>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit moves the ->srcu_size_jiffies, ->srcu_n_lock_retries,
and ->srcu_n_exp_nodelay fields from the srcu_struct structure to the
srcu_usage structure to reduce the size of the former in order to improve
cache locality.
Suggested-by: Christoph Hellwig <hch@lst.de>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit moves the ->srcu_gp_seq, ->srcu_gp_seq_needed,
->srcu_gp_seq_needed_exp, ->srcu_gp_start, and ->srcu_last_gp_end fields
from the srcu_struct structure to the srcu_usage structure to reduce
the size of the former in order to improve cache locality.
Suggested-by: Christoph Hellwig <hch@lst.de>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit moves the ->srcu_gp_mutex field from the srcu_struct structure
to the srcu_usage structure to reduce the size of the former in order
to improve cache locality.
Suggested-by: Christoph Hellwig <hch@lst.de>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit moves the ->lock field from the srcu_struct structure to
the srcu_usage structure to reduce the size of the former in order to
improve cache locality.
Suggested-by: Christoph Hellwig <hch@lst.de>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Currently, both __init_srcu_struct() in CONFIG_DEBUG_LOCK_ALLOC=y kernels
and init_srcu_struct() in CONFIG_DEBUG_LOCK_ALLOC=n kernel initialize
the srcu_struct structure's ->lock before the srcu_usage structure has
been allocated. This of course prevents the ->lock from being moved
to the srcu_usage structure, so this commit moves the initialization
into the init_srcu_struct_fields() after the srcu_usage structure has
been allocated.
Cc: Christoph Hellwig <hch@lst.de>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit moves the ->srcu_cb_mutex field from the srcu_struct structure
to the srcu_usage structure to reduce the size of the former in order
to improve cache locality.
Suggested-by: Christoph Hellwig <hch@lst.de>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit moves the ->srcu_size_state field from the srcu_struct
structure to the srcu_usage structure to reduce the size of the former
in order to improve cache locality.
Suggested-by: Christoph Hellwig <hch@lst.de>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit moves the ->level[] array from the srcu_struct structure to
the srcu_usage structure to reduce the size of the former in order to
improve cache locality.
Suggested-by: Christoph Hellwig <hch@lst.de>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The current srcu_struct structure is on the order of 200 bytes in size
(depending on architecture and .config), which is much better than the
old-style 26K bytes, but still all too inconvenient when one is trying
to achieve good cache locality on a fastpath involving SRCU readers.
However, only a few fields in srcu_struct are used by SRCU readers.
The remaining fields could be offloaded to a new srcu_update
structure, thus shrinking the srcu_struct structure down to a few
tens of bytes. This commit begins this noble quest, a quest that is
complicated by open-coded initialization of the srcu_struct within the
srcu_notifier_head structure. This complication is addressed by updating
the srcu_notifier_head structure's open coding, given that there does
not appear to be a straightforward way of abstracting that initialization.
This commit moves only the ->node pointer to srcu_update. Later commits
will move additional fields.
[ paulmck: Fold in qiang1.zhang@intel.com's memory-leak fix. ]
Link: https://lore.kernel.org/all/20230320055751.4120251-1-qiang1.zhang@intel.com/
Suggested-by: Christoph Hellwig <hch@lst.de>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: "Michał Mirosław" <mirq-linux@rere.qmqm.pl>
Cc: Dmitry Osipenko <dmitry.osipenko@collabora.com>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Further shrinking the srcu_struct structure is eased by requiring
that in-module srcu_struct structures rely more heavily on static
initialization. In particular, this preserves the property that
a module-load-time srcu_struct initialization can fail only due
to memory-allocation failure of the per-CPU srcu_data structures.
It might also slightly improve robustness by keeping the number of memory
allocations that must succeed down percpu_alloc() call.
This is in preparation for splitting an srcu_usage structure out
of the srcu_struct structure.
[ paulmck: Fold in qiang1.zhang@intel.com feedback. ]
Cc: Christoph Hellwig <hch@lst.de>
Tested-by: Sachin Sant <sachinp@linux.ibm.com>
Tested-by: "Zhang, Qiang1" <qiang1.zhang@intel.com>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The tasks_rcu_exit_srcu variable is used only by kernels built
with CONFIG_TASKS_RCU=y, but is defined for all kernesl with
CONFIG_TASKS_RCU_GENERIC=y. Therefore, in kernels built with
CONFIG_TASKS_RCU_GENERIC=y but CONFIG_TASKS_RCU=n, this gives
a "defined but not used" warning.
This commit therefore moves this variable under CONFIG_TASKS_RCU.
Link: https://lore.kernel.org/oe-kbuild-all/202303191536.XzMSyzTl-lkp@intel.com/
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Tested-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
bpf_obj_drop_impl has a void return type. In check_kfunc_call, the "else
if" which sets insn_aux->kptr_struct_meta for bpf_obj_drop_impl is
surrounded by a larger if statement which checks btf_type_is_ptr. As a
result:
* The bpf_obj_drop_impl-specific code will never execute
* The btf_struct_meta input to bpf_obj_drop is always NULL
* __bpf_obj_drop_impl will always see a NULL btf_record when called
from BPF program, and won't call bpf_obj_free_fields
* program-allocated kptrs which have fields that should be cleaned up
by bpf_obj_free_fields may instead leak resources
This patch adds a btf_type_is_void branch to the larger if and moves
special handling for bpf_obj_drop_impl there, fixing the issue.
Fixes: ac9f06050a ("bpf: Introduce bpf_obj_drop")
Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230403200027.2271029-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The add_dev and remove_dev callbacks in struct class_interface currently
pass in a pointer back to the class_interface structure that is calling
them, but none of the callback implementations actually use this pointer
as it is pointless (the structure is known, the driver passed it in in
the first place if it is really needed again.)
So clean this up and just remove the pointer from the callbacks and fix
up all callback functions.
Cc: Jean Delvare <jdelvare@suse.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Paolo Abeni <pabeni@redhat.com>
Cc: Kurt Schwemmer <kurt.schwemmer@microsemi.com>
Cc: Jon Mason <jdmason@kudzu.us>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Allen Hubbe <allenbh@gmail.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Matt Porter <mporter@kernel.crashing.org>
Cc: Alexandre Bounine <alex.bou9@gmail.com>
Cc: "James E.J. Bottomley" <jejb@linux.ibm.com>
Cc: "Martin K. Petersen" <martin.petersen@oracle.com>
Cc: Doug Gilbert <dgilbert@interlog.com>
Cc: John Stultz <jstultz@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: Hans de Goede <hdegoede@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Wang Weiyang <wangweiyang2@huawei.com>
Cc: Yang Yingliang <yangyingliang@huawei.com>
Cc: Jakob Koschel <jakobkoschel@gmail.com>
Cc: Cai Xinchen <caixinchen1@huawei.com>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Acked-by: Logan Gunthorpe <logang@deltatee.com>
Link: https://lore.kernel.org/r/2023040250-pushover-platter-509c@gregkh
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
osnoise/timerlat tracers are reporting new max latency on instances
where the tracing is off, creating inconsistencies between the max
reported values in the trace and in the tracing_max_latency. Thus
only report new tracing_max_latency on active tracing instances.
Link: https://lkml.kernel.org/r/ecd109fde4a0c24ab0f00ba1e9a144ac19a91322.1680104184.git.bristot@kernel.org
Cc: stable@vger.kernel.org
Fixes: dae181349f ("tracing/osnoise: Support a list of trace_array *tr")
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
timerlat is not reporting a new tracing_max_latency for the thread
latency. The reason is that it is not calling notify_new_max_latency()
function after the new thread latency is sampled.
Call notify_new_max_latency() after computing the thread latency.
Link: https://lkml.kernel.org/r/16e18d61d69073d0192ace07bf61e405cca96e9c.1680104184.git.bristot@kernel.org
Cc: stable@vger.kernel.org
Fixes: dae181349f ("tracing/osnoise: Support a list of trace_array *tr")
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
When user reads file 'trace_pipe', kernel keeps printing following logs
that warn at "cpu_buffer->reader_page->read > rb_page_size(reader)" in
rb_get_reader_page(). It just looks like there's an infinite loop in
tracing_read_pipe(). This problem occurs several times on arm64 platform
when testing v5.10 and below.
Call trace:
rb_get_reader_page+0x248/0x1300
rb_buffer_peek+0x34/0x160
ring_buffer_peek+0xbc/0x224
peek_next_entry+0x98/0xbc
__find_next_entry+0xc4/0x1c0
trace_find_next_entry_inc+0x30/0x94
tracing_read_pipe+0x198/0x304
vfs_read+0xb4/0x1e0
ksys_read+0x74/0x100
__arm64_sys_read+0x24/0x30
el0_svc_common.constprop.0+0x7c/0x1bc
do_el0_svc+0x2c/0x94
el0_svc+0x20/0x30
el0_sync_handler+0xb0/0xb4
el0_sync+0x160/0x180
Then I dump the vmcore and look into the problematic per_cpu ring_buffer,
I found that tail_page/commit_page/reader_page are on the same page while
reader_page->read is obviously abnormal:
tail_page == commit_page == reader_page == {
.write = 0x100d20,
.read = 0x8f9f4805, // Far greater than 0xd20, obviously abnormal!!!
.entries = 0x10004c,
.real_end = 0x0,
.page = {
.time_stamp = 0x857257416af0,
.commit = 0xd20, // This page hasn't been full filled.
// .data[0...0xd20] seems normal.
}
}
The root cause is most likely the race that reader and writer are on the
same page while reader saw an event that not fully committed by writer.
To fix this, add memory barriers to make sure the reader can see the
content of what is committed. Since commit a0fcaaed0c ("ring-buffer: Fix
race between reset page and reading page") has added the read barrier in
rb_get_reader_page(), here we just need to add the write barrier.
Link: https://lore.kernel.org/linux-trace-kernel/20230325021247.2923907-1-zhengyejian1@huawei.com
Cc: stable@vger.kernel.org
Fixes: 77ae365eca ("ring-buffer: make lockless")
Suggested-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Currently, the "last_cmd" variable can be accessed by multiple processes
asynchronously when multiple users manipulate synthetic_events node
at the same time, it could lead to use-after-free or double-free.
This patch add "lastcmd_mutex" to prevent "last_cmd" from being accessed
asynchronously.
================================================================
It's easy to reproduce in the KASAN environment by running the two
scripts below in different shells.
script 1:
while :
do
echo -n -e '\x88' > /sys/kernel/tracing/synthetic_events
done
script 2:
while :
do
echo -n -e '\xb0' > /sys/kernel/tracing/synthetic_events
done
================================================================
double-free scenario:
process A process B
------------------- ---------------
1.kstrdup last_cmd
2.free last_cmd
3.free last_cmd(double-free)
================================================================
use-after-free scenario:
process A process B
------------------- ---------------
1.kstrdup last_cmd
2.free last_cmd
3.tracing_log_err(use-after-free)
================================================================
Appendix 1. KASAN report double-free:
BUG: KASAN: double-free in kfree+0xdc/0x1d4
Free of addr ***** by task sh/4879
Call trace:
...
kfree+0xdc/0x1d4
create_or_delete_synth_event+0x60/0x1e8
trace_parse_run_command+0x2bc/0x4b8
synth_events_write+0x20/0x30
vfs_write+0x200/0x830
...
Allocated by task 4879:
...
kstrdup+0x5c/0x98
create_or_delete_synth_event+0x6c/0x1e8
trace_parse_run_command+0x2bc/0x4b8
synth_events_write+0x20/0x30
vfs_write+0x200/0x830
...
Freed by task 5464:
...
kfree+0xdc/0x1d4
create_or_delete_synth_event+0x60/0x1e8
trace_parse_run_command+0x2bc/0x4b8
synth_events_write+0x20/0x30
vfs_write+0x200/0x830
...
================================================================
Appendix 2. KASAN report use-after-free:
BUG: KASAN: use-after-free in strlen+0x5c/0x7c
Read of size 1 at addr ***** by task sh/5483
sh: CPU: 7 PID: 5483 Comm: sh
...
__asan_report_load1_noabort+0x34/0x44
strlen+0x5c/0x7c
tracing_log_err+0x60/0x444
create_or_delete_synth_event+0xc4/0x204
trace_parse_run_command+0x2bc/0x4b8
synth_events_write+0x20/0x30
vfs_write+0x200/0x830
...
Allocated by task 5483:
...
kstrdup+0x5c/0x98
create_or_delete_synth_event+0x80/0x204
trace_parse_run_command+0x2bc/0x4b8
synth_events_write+0x20/0x30
vfs_write+0x200/0x830
...
Freed by task 5480:
...
kfree+0xdc/0x1d4
create_or_delete_synth_event+0x74/0x204
trace_parse_run_command+0x2bc/0x4b8
synth_events_write+0x20/0x30
vfs_write+0x200/0x830
...
Link: https://lore.kernel.org/linux-trace-kernel/20230321110444.1587-1-Tze-nan.Wu@mediatek.com
Fixes: 27c888da98 ("tracing: Remove size restriction on synthetic event cmd error logging")
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
Cc: "Tom Zanussi" <zanussi@kernel.org>
Signed-off-by: Tze-nan Wu <Tze-nan.Wu@mediatek.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The original check for non-null "user" object was introduced by commit
e11fea92e1 ("kmsg: export printk records to the /dev/kmsg interface")
when "user" could be NULL if /dev/ksmg was opened for writing.
Subsequent change 750afe7bab ("printk: add kernel parameter to control
writes to /dev/kmsg") made "user" context required for files opened for
write, but didn't remove now redundant checks for it to be non-NULL.
This patch removes the dead code while preserving the current logic.
Signed-off-by: Stanislav Kinsburskii <stanislav.kinsburski@gmail.com>
CC: Petr Mladek <pmladek@suse.com>
CC: Sergey Senozhatsky <senozhatsky@chromium.org>
CC: Steven Rostedt <rostedt@goodmis.org>
CC: John Ogness <john.ogness@linutronix.de>
CC: linux-kernel@vger.kernel.org
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/167929571877.2810.9926967619100618792.stgit@skinsburskii.localdomain
Stop open-coding get_unused_fd_flags() and anon_inode_getfile(). That's
brittle just for keeping the flags between both calls in sync. Use the
dedicated helper.
Message-Id: <20230327-pidfd-file-api-v1-2-5c0e9a3158e4@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Add a new helper that allows to reserve a pidfd and allocates a new
pidfd file that stashes the provided struct pid. This will allow us to
remove places that either open code this function or that call
pidfd_create() but then have to call close_fd() because there are still
failure points after pidfd_create() has been called.
Reviewed-by: Jan Kara <jack@suse.cz>
Message-Id: <20230327-pidfd-file-api-v1-1-5c0e9a3158e4@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
We need the fixes in here for testing, as well as the driver core
changes for documentation updates to build on.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
If the value size in a bloom filter is a multiple of 4, then the jhash2()
function is used to compute hashes. The length parameter of this function
equals to the number of 32-bit words in input. Compute it in the hot path
instead of pre-computing it, as this is translated to one extra shift to
divide the length by four vs. one extra memory load of a pre-computed length.
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Link: https://lore.kernel.org/r/20230402114340.3441-1-aspsk@isovalent.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In commit 22df776a9a ("tasks: Extract rcu_users out of union"), the
'refcount_t rcu_users' field was extracted out of a union with the
'struct rcu_head rcu' field. This allows us to safely perform a
refcount_inc_not_zero() on task->rcu_users when acquiring a reference on
a task struct. A prior patch leveraged this by making struct task_struct
an RCU-protected object in the verifier, and by bpf_task_acquire() to
use the task->rcu_users field for synchronization.
Now that we can use RCU to protect tasks, we no longer need
bpf_task_kptr_get(), or bpf_task_acquire_not_zero(). bpf_task_kptr_get()
is truly completely unnecessary, as we can just use RCU to get the
object. bpf_task_acquire_not_zero() is now equivalent to
bpf_task_acquire().
In addition to these changes, this patch also updates the associated
selftests to no longer use these kfuncs.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230331195733.699708-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
struct task_struct objects are a bit interesting in terms of how their
lifetime is protected by refcounts. task structs have two refcount
fields:
1. refcount_t usage: Protects the memory backing the task struct. When
this refcount drops to 0, the task is immediately freed, without
waiting for an RCU grace period to elapse. This is the field that
most callers in the kernel currently use to ensure that a task
remains valid while it's being referenced, and is what's currently
tracked with bpf_task_acquire() and bpf_task_release().
2. refcount_t rcu_users: A refcount field which, when it drops to 0,
schedules an RCU callback that drops a reference held on the 'usage'
field above (which is acquired when the task is first created). This
field therefore provides a form of RCU protection on the task by
ensuring that at least one 'usage' refcount will be held until an RCU
grace period has elapsed. The qualifier "a form of" is important
here, as a task can remain valid after task->rcu_users has dropped to
0 and the subsequent RCU gp has elapsed.
In terms of BPF, we want to use task->rcu_users to protect tasks that
function as referenced kptrs, and to allow tasks stored as referenced
kptrs in maps to be accessed with RCU protection.
Let's first determine whether we can safely use task->rcu_users to
protect tasks stored in maps. All of the bpf_task* kfuncs can only be
called from tracepoint, struct_ops, or BPF_PROG_TYPE_SCHED_CLS, program
types. For tracepoint and struct_ops programs, the struct task_struct
passed to a program handler will always be trusted, so it will always be
safe to call bpf_task_acquire() with any task passed to a program.
Note, however, that we must update bpf_task_acquire() to be KF_RET_NULL,
as it is possible that the task has exited by the time the program is
invoked, even if the pointer is still currently valid because the main
kernel holds a task->usage refcount. For BPF_PROG_TYPE_SCHED_CLS, tasks
should never be passed as an argument to the any program handlers, so it
should not be relevant.
The second question is whether it's safe to use RCU to access a task
that was acquired with bpf_task_acquire(), and stored in a map. Because
bpf_task_acquire() now uses task->rcu_users, it follows that if the task
is present in the map, that it must have had at least one
task->rcu_users refcount by the time the current RCU cs was started.
Therefore, it's safe to access that task until the end of the current
RCU cs.
With all that said, this patch makes struct task_struct is an
RCU-protected object. In doing so, we also change bpf_task_acquire() to
be KF_ACQUIRE | KF_RCU | KF_RET_NULL, and adjust any selftests as
necessary. A subsequent patch will remove bpf_task_kptr_get(), and
bpf_task_acquire_not_zero() respectively.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230331195733.699708-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Preparing to remove IOASID infrastructure, PASID management will be
under SVA code. Decouple mm code from IOASID.
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Link: https://lore.kernel.org/r/20230322200803.869130-3-jacob.jun.pan@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
- fix for swiotlb deadlock due to wrong alignment checks (GuoRui.Yu,
Petr Tesarik)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAmQmEEsLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYMfhw//b1pmwO3ESd5mLwQh9sZrvndi6oyYwqwOy5KMyVtx
0BndOh7/wpJZlYASjj2imNCYDr2g9hsKpm3ZLdN0eY0fQbwQ8ZYjMLhNCylW/nsK
pr3adV+sZc0VMr3smeB0Jl7p68KU9Tz0vkDEtG/XpllhFfaS52rFSlCqagDbL11t
NA+Ev39RaVij2/M8z59jrd4cr0X74PqWHgtbNawXjHKQckiRm1un5Sg05O830VV0
shGQ/msJPbYdCBT9KD7trzRvFViBS+WeMHFx6I/PbsEUt7nPkGjO7eZiORD28AQ0
NjUqVa03m38RFi9YSXE3IZms0xo4panEGndpTF/eJ0Ly3DcES9FepzI6qHQf3Dq6
vPk5ok9DmTvZy/tWcmfHDWPIsn3vOStlf4SSADTYiOcSEysUJmzRcHaSgzYGA9Fd
LQV1UVuYb8ARCa8knZqaxfQstPSzX6PDt1wgHY1k0Ikdvu5OwWskSy7wEMs4Gsd8
w6lcPAvx7QRpqQ27WwSBSMWYJXrdRLO+hckchBrJ8jnedd2IEqMUwMcImq3fLogx
Kl6MND8tNEcetyzKxdk9oZ7dyAG5iAQY1diBIwzuu7SIJ/Pm1KmcvfzfULYdpnhP
hs8HtntEMhuAmQOWSckwxONwzjPSNEUi+SOu0ywLjaQsFpu9J8eI4bNymvx+5WvH
kqg=
=MxwN
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-6.3-2023-03-31' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping fixes from Christoph Hellwig:
- fix for swiotlb deadlock due to wrong alignment checks (GuoRui.Yu,
Petr Tesarik)
* tag 'dma-mapping-6.3-2023-03-31' of git://git.infradead.org/users/hch/dma-mapping:
swiotlb: fix slot alignment checks
swiotlb: use wrap_area_index() instead of open-coding it
swiotlb: fix the deadlock in swiotlb_do_find_slots
Conflicts:
drivers/net/ethernet/mediatek/mtk_ppe.c
3fbe4d8c0e ("net: ethernet: mtk_eth_soc: ppe: add support for flow accounting")
924531326e ("net: ethernet: mtk_eth_soc: add missing ppe cache flush when deleting a flow")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When validating a helper function argument, we use check_reg_type() to
ensure that the register containing the argument is of the correct type.
When the register's base type is PTR_TO_BTF_ID, there is some
supplemental logic where we do extra checks for various combinations of
PTR_TO_BTF_ID type modifiers. For example, for PTR_TO_BTF_ID,
PTR_TO_BTF_ID | PTR_TRUSTED, and PTR_TO_BTF_ID | MEM_RCU, we call
map_kptr_match_type() for bpf_kptr_xchg() calls, and
btf_struct_ids_match() for other helper calls.
When an unhandled PTR_TO_BTF_ID type modifier combination is passed to
check_reg_type(), the verifier fails with an internal verifier error
message. This can currently be triggered by passing a PTR_MAYBE_NULL
pointer to helper functions (currently just bpf_kptr_xchg()) with an
ARG_PTR_TO_BTF_ID_OR_NULL arg type. For example, by callin
bpf_kptr_xchg(&v->kptr, bpf_cpumask_create()).
Whether or not passing a PTR_MAYBE_NULL arg to an
ARG_PTR_TO_BTF_ID_OR_NULL argument is valid is an interesting question.
In a vacuum, it seems fine. A helper function with an
ARG_PTR_TO_BTF_ID_OR_NULL arg would seem to be implying that it can
handle either a NULL or non-NULL arg, and has logic in place to detect
and gracefully handle each. This is the case for bpf_kptr_xchg(), which
of course simply does an xchg(). On the other hand, bpf_kptr_xchg() also
specifies OBJ_RELEASE, and refcounting semantics for a PTR_MAYBE_NULL
pointer is different than handling it for a NULL _OR_ non-NULL pointer.
For example, with a non-NULL arg, we should always fail if there was not
a nonzero refcount for the value in the register being passed to the
helper. For PTR_MAYBE_NULL on the other hand, it's unclear. If the
pointer is NULL it would be fine, but if it's not NULL, it would be
incorrect to load the program.
The current solution to this is to just fail if PTR_MAYBE_NULL is
passed, and to instead require programs to have a NULL check to
explicitly handle the NULL and non-NULL cases. This seems reasonable.
Not only would it possibly be quite complicated to correctly handle
PTR_MAYBE_NULL refcounting in the verifier, but it's also an arguably
odd programming pattern in general to not explicitly handle the NULL
case anyways. For example, it seems odd to not care about whether a
pointer you're passing to bpf_kptr_xchg() was successfully allocated in
a program such as the following:
private(MASK) static struct bpf_cpumask __kptr * global_mask;
SEC("tp_btf/task_newtask")
int BPF_PROG(example, struct task_struct *task, u64 clone_flags)
{
struct bpf_cpumask *prev;
/* bpf_cpumask_create() returns PTR_MAYBE_NULL */
prev = bpf_kptr_xchg(&global_mask, bpf_cpumask_create());
if (prev)
bpf_cpumask_release(prev);
return 0;
}
This patch therefore updates the verifier to explicitly check for
PTR_MAYBE_NULL in check_reg_type(), and fail gracefully if it's
observed. This isn't really "fixing" anything unsafe or incorrect. We're
just updating the verifier to fail gracefully, and explicitly handle
this pattern rather than unintentionally falling back to an internal
verifier error path. A subsequent patch will update selftests.
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230330145203.80506-1-void@manifault.com
On 32-bit without LPAE:
kernel/dma/debug.c: In function ‘debug_dma_dump_mappings’:
kernel/dma/debug.c:537:7: warning: format ‘%llx’ expects argument of type ‘long long unsigned int’, but argument 9 has type ‘phys_addr_t’ {aka ‘unsigned int’} [-Wformat=]
kernel/dma/debug.c: In function ‘dump_show’:
kernel/dma/debug.c:568:59: warning: format ‘%llx’ expects argument of type ‘long long unsigned int’, but argument 11 has type ‘phys_addr_t’ {aka ‘unsigned int’} [-Wformat=]
Fixes: bd89d69a52 ("dma-debug: add cacheline to user/kernel space dump messages")
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/r/202303160548.ReyuTsGD-lkp@intel.com
Reported-by: noreply@ellerman.id.au
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Similar to commit 3fb906e7fa ("group/cpuset: Don't filter offline
CPUs in cpuset_cpus_allowed() for top cpuset tasks"), the whole set of
possible CPUs including offline ones should be used for setting cpumasks
for tasks in the top cpuset when a cpuset partition is modified as the
hotplug code won't update cpumasks for tasks in the top cpuset when
CPUs become online or offline.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
If a hotplug event doesn't affect the current cpuset, there is no point
to call hotplug_update_tasks() or hotplug_update_tasks_legacy(). So
just skip it.
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
It was found that commit 7a2127e66a ("cpuset: Call
set_cpus_allowed_ptr() with appropriate mask for task") introduced a bug
that corrupted "cpuset.cpus" of a partition root when it was updated.
It is because the tmp->new_cpus field of the passed tmp parameter
of update_parent_subparts_cpumask() should not be used at all as
it contains important cpumask data that should not be overwritten.
Fix it by using tmp->addmask instead.
Also update update_cpumask() to make sure that trialcs->cpu_allowed
will not be corrupted until it is no longer needed.
Fixes: 7a2127e66a ("cpuset: Call set_cpus_allowed_ptr() with appropriate mask for task")
Signed-off-by: Waiman Long <longman@redhat.com>
Cc: stable@vger.kernel.org # v6.2+
Signed-off-by: Tejun Heo <tj@kernel.org>
The user events was added a bit prematurely, and there were a few kernel
developers that had issues with it. The API also needed a bit of work to
make sure it would be stable. It was decided to make user events "broken"
until this was settled. Now it has a new API that appears to be as stable
as it will be without the use of a crystal ball. It's being used within
Microsoft as is, which means the API has had some testing in real world
use cases. It went through many discussions in the bi-weekly tracing
meetings, and there's been no more comments about updates.
I feel this is good to go.
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Operators want to be able to ensure enough tracepoints exist on the
system for kernel components as well as for user components. Since there
are only up to 64K events, by default allow up to half to be used by
user events.
Add a kernel sysctl parameter (kernel.user_events_max) to set a global
limit that is honored among all groups on the system. This ensures hard
limits can be setup to prevent user processes from consuming all event
IDs on the system.
Link: https://lkml.kernel.org/r/20230328235219.203-12-beaub@linux.microsoft.com
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Operators need a way to limit how much memory cgroups use. User events need
to be included into that accounting. Fix this by using GFP_KERNEL_ACCOUNT
for allocations generated by user programs for user_event tracing.
Link: https://lkml.kernel.org/r/20230328235219.203-11-beaub@linux.microsoft.com
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Enablements are now tracked by the lifetime of the task/mm. User
processes need to be able to disable their addresses if tracing is
requested to be turned off. Before unmapping the page would suffice.
However, we now need a stronger contract. Add an ioctl to enable this.
A new flag bit is added, freeing, to user_event_enabler to ensure that
if the event is attempted to be removed while a fault is being handled
that the remove is delayed until after the fault is reattempted.
Link: https://lkml.kernel.org/r/20230328235219.203-6-beaub@linux.microsoft.com
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
When events are enabled within the various tracing facilities, such as
ftrace/perf, the event_mutex is held. As events are enabled pages are
accessed. We do not want page faults to occur under this lock. Instead
queue the fault to a workqueue to be handled in a process context safe
way without the lock.
The enable address is marked faulting while the async fault-in occurs.
This ensures that we don't attempt to fault-in more than is necessary.
Once the page has been faulted in, an address write is re-attempted.
If the page couldn't fault-in, then we wait until the next time the
event is enabled to prevent any potential infinite loops.
Link: https://lkml.kernel.org/r/20230328235219.203-5-beaub@linux.microsoft.com
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
As part of the discussions for user_events aligned with user space
tracers, it was determined that user programs should register a aligned
value to set or clear a bit when an event becomes enabled. Currently a
shared page is being used that requires mmap(). Remove the shared page
implementation and move to a user registered address implementation.
In this new model during the event registration from user programs 3 new
values are specified. The first is the address to update when the event
is either enabled or disabled. The second is the bit to set/clear to
reflect the event being enabled. The third is the size of the value at
the specified address.
This allows for a local 32/64-bit value in user programs to support
both kernel and user tracers. As an example, setting bit 31 for kernel
tracers when the event becomes enabled allows for user tracers to use
the other bits for ref counts or other flags. The kernel side updates
the bit atomically, user programs need to also update these values
atomically.
User provided addresses must be aligned on a natural boundary, this
allows for single page checking and prevents odd behaviors such as a
enable value straddling 2 pages instead of a single page. Currently
page faults are only logged, future patches will handle these.
Link: https://lkml.kernel.org/r/20230328235219.203-4-beaub@linux.microsoft.com
Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
During tracefs discussions it was decided instead of requiring a mapping
within a user-process to track the lifetime of memory descriptors we
should hook the appropriate calls. Do this by adding the minimal stubs
required for task fork, exec, and exit. Currently this is just a NOP.
Future patches will implement these calls fully.
Link: https://lkml.kernel.org/r/20230328235219.203-3-beaub@linux.microsoft.com
Suggested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The UAPI parts need to be split out from the kernel parts of user_events
now that other parts of the kernel will reference it. Do so by moving
the existing include/linux/user_events.h into
include/uapi/linux/user_events.h.
Link: https://lkml.kernel.org/r/20230328235219.203-2-beaub@linux.microsoft.com
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
A series by myself to remove CONFIG_SLOB:
The SLOB allocator was deprecated in 6.2 and there have been no
complaints so far so let's proceed with the removal.
Besides the code cleanup, the main immediate benefit will be allowing
kfree() family of function to work on kmem_cache_alloc() objects, which
was incompatible with SLOB. This includes kfree_rcu() which had no
kmem_cache_free_rcu() counterpart yet and now it shouldn't be necessary
anymore.
Otherwise it's all straightforward removal. After this series, 'git grep
slob' or 'git grep SLOB' will have 3 remaining relevant hits in non-mm
code:
- tomoyo - patch submitted and carried there, doesn't need to wait for
this series
- skbuff - patch to cleanup now-unnecessary #ifdefs will be posted to
netdev after this is merged, as requested to avoid conflicts
- ftrace ring_buffer - patch to remove obsolete comment is carried there
The rest of 'git grep SLOB' hits are false positives, or intentional
(CREDITS, and mm/Kconfig SLUB_TINY description to help those that will
happen to migrate later).
Remove SLOB from Kconfig and Makefile. Everything under #ifdef
CONFIG_SLOB, and mm/slob.c is now dead code.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Acked-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
On big systems, the mm refcount can become highly contented when doing a
lot of context switching with threaded applications. user<->idle switch
is one of the important cases. Abandoning lazy tlb entirely slows this
switching down quite a bit in the common uncontended case, so that is not
viable.
Implement a scheme where lazy tlb mm references do not contribute to the
refcount, instead they get explicitly removed when the refcount reaches
zero.
The final mmdrop() sends IPIs to all CPUs in the mm_cpumask and they
switch away from this mm to init_mm if it was being used as the lazy tlb
mm. Enabling the shoot lazies option therefore requires that the arch
ensures that mm_cpumask contains all CPUs that could possibly be using mm.
A DEBUG_VM option IPIs every CPU in the system after this to ensure there
are no references remaining before the mm is freed.
Shootdown IPIs cost could be an issue, but they have not been observed to
be a serious problem with this scheme, because short-lived processes tend
not to migrate CPUs much, therefore they don't get much chance to leave
lazy tlb mm references on remote CPUs. There are a lot of options to
reduce them if necessary, described in comments.
The near-worst-case can be benchmarked with will-it-scale:
context_switch1_threads -t $(($(nproc) / 2))
This will create nproc threads (nproc / 2 switching pairs) all sharing the
same mm that spread over all CPUs so each CPU does thread->idle->thread
switching.
[ Rik came up with basically the same idea a few years ago, so credit
to him for that. ]
Link: https://lore.kernel.org/linux-mm/20230118080011.2258375-1-npiggin@gmail.com/
Link: https://lore.kernel.org/all/20180728215357.3249-11-riel@surriel.com/
Link: https://lkml.kernel.org/r/20230203071837.1136453-5-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Add explicit _lazy_tlb annotated functions for lazy tlb mm refcounting.
This makes the lazy tlb mm references more obvious, and allows the
refcounting scheme to be modified in later changes. There is no
functional change with this patch.
Link: https://lkml.kernel.org/r/20230203071837.1136453-3-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "shoot lazy tlbs (lazy tlb refcount scalability
improvement)", v7.
This series improves scalability of context switching between user and
kernel threads on large systems with a threaded process spread across a
lot of CPUs.
Discussion of v6 here:
https://lore.kernel.org/linux-mm/20230118080011.2258375-1-npiggin@gmail.com/
This patch (of 5):
Remove the special case avoiding refcounting when the mm to be used is the
same as the kernel thread's active (lazy tlb) mm. kthread_use_mm() should
not be such a performance critical path that this matters much. This
simplifies a later change to lazy tlb mm refcounting.
Link: https://lkml.kernel.org/r/20230203071837.1136453-1-npiggin@gmail.com
Link: https://lkml.kernel.org/r/20230203071837.1136453-2-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Add nr_maxactive to specify rethook_node pool size. This means
the maximum number of actively running target functions concurrently
for probing by exit_handler. Note that if the running function is
preempted or sleep, it is still counted as 'active'.
Link: https://lkml.kernel.org/r/167526697917.433354.17779774988245113106.stgit@mhiramat.roam.corp.google.com
Cc: Florent Revest <revest@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Pass the private entry_data to the entry and exit handlers so that
they can share the context data, something like saved function
arguments etc.
User must specify the private entry_data size by @entry_data_size
field before registering the fprobe.
Link: https://lkml.kernel.org/r/167526696173.433354.17408372048319432574.stgit@mhiramat.roam.corp.google.com
Cc: Florent Revest <revest@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Having the cacheline also printed on the debug_dma_dump_mappings() and
dump_show() is useful for debugging. Furthermore, this also standardizes
the messages shown on both dump functions.
Signed-off-by: Desnes Nunes <desnesn@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Small update on dma_debug_entry's struct commentary and also standardize
the usage of 'dma_addr' variable name from debug_dma_map_page() on
debug_dma_unmap_page(), and similarly on debug_dma_free_coherent()
Signed-off-by: Desnes Nunes <desnesn@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Since both callers of dma_direct_optimal_gfp_mask() pass
dev->coherent_dma_mask as the second argument, it is better to
remove that parameter altogether.
Not only is reducing number of parameters good for readability, but
the new function signature is also more logical: The optimal flags
depend only on data contained in struct device.
While touching this code, let's also rename phys_mask to phys_limit
in dma_direct_alloc_from_pool(), because it is indeed a limit.
Signed-off-by: Petr Tesarik <petrtesarik@huaweicloud.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Add a test number 3 that creates deadlock cycles involving one RCU
Tasks Trace step and L-1 SRCU steps. Please note that lockdep will not
detect these deadlocks until synchronize_rcu_tasks_trace() is marked
with lockdep's new "sync" annotation, which will probably not happen
until some time after these markings prove their worth on SRCU.
Please note that these tests are available only in kernels built with
CONFIG_TASKS_TRACE_RCU=y.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
In order to test the new SRCU-lockdep functionality, this commit adds
an rcutorture.test_srcu_lockdep module parameter that, when non-zero,
selects an SRCU deadlock scenario to execute. This parameter is a
five-digit number formatted as DNNL, where "D" is 1 to force a deadlock
and 0 to avoid doing so; "NN" is the test number, 0 for SRCU-based, 1
for SRCU/mutex-based, and 2 for SRCU/rwsem-based; and "L" is the number
of steps in the deadlock cycle.
Note that rcutorture.test_srcu_lockdep=1 will also force a hard hang.
If a non-zero value of rcutorture.test_srcu_lockdep does not select a
deadlock scenario, a console message is printed and testing continues.
[ paulmck: Apply kernel test robot feedback, add rwsem support. ]
[ paulmck: Apply Dan Carpenter feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Lock scenario print is always a weak spot of lockdep splats. Improvement
can be made if we rework the dependency search and the error printing.
However without touching the graph search, we can improve a little for
the circular deadlock case, since we have the to-be-added lock
dependency, and know whether these two locks are read/write/sync.
In order to know whether a held_lock is sync or not, a bit was
"stolen" from ->references, which reduce our limit for the same lock
class nesting from 2^12 to 2^11, and it should still be good enough.
Besides, since we now have bit in held_lock for sync, we don't need the
"hardirqoffs being 1" trick, and also we can avoid the __lock_release()
if we jump out of __lock_acquire() before the held_lock stored.
With these changes, a deadlock case evolved with read lock and sync gets
a better print-out from:
[...] Possible unsafe locking scenario:
[...]
[...] CPU0 CPU1
[...] ---- ----
[...] lock(srcuA);
[...] lock(srcuB);
[...] lock(srcuA);
[...] lock(srcuB);
to
[...] Possible unsafe locking scenario:
[...]
[...] CPU0 CPU1
[...] ---- ----
[...] rlock(srcuA);
[...] lock(srcuB);
[...] lock(srcuA);
[...] sync(srcuB);
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
The stress test in test_ww_mutex_init() uses 4095 locks since
lockdep::reference has 12 bits, and since we are going to reduce it to
11 bits to support lock_sync(), and 2047 is still a reasonable number of
the max nesting level for locks, so adjust the test.
Reported-by: kernel test robot <oliver.sang@intel.com>
Link: https://lore.kernel.org/oe-lkp/202302011445.9d99dae2-oliver.sang@intel.com
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Although all flavors of RCU readers are annotated correctly with
lockdep as recursive read locks, they do not set the lock_acquire
'check' parameter. This means that RCU read locks are not added to
the lockdep dependency graph, which in turn means that lockdep cannot
detect RCU-based deadlocks. This is not a problem for RCU flavors having
atomic read-side critical sections because context-based annotations can
catch these deadlocks, see for example the RCU_LOCKDEP_WARN() statement
in synchronize_rcu(). But context-based annotations are not helpful
for sleepable RCU, especially given that it is perfectly legal to do
synchronize_srcu(&srcu1) within an srcu_read_lock(&srcu2).
However, we can detect SRCU-based by: (1) Making srcu_read_lock() a
'check'ed recursive read lock and (2) Making synchronize_srcu() a empty
write lock critical section. Even better, with the newly introduced
lock_sync(), we can avoid false positives about irq-unsafe/safe.
This commit therefore makes it so.
Note that NMI-safe SRCU read side critical sections are currently not
annotated, but might be annotated in the future.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
[ boqun: Add comments for annotation per Waiman's suggestion ]
[ boqun: Fix comment warning reported by Stephen Rothwell ]
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Currently, functions like synchronize_srcu() do not have lockdep
annotations resembling those of other write-side locking primitives.
Such annotations might look as follows:
lock_acquire();
lock_release();
Such annotations would tell lockdep that synchronize_srcu() acts like
an empty critical section that waits for other (read-side) critical
sections to finish. This would definitely catch some deadlock, but
as pointed out by Paul Mckenney [1], this could also introduce false
positives because of irq-safe/unsafe detection. Of course, there are
tricks could help with this:
might_sleep(); // Existing statement in __synchronize_srcu().
if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
local_irq_disable();
lock_acquire();
lock_release();
local_irq_enable();
}
But it would be better for lockdep to provide a separate annonation for
functions like synchronize_srcu(), so that people won't need to repeat
the ugly tricks above.
Therefore introduce lock_sync(), which is simply an lock+unlock
pair with no irq safe/unsafe deadlock check. This works because the
to-be-annontated functions do not create real critical sections, and
there is therefore no way that irq can create extra dependencies.
[1]: https://lore.kernel.org/lkml/20180412021233.ewncg5jjuzjw3x62@tardis/
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Acked-by: Waiman Long <longman@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
[ boqun: Fix typos reported by Davidlohr Bueso and Paul E. Mckenney ]
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmQgQeEACgkQEsHwGGHe
VUpJ+w//c01JpzBXQvGGlNSTTuUzSxLAQz0n8lQmixpYHOUgVL3CQlOF+OfnkYPp
mz8m3nDh1FB9o70Sd2J4/OjY2Gh1qENrBLmj509LTnZE9hADRI0T5Mn93Jo7m7HY
QoXrYWEwJYwsLzJ66mR8A0xts5jWgkJsAWKXF9gfxf/ieeycdJ1GdOdzC1tp4Nfe
/4SEjSbUhx/bsBbAdJ38Z/iQGT0HuyQLOBGBuBcFE0JnP/aYEanAQsxxP2LObeVw
Za7ATxdJ9I1TErVfRsG0GDSiVKCYzSG2GME5TXibgPJ2g1+m0I7gZgpGO9Q8Wzo4
7y0X+vqsykY/Me3xEDBVaeCiHmFTambkxOR2xVJ2TISN8b390yePy4vgY1QQDidd
eNh9S2x1dsKp8i4NdYyeW7xwaTfIDp9Yp4XNP8cw02VzW0FSCnsmCzwGHIXsF4K/
Sib+bhKUo+Qmck5nJlV6R5Xr9cvGgyPpBvD8/XqqwF5lHJ7xg4qkPwPKjoKL1HRj
YT1t+l0kzcg/onyDAuPe1mIRFf7Q8x5G8zkUGMG401h2tazv19rjK4+V1UemhBqA
h5Cf1BBy6+6kn4DDb/zD+0IgpDFKJDaClxNwfPzaplAoMC/8+0nxxnu7f32eT59k
/JtMisERhr6lG0Q+TfURhB3yyCiBjBR2EKcKzHz+KARtxs7a4T0=
=Z8oJ
-----END PGP SIGNATURE-----
Merge tag 'sched_urgent_for_v6.3_rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fix from Borislav Petkov:
- Fix a corner case where vruntime of a task is not being sanitized
* tag 'sched_urgent_for_v6.3_rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Sanitize vruntime of entity being migrated
former doesn't get ignored
- A noinstr warning fix
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmQgPhsACgkQEsHwGGHe
VUqecA//VN/9pvCpJbf0S92lDXjbjuAna4+rYak6mjxke2lYHeXNsCjPpBtdfMnK
Mvr1HykKVBGIwlIPsKvwzt1FYN08rhdPnb/XvwM1ZliFlXP/HhN7K3AWgld559sZ
hY9gKfijof5D7VhqjRS7ZA2qo2by72ekXnuVQT0cmwZiHPQLx8M4ySHuMUZD3Lmz
GQyvITuDyBX3BiIGVtqpOhpugpEjAoEBE0MPwXrMEe9Glk4i1z86Xd1Cr4ksCFZL
gIdDSnlUuLuXn1OfLA35fXzoaStB07aTMEbRl+iD1KUopdRzpqj9j0rqYINkW0Ar
W/BzyMNw2itEbGrF+kjjCpolwmJvMcJUuvEZKO/gNTv2qYZW5BQqQrHYILdmezyz
HvGndyT996D3uoUIMIGqJf+41cwqPEjGyMLs3GfYnZMdVnZZnG/KflWQCiGUR9RR
LfxaryNZfT8MfQP6uslxOWubMupfsen7Hk8oljUpT2GzUAsWxTjqYWkFx6bMNMkV
Kx304at7R9jD81qC3Rdkqu0F5Z17YZWubd1oJEhi8HeMq8uxFxPb983SkXLY0w7Y
4Ss/MhJwt30e9ltGCMwgF83uOnndXwzFJG4TR9TqsO0TcdUE6XJPbPj/K8Wsi/u7
fvnCbBLsDaEJDEAikWJsSOaMjUwnajyaYomy+9VCR536/DlIq5M=
=c5tH
-----END PGP SIGNATURE-----
Merge tag 'core_urgent_for_v6.3_rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core fixes from Borislav Petkov:
- Do the delayed RCU wakeup for kthreads in the proper order so that
former doesn't get ignored
- A noinstr warning fix
* tag 'core_urgent_for_v6.3_rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
entry/rcu: Check TIF_RESCHED _after_ delayed RCU wake-up
entry: Fix noinstr warning in __enter_from_user_mode()
This patch uses bpf_mem_cache_alloc/free for allocating and freeing
bpf_local_storage for task and cgroup storage.
The changes are similar to the previous patch. A few things that
worth to mention for bpf_local_storage:
The local_storage is freed when the last selem is deleted.
Before deleting a selem from local_storage, it needs to retrieve the
local_storage->smap because the bpf_selem_unlink_storage_nolock()
may have set it to NULL. Note that local_storage->smap may have
already been NULL when the selem created this local_storage has
been removed. In this case, call_rcu will be used to free the
local_storage.
Also, the bpf_ma (true or false) value is needed before calling
bpf_local_storage_free(). The bpf_ma can either be obtained from
the local_storage->smap (if available) or any of its selem's smap.
A new helper check_storage_bpf_ma() is added to obtain
bpf_ma for a deleting bpf_local_storage.
When bpf_local_storage_alloc getting a reused memory, all
fields are either in the correct values or will be initialized.
'cache[]' must already be all NULLs. 'list' must be empty.
Others will be initialized.
Cc: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20230322215246.1675516-4-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch uses bpf_mem_alloc for the task and cgroup local storage that
the bpf prog can easily get a hold of the storage owner's PTR_TO_BTF_ID.
eg. bpf_get_current_task_btf() can be used in some of the kmalloc code
path which will cause deadlock/recursion. bpf_mem_cache_alloc is
deadlock free and will solve a legit use case in [1].
For sk storage, its batch creation benchmark shows a few percent
regression when the sk create/destroy batch size is larger than 32.
The sk creation/destruction happens much more often and
depends on external traffic. Considering it is hypothetical
to be able to cause deadlock with sk storage, it can cross
the bridge to use bpf_mem_alloc till a legit (ie. useful)
use case comes up.
For inode storage, bpf_local_storage_destroy() is called before
waiting for a rcu gp and its memory cannot be reused immediately.
inode stays with kmalloc/kfree after the rcu [or tasks_trace] gp.
A 'bool bpf_ma' argument is added to bpf_local_storage_map_alloc().
Only task and cgroup storage have 'bpf_ma == true' which
means to use bpf_mem_cache_alloc/free(). This patch only changes
selem to use bpf_mem_alloc for task and cgroup. The next patch
will change the local_storage to use bpf_mem_alloc also for
task and cgroup.
Here is some more details on the changes:
* memory allocation:
After bpf_mem_cache_alloc(), the SDATA(selem)->data is zero-ed because
bpf_mem_cache_alloc() could return a reused selem. It is to keep
the existing bpf_map_kzalloc() behavior. Only SDATA(selem)->data
is zero-ed. SDATA(selem)->data is the visible part to the bpf prog.
No need to use zero_map_value() to do the zeroing because
bpf_selem_free(..., reuse_now = true) ensures no bpf prog is using
the selem before returning the selem through bpf_mem_cache_free().
For the internal fields of selem, they will be initialized when
linking to the new smap and the new local_storage.
When 'bpf_ma == false', nothing changes in this patch. It will
stay with the bpf_map_kzalloc().
* memory free:
The bpf_selem_free() and bpf_selem_free_rcu() are modified to handle
the bpf_ma == true case.
For the common selem free path where its owner is also being destroyed,
the mem is freed in bpf_local_storage_destroy(), the owner (task
and cgroup) has gone through a rcu gp. The memory can be reused
immediately, so bpf_local_storage_destroy() will call
bpf_selem_free(..., reuse_now = true) which will do
bpf_mem_cache_free() for immediate reuse consideration.
An exception is the delete elem code path. The delete elem code path
is called from the helper bpf_*_storage_delete() and the syscall
bpf_map_delete_elem(). This path is an unusual case for local
storage because the common use case is to have the local storage
staying with its owner life time so that the bpf prog and the user
space does not have to monitor the owner's destruction. For the delete
elem path, the selem cannot be reused immediately because there could
be bpf prog using it. It will call bpf_selem_free(..., reuse_now = false)
and it will wait for a rcu tasks trace gp before freeing the elem. The
rcu callback is changed to do bpf_mem_cache_raw_free() instead of kfree().
When 'bpf_ma == false', it should be the same as before.
__bpf_selem_free() is added to do the kfree_rcu and call_tasks_trace_rcu().
A few words on the 'reuse_now == true'. When 'reuse_now == true',
it is still racing with bpf_local_storage_map_free which is under rcu
protection, so it still needs to wait for a rcu gp instead of kfree().
Otherwise, the selem may be reused by slab for a totally different struct
while the bpf_local_storage_map_free() is still using it (as a
rcu reader). For the inode case, there may be other rcu readers also.
In short, when bpf_ma == false and reuse_now == true => vanilla rcu.
[1]: https://lore.kernel.org/bpf/20221118190109.1512674-1-namhyung@kernel.org/
Cc: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20230322215246.1675516-3-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch adds a few bpf mem allocator functions which will
be used in the bpf_local_storage in a later patch.
bpf_mem_cache_alloc_flags(..., gfp_t flags) is added. When the
flags == GFP_KERNEL, it will fallback to __alloc(..., GFP_KERNEL).
bpf_local_storage knows its running context is sleepable (GFP_KERNEL)
and provides a better guarantee on memory allocation.
bpf_local_storage has some uncommon cases that its selem
cannot be reused immediately. It handles its own
rcu_head and goes through a rcu_trace gp and then free it.
bpf_mem_cache_raw_free() is added for direct free purpose
without leaking the LLIST_NODE_SZ internal knowledge.
During free time, the 'struct bpf_mem_alloc *ma' is no longer
available. However, the caller should know if it is
percpu memory or not and it can call different raw_free functions.
bpf_local_storage does not support percpu value, so only
the non-percpu 'bpf_mem_cache_raw_free()' is added in
this patch.
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20230322215246.1675516-2-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
KF_RELEASE kfuncs are not currently treated as having KF_TRUSTED_ARGS,
even though they have a superset of the requirements of KF_TRUSTED_ARGS.
Like KF_TRUSTED_ARGS, KF_RELEASE kfuncs require a 0-offset argument, and
don't allow NULL-able arguments. Unlike KF_TRUSTED_ARGS which require
_either_ an argument with ref_obj_id > 0, _or_ (ref->type &
BPF_REG_TRUSTED_MODIFIERS) (and no unsafe modifiers allowed), KF_RELEASE
only allows for ref_obj_id > 0. Because KF_RELEASE today doesn't
automatically imply KF_TRUSTED_ARGS, some of these requirements are
enforced in different ways that can make the behavior of the verifier
feel unpredictable. For example, a KF_RELEASE kfunc with a NULL-able
argument will currently fail in the verifier with a message like, "arg#0
is ptr_or_null_ expected ptr_ or socket" rather than "Possibly NULL
pointer passed to trusted arg0". Our intention is the same, but the
semantics are different due to implemenetation details that kfunc authors
and BPF program writers should not need to care about.
Let's make the behavior of the verifier more consistent and intuitive by
having KF_RELEASE kfuncs imply the presence of KF_TRUSTED_ARGS. Our
eventual goal is to have all kfuncs assume KF_TRUSTED_ARGS by default
anyways, so this takes us a step in that direction.
Note that it does not make sense to assume KF_TRUSTED_ARGS for all
KF_ACQUIRE kfuncs. KF_ACQUIRE kfuncs can have looser semantics than
KF_RELEASE, with e.g. KF_RCU | KF_RET_NULL. We may want to have
KF_ACQUIRE imply KF_TRUSTED_ARGS _unless_ KF_RCU is specified, but that
can be left to another patch set, and there are no such subtleties to
address for KF_RELEASE.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230325213144.486885-4-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Now that we're not invoking kfunc destructors when the kptr in a map was
NULL, we no longer require NULL checks in many of our KF_RELEASE kfuncs.
This patch removes those NULL checks.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230325213144.486885-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When a map value is being freed, we loop over all of the fields of the
corresponding BPF object and issue the appropriate cleanup calls
corresponding to the field's type. If the field is a referenced kptr, we
atomically xchg the value out of the map, and invoke the kptr's
destructor on whatever was there before (or bpf_obj_drop() it if it was
a local kptr).
Currently, we always invoke the destructor (either bpf_obj_drop() or the
kptr's registered destructor) on any KPTR_REF-type field in a map, even
if there wasn't a value in the map. This means that any function serving
as the kptr's KF_RELEASE destructor must always treat the argument as
possibly NULL, as the following can and regularly does happen:
void *xchgd_field;
/* No value was in the map, so xchgd_field is NULL */
xchgd_field = (void *)xchg(unsigned long *field_ptr, 0);
field->kptr.dtor(xchgd_field);
These are odd semantics to impose on KF_RELEASE kfuncs -- BPF programs
are prohibited by the verifier from passing NULL pointers to KF_RELEASE
kfuncs, so it doesn't make sense to require this of BPF programs, but
not the main kernel destructor path. It's also unnecessary to invoke any
cleanup logic for local kptrs. If there is no object there, there's
nothing to drop.
So as to allow KF_RELEASE kfuncs to fully assume that an argument is
non-NULL, this patch updates a KPTR_REF's destructor to only be invoked
when a non-NULL value is xchg'd out of the kptr map field.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230325213144.486885-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* Fix a race in the percpu counters summation code where the summation
failed to add in the values for any CPUs that were dying but not yet
dead. This fixes some minor discrepancies and incorrect assertions
when running generic/650.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQQ2qTKExjcn+O1o2YRKO3ySh0YRpgUCZBdAbgAKCRBKO3ySh0YR
pkltAQCs4QO5LjYReqjUxd4cSsLtNnNon09qswRsl2GuRyI36AEAxI9QMq4Q6D9V
ZasNbiTCkV3KPKfmp6gf1mQNLk1lGQ0=
=Bz3q
-----END PGP SIGNATURE-----
Merge tag 'xfs-6.3-fixes-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs percpu counter fixes from Darrick Wong:
"We discovered a filesystem summary counter corruption problem that was
traced to cpu hot-remove racing with the call to percpu_counter_sum
that sets the free block count in the superblock when writing it to
disk. The root cause is that percpu_counter_sum doesn't cull from
dying cpus and hence misses those counter values if the cpu shutdown
hooks have not yet run to merge the values.
I'm hoping this is a fairly painless fix to the problem, since the
dying cpu mask should generally be empty. It's been in for-next for a
week without any complaints from the bots.
- Fix a race in the percpu counters summation code where the
summation failed to add in the values for any CPUs that were dying
but not yet dead. This fixes some minor discrepancies and incorrect
assertions when running generic/650"
* tag 'xfs-6.3-fixes-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
pcpcntr: remove percpu_counter_sum_all()
fork: remove use of percpu_counter_sum_all
pcpcntrs: fix dying cpu summation race
cpumask: introduce for_each_cpu_or
Under CONFIG_FORTIFY_SOURCE, memcpy() will check the size of destination
and source buffers. Defining kernel_headers_data as "char" would trip
this check. Since these addresses are treated as byte arrays, define
them as arrays (as done everywhere else).
This was seen with:
$ cat /sys/kernel/kheaders.tar.xz >> /dev/null
detected buffer overflow in memcpy
kernel BUG at lib/string_helpers.c:1027!
...
RIP: 0010:fortify_panic+0xf/0x20
[...]
Call Trace:
<TASK>
ikheaders_read+0x45/0x50 [kheaders]
kernfs_fop_read_iter+0x1a4/0x2f0
...
Reported-by: Jakub Kicinski <kuba@kernel.org>
Link: https://lore.kernel.org/bpf/20230302112130.6e402a98@kernel.org/
Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com>
Tested-by: Jakub Kicinski <kuba@kernel.org>
Fixes: 43d8ce9d65 ("Provide in-kernel headers to make extending kernel easier")
Cc: stable@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20230302224946.never.243-kees@kernel.org
for other subsystems.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZB48xAAKCRDdBJ7gKXxA
js2rAP4zvcMn90vBJhWNElsA7pBgDYD66QCK6JBDHGe3J1qdeQEA8D606pjMBWkL
ly7NifwCjOtFhfDRgEHOXu8g8g1k1QM=
=Cswg
-----END PGP SIGNATURE-----
Merge tag 'mm-hotfixes-stable-2023-03-24-17-09' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull misc fixes from Andrew Morton:
"21 hotfixes, 8 of which are cc:stable. 11 are for MM, the remainder
are for other subsystems"
* tag 'mm-hotfixes-stable-2023-03-24-17-09' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (21 commits)
mm: mmap: remove newline at the end of the trace
mailmap: add entries for Richard Leitner
kcsan: avoid passing -g for test
kfence: avoid passing -g for test
mm: kfence: fix using kfence_metadata without initialization in show_object()
lib: dhry: fix unstable smp_processor_id(_) usage
mailmap: add entry for Enric Balletbo i Serra
mailmap: map Sai Prakash Ranjan's old address to his current one
mailmap: map Rajendra Nayak's old address to his current one
Revert "kasan: drop skip_kasan_poison variable in free_pages_prepare"
mailmap: add entry for Tobias Klauser
kasan, powerpc: don't rename memintrinsics if compiler adds prefixes
mm/ksm: fix race with VMA iteration and mm_struct teardown
kselftest: vm: fix unused variable warning
mm: fix error handling for map_deny_write_exec
mm: deduplicate error handling for map_deny_write_exec
checksyscalls: ignore fstat to silence build warning on LoongArch
nilfs2: fix kernel-infoleak in nilfs_ioctl_wrap_copy()
test_maple_tree: add more testing for mas_empty_area()
maple_tree: fix mas_skip_node() end slot detection
...
This patch fixes a mistake in checking NULL instead of
checking IS_ERR for the bpf_map_get() return value.
It also fixes the return value in link_update_map() from -EINVAL
to PTR_ERR(*_map).
Reported-by: syzbot+71ccc0fe37abb458406b@syzkaller.appspotmail.com
Fixes: 68b04864ca ("bpf: Create links for BPF struct_ops maps.")
Fixes: aef56f2e91 ("bpf: Update the struct_ops of a bpf_link.")
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Acked-by: Kui-Feng Lee <kuifeng@meta.com>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230324184241.1387437-1-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
already_uses() is unnecessarily chatty.
`modprobe i915` yields 491 messages like:
[ 64.108744] i915 uses drm!
This is a normal situation, and isn't worth all the log entries.
NOTE: I've preserved the "does not use %s" messages, which happens
less often, but does happen. Its not clear to me what it tells a
reader, or what info might improve the pr_debug's utility.
[ 6847.584999] main:already_uses:569: amdgpu does not use ttm!
[ 6847.585001] main:add_module_usage:584: Allocating new usage for amdgpu.
[ 6847.585014] main:already_uses:569: amdgpu does not use drm!
[ 6847.585016] main:add_module_usage:584: Allocating new usage for amdgpu.
[ 6847.585024] main:already_uses:569: amdgpu does not use drm_display_helper!
[ 6847.585025] main:add_module_usage:584: Allocating new usage for amdgpu.
[ 6847.585084] main:already_uses:569: amdgpu does not use drm_kms_helper!
[ 6847.585086] main:add_module_usage:584: Allocating new usage for amdgpu.
[ 6847.585175] main:already_uses:569: amdgpu does not use drm_buddy!
[ 6847.585176] main:add_module_usage:584: Allocating new usage for amdgpu.
[ 6847.585202] main:already_uses:569: amdgpu does not use i2c_algo_bit!
[ 6847.585204] main:add_module_usage:584: Allocating new usage for amdgpu.
[ 6847.585249] main:already_uses:569: amdgpu does not use gpu_sched!
[ 6847.585250] main:add_module_usage:584: Allocating new usage for amdgpu.
[ 6847.585314] main:already_uses:569: amdgpu does not use video!
[ 6847.585315] main:add_module_usage:584: Allocating new usage for amdgpu.
[ 6847.585409] main:already_uses:569: amdgpu does not use iommu_v2!
[ 6847.585410] main:add_module_usage:584: Allocating new usage for amdgpu.
[ 6847.585816] main:already_uses:569: amdgpu does not use drm_ttm_helper!
[ 6847.585818] main:add_module_usage:584: Allocating new usage for amdgpu.
[ 6848.762268] dyndbg: add-module: amdgpu.2533 sites
no functional changes.
Signed-off-by: Jim Cromie <jim.cromie@gmail.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
move_module() pr_debug's "Final section addresses for $modname".
Add section addresses to the message, for anyone looking at these.
no functional changes.
Signed-off-by: Jim Cromie <jim.cromie@gmail.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
The pr_debug("Absolute symbol" ..) reports value, (which is usually
0), but not the name, which is more informative. So add it.
no functional changes
Signed-off-by: Jim Cromie <jim.cromie@gmail.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
layout_sections() and move_module() each issue ~50 messages for each
module loaded. Add mod-name into their 2 header lines, to help the
reader find his module.
no functional changes.
Signed-off-by: Jim Cromie <jim.cromie@gmail.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
The kernel/kmod.c is already only built if we enabled modules, so
just stuff it under kernel/module/kmod.c and unify the MAINTAINERS
file for it.
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
The setup_load_info() was actually had ELF validation checks of its
own. To later cache useful variables as an secondary step just means
looping again over the ELF sections we just validated. We can simply
keep tabs of the key sections of interest as we validate the module
ELF section in one swoop, so do that and merge the two routines
together.
Expand a bit on the documentation / intent / goals.
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
The symbol and strings section validation currently happen in
setup_load_info() but since they are also doing validity checks
move this to elf_validity_check().
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
The integrity of the struct module we load is important, and although
our ELF validator already checks that the module section must match
struct module, add a stop-gap check before we memcpy() the final minted
module. This also makes those inspecting the code what the goal is.
While at it, clarify the goal behind updating the sh_addr address.
The current comment is pretty misleading.
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
The ELF ".gnu.linkonce.this_module" section is special, it is what we
use to construct the struct module __this_module, which THIS_MODULE
points to. When userspace loads a module we always deal first with a
copy of the userspace buffer, and twiddle with the userspace copy's
version of the struct module. Eventually we allocate memory to do a
memcpy() of that struct module, under the assumption that the module
size is right. But we have no validity checks against the size or
the requirements for the section.
Add some validity checks for the special module section early and while
at it, cache the module section index early, so we don't have to do that
later.
While at it, just move over the assigment of the info->mod to make the
code clearer. The validity checker also adds an explicit size check to
ensure the module section size matches the kernel's run time size for
sizeof(struct module). This should prevent sloppy loads of modules
which are built today *without* actually increasing the size of
the struct module. A developer today can for example expand the size
of struct module, rebuild a directoroy 'make fs/xfs/' for example and
then try to insmode the driver there. That module would in effect have
an incorrect size. This new size check would put a stop gap against such
mistakes.
This also makes the entire goal of ".gnu.linkonce.this_module" pretty
clear. Before this patch verification of the goal / intent required some
Indian Jones whips, torches and cleaning up big old spider webs.
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Converge on a compromise: so long as we have a module hit our linked
list of modules we taint. That is, the module was about to become live.
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
It is silly to have taints spread out all over, we can just compromise
and add them if the module ever hit our linked list. Our sanity checkers
should just prevent crappy drivers / bogus ELF modules / etc and kconfig
options should be enough to let you *not* load things you don't want.
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
check_modinfo() actually does two things:
a) sanity checks, some of which are fatal, and so we
prevent the user from completing trying to load a module
b) taints the kernel
The taints are pretty heavy handed because we're tainting the kernel
*before* we ever even get to load the module into the modules linked
list. That is, it it can fail for other reasons later as we review the
module's structure.
But this commit makes no functional changes, it just makes the intent
clearer and splits the code up where needed to make that happen.
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
The work to taint the kernel due to a module should be split
up eventually. To aid with this, split up the tainting on
check_modinfo_livepatch().
This let's us bring more early checks together which do return
a value, and makes changes easier to read later where we stuff
all the work to do the taints in one single routine.
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
The set_license() routine would seem to a reader to do some sort of
setting, but it does not. It just adds a taint if the license is
not set or proprietary.
This makes what the code is doing clearer, so much we can remove
the comment about it.
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
This moves check_modinfo() to early_mod_check(). This
doesn't make any functional changes either, as check_modinfo()
was the first call on layout_and_allocate(), so we're just
moving it back one routine and at the end.
This let's us keep separate the checkers from the allocator.
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Move early sanity checkers for the module into a helper.
This let's us make it clear when we are working with the
local copy of the module prior to allocation.
This produces no functional changes, it just makes subsequent
changes easier to read.
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Add a for_each_modinfo_entry() to make it easier to read and use.
This produces no functional changes but makes this code easiert
to read as we are used to with loops in the kernel and trims more
lines of code.
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
This makes it clearer what it is doing. While at it,
make it available to other code other than main.c.
This will be used in the subsequent patch and make
the changes easier to read.
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Instead of forward declaring routines for get_modinfo() just move
everything up. This makes no functional changes.
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Current release - regressions:
- wifi: mt76: mt7915: add back 160MHz channel width support for MT7915
- libbpf: revert poisoning of strlcpy, it broke uClibc-ng
Current release - new code bugs:
- bpf: improve the coverage of the "allow reads from uninit stack"
feature to fix verification complexity problems
- eth: am65-cpts: reset PPS genf adj settings on enable
Previous releases - regressions:
- wifi: mac80211: serialize ieee80211_handle_wake_tx_queue()
- wifi: mt76: do not run mt76_unregister_device() on unregistered hw,
fix null-deref
- Bluetooth: btqcomsmd: fix command timeout after setting BD address
- eth: igb: revert rtnl_lock() that causes a deadlock
- dsa: mscc: ocelot: fix device specific statistics
Previous releases - always broken:
- xsk: add missing overflow check in xdp_umem_reg()
- wifi: mac80211:
- fix QoS on mesh interfaces
- fix mesh path discovery based on unicast packets
- Bluetooth:
- ISO: fix timestamped HCI ISO data packet parsing
- remove "Power-on" check from Mesh feature
- usbnet: more fixes to drivers trusting packet length
- wifi: iwlwifi: mvm: fix mvmtxq->stopped handling
- Bluetooth: btintel: iterate only bluetooth device ACPI entries
- eth: iavf: fix inverted Rx hash condition leading to disabled hash
- eth: igc: fix the validation logic for taprio's gate list
- dsa: tag_brcm: legacy: fix daisy-chained switches
Misc:
- bpf: adjust insufficient default bpf_jit_limit to account for
growth of BPF use over the last 5 years
- xdp: bpf_xdp_metadata() use EOPNOTSUPP as unique errno indicating
no driver support
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAmQc4vkACgkQMUZtbf5S
IruG/w//XixBtdFMHE0/fcGv77jTovlJNiDYeaa+KtyjvIseieYwOKW5F31r3xvl
Mf/YhNEjAc++V8Zna/1UM5i/WOj1PJdHgSC+wMUGUXjMF+MfzL57nM83CllOpUB5
Z9YtUqGfolf2Vtx03wnV14qawmVnJWYKHn3AU11cueE5dUu6KNyBTCefQ7uzgcJN
zMtHAxw96MRQIDxSfKvZsePk4FnQ4qoSOLkslji5iikcMnKePaqZaxQla2oTcEIR
zue9V+ILmi62Y8mPcdT4ePpZQsjB39bpemh+9EL6l03/cjsjqmuiCw/d1+6g9kuy
ZD5LgZzUOb6xalhSseiwJL+vj8x2gQhshEfoHQvgp7fzr6agta6sisRX611wtmJl
hv4k2PMRqFrMv2S+8m8XC177bXIaGbiWh4vBFOWjf4u0lG55cGlzclbXWWQ80njy
C5cE4V7qPRk8Cl/+uT10CLNQx6JmaX8kcddtFrYpu0PZHKx1WfUYKIpgkiiMPRKT
njLkDQbFRa8Y3p7UX0wU1TbeuMzzLz+aTBrFEN864IJmbnUnWimeluQzD60WbkSx
6dciqq11LtvYDsR1HZ1pb7IoHYuDsDrO2Rx4zuqsB/SyfrGdRKJoKOnYvsk+AdCL
N/e4wivie8s6b+G3yL6p+IdlpEaVo2ZiLINp7JSW8jhW1hRcZUI=
=XBLi
-----END PGP SIGNATURE-----
Merge tag 'net-6.3-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from Jakub Kicinski:
"Including fixes from bpf, wifi and bluetooth.
Current release - regressions:
- wifi: mt76: mt7915: add back 160MHz channel width support for
MT7915
- libbpf: revert poisoning of strlcpy, it broke uClibc-ng
Current release - new code bugs:
- bpf: improve the coverage of the "allow reads from uninit stack"
feature to fix verification complexity problems
- eth: am65-cpts: reset PPS genf adj settings on enable
Previous releases - regressions:
- wifi: mac80211: serialize ieee80211_handle_wake_tx_queue()
- wifi: mt76: do not run mt76_unregister_device() on unregistered hw,
fix null-deref
- Bluetooth: btqcomsmd: fix command timeout after setting BD address
- eth: igb: revert rtnl_lock() that causes a deadlock
- dsa: mscc: ocelot: fix device specific statistics
Previous releases - always broken:
- xsk: add missing overflow check in xdp_umem_reg()
- wifi: mac80211:
- fix QoS on mesh interfaces
- fix mesh path discovery based on unicast packets
- Bluetooth:
- ISO: fix timestamped HCI ISO data packet parsing
- remove "Power-on" check from Mesh feature
- usbnet: more fixes to drivers trusting packet length
- wifi: iwlwifi: mvm: fix mvmtxq->stopped handling
- Bluetooth: btintel: iterate only bluetooth device ACPI entries
- eth: iavf: fix inverted Rx hash condition leading to disabled hash
- eth: igc: fix the validation logic for taprio's gate list
- dsa: tag_brcm: legacy: fix daisy-chained switches
Misc:
- bpf: adjust insufficient default bpf_jit_limit to account for
growth of BPF use over the last 5 years
- xdp: bpf_xdp_metadata() use EOPNOTSUPP as unique errno indicating
no driver support"
* tag 'net-6.3-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (84 commits)
Bluetooth: HCI: Fix global-out-of-bounds
Bluetooth: mgmt: Fix MGMT add advmon with RSSI command
Bluetooth: btsdio: fix use after free bug in btsdio_remove due to unfinished work
Bluetooth: L2CAP: Fix responding with wrong PDU type
Bluetooth: btqcomsmd: Fix command timeout after setting BD address
Bluetooth: btinel: Check ACPI handle for NULL before accessing
net: mdio: thunder: Add missing fwnode_handle_put()
net: dsa: mt7530: move setting ssc_delta to PHY_INTERFACE_MODE_TRGMII case
net: dsa: mt7530: move lowering TRGMII driving to mt7530_setup()
net: dsa: mt7530: move enabling disabling core clock to mt7530_pll_setup()
net: asix: fix modprobe "sysfs: cannot create duplicate filename"
gve: Cache link_speed value from device
tools: ynl: Fix genlmsg header encoding formats
net: enetc: fix aggregate RMON counters not showing the ranges
Bluetooth: Remove "Power-on" check from Mesh feature
Bluetooth: Fix race condition in hci_cmd_sync_clear
Bluetooth: btintel: Iterate only bluetooth device ACPI entries
Bluetooth: ISO: fix timestamped HCI ISO data packet parsing
Bluetooth: btusb: Remove detection of ISO packets over bulk
Bluetooth: hci_core: Detect if an ACL packet is in fact an ISO packet
...
(Ab)use the trace_ipi_send_cpu*() family to trace all
smp_function_call*() invocations, not only those that result in an
actual IPI.
The queued entries log their callback function while the actual IPIs
are traced on generic_smp_call_function_single_interrupt().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Context
=======
The newly-introduced ipi_send_cpumask tracepoint has a "callback" parameter
which so far has only been fed with NULL.
While CSD_TYPE_SYNC/ASYNC and CSD_TYPE_IRQ_WORK share a similar backing
struct layout (meaning their callback func can be accessed without caring
about the actual CSD type), CSD_TYPE_TTWU doesn't even have a function
attached to its struct. This means we need to check the type of a CSD
before eventually dereferencing its associated callback.
This isn't as trivial as it sounds: the CSD type is stored in
__call_single_node.u_flags, which get cleared right before the callback is
executed via csd_unlock(). This implies checking the CSD type before it is
enqueued on the call_single_queue, as the target CPU's queue can be flushed
before we get to sending an IPI.
Furthermore, send_call_function_single_ipi() only has a CPU parameter, and
would need to have an additional argument to trickle down the invoked
function. This is somewhat silly, as the extra argument will always be
pushed down to the function even when nothing is being traced, which is
unnecessary overhead.
Changes
=======
send_call_function_single_ipi() is only used by smp.c, and is defined in
sched/core.c as it contains scheduler-specific ops (set_nr_if_polling() of
a CPU's idle task).
Split it into two parts: the scheduler bits remain in sched/core.c, and the
actual IPI emission is moved into smp.c. This lets us define an
__always_inline helper function that can take the related callback as
parameter without creating useless register pressure in the non-traced path
which only gains a (disabled) static branch.
Do the same thing for the multi IPI case.
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230307143558.294354-8-vschneid@redhat.com
Accessing the call_single_queue hasn't involved a spinlock since 2014:
6897fc22ea ("kernel: use lockless list for smp_call_function_single")
The llist operations (namely cmpxchg() and xchg()) provide similar ordering
guarantees, update the comment to lessen confusion.
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230307143558.294354-7-vschneid@redhat.com
IPIs sent to remote CPUs via irq_work_queue_on() are now covered by
trace_ipi_send_cpumask(), add another instance of the tracepoint to cover
self-IPIs.
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20230307143558.294354-5-vschneid@redhat.com
This simply wraps around the arch function and prepends it with a
tracepoint, similar to send_call_function_single_ipi().
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20230307143558.294354-4-vschneid@redhat.com
send_call_function_single_ipi() is the thing that sends IPIs at the bottom
of smp_call_function*() via either generic_exec_single() or
smp_call_function_many_cond(). Give it an IPI-related tracepoint.
Note that this ends up tracing any IPI sent via __smp_call_single_queue(),
which covers __ttwu_queue_wakelist() and irq_work_queue_on() "for free".
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230307143558.294354-3-vschneid@redhat.com
It is currently possible to set the csdlock_debug_enabled static
branch, but not to reset it. This is an issue when several different
entities supply kernel boot parameters and also for kernels built with
CONFIG_CSD_LOCK_WAIT_DEBUG_DEFAULT=y.
Therefore, make the csdlock_debug=0 kernel boot parameter turn off
debugging. Last one wins!
Reported-by: Jes Sorensen <Jes.Sorensen@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20230321005516.50558-4-paulmck@kernel.org
The diagnostics added by this commit were extremely useful in one instance:
a5aabace5f ("locking/csd_lock: Add more data to CSD lock debugging")
However, they have not seen much action since, and there have been some
concerns expressed that the complexity is not worth the benefit.
Therefore, manually revert the following commit preparatory commit:
de7b09ef65 ("locking/csd_lock: Prepare more CSD lock debugging")
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20230321005516.50558-3-paulmck@kernel.org
The diagnostics added by this commit were extremely useful in one instance:
a5aabace5f ("locking/csd_lock: Add more data to CSD lock debugging")
However, they have not seen much action since, and there have been some
concerns expressed that the complexity is not worth the benefit.
Therefore, manually revert this commit, but leave a comment telling
people where to find these diagnostics.
[ paulmck: Apply Juergen Gross feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20230321005516.50558-2-paulmck@kernel.org
The csd_debug kernel parameter works well, but is inconvenient in cases
where it is more closely associated with boot loaders or automation than
with a particular kernel version or release. Thererfore, provide a new
CSD_LOCK_WAIT_DEBUG_DEFAULT Kconfig option that defaults csd_debug to
1 when selected and 0 otherwise, with this latter being the default.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20230321005516.50558-1-paulmck@kernel.org
Commit 002f290627 ("cpuset: use static key better and convert to new API")
has used __cpuset_node_allowed() instead of cpuset_node_allowed() to check
whether we can allocate on a memory node. Now this function isn't used by
anyone, so we can do the follow things to clean up it.
1. remove unused codes
2. rename __cpuset_node_allowed() to cpuset_node_allowed()
3. update comments in mm/page_alloc.c
Suggested-by: Waiman Long <longman@redhat.com>
Signed-off-by: Haifeng Xu <haifeng.xu@shopee.com>
Acked-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Currently show_all_workqueue is called if freeze fails at the time of
freeze the workqueues, which shows the status of all workqueues and of
all worker pools. In this cases we may only need to dump state of only
workqueues that are freezable and busy.
This patch defines show_freezable_workqueues, which uses
show_one_workqueue, a granular function that shows the state of individual
workqueues, so that dump only the state of freezable workqueues
at that time.
tj: Minor message adjustment.
Signed-off-by: Jungseung Lee <js07.lee@samsung.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Nathan reported that when building with GNU as and a version of clang that
defaults to DWARF5, the assembler will complain with:
Error: non-constant .uleb128 is not supported
This is because `-g` defaults to the compiler debug info default. If the
assembler does not support some of the directives used, the above errors
occur. To fix, remove the explicit passing of `-g`.
All the test wants is that stack traces print valid function names, and
debug info is not required for that. (I currently cannot recall why I
added the explicit `-g`.)
Link: https://lkml.kernel.org/r/20230316224705.709984-2-elver@google.com
Fixes: 1fe84fd4a4 ("kcsan: Add test suite")
Signed-off-by: Marco Elver <elver@google.com>
Reported-by: Nathan Chancellor <nathan@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZBzSGQAKCRDbK58LschI
g+dhAP95enbrlwaQ+9aoqrU+GqCq+uo4SkaqnUtq6GSvRNiVBQD8C6iZxrAjyXnm
1wRr3JN/HszPBzgjl3HvDc9y69I/PAI=
=8JwR
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Daniel Borkmann says:
====================
pull-request: bpf 2023-03-23
We've added 8 non-merge commits during the last 13 day(s) which contain
a total of 21 files changed, 238 insertions(+), 161 deletions(-).
The main changes are:
1) Fix verification issues in some BPF programs due to their stack usage
patterns, from Eduard Zingerman.
2) Fix to add missing overflow checks in xdp_umem_reg and return an error
in such case, from Kal Conley.
3) Fix and undo poisoning of strlcpy in libbpf given it broke builds for
libcs which provided the former like uClibc-ng, from Jesus Sanchez-Palencia.
4) Fix insufficient bpf_jit_limit default to avoid users running into hard
to debug seccomp BPF errors, from Daniel Borkmann.
5) Fix driver return code when they don't support a bpf_xdp_metadata kfunc
to make it unambiguous from other errors, from Jesper Dangaard Brouer.
6) Two BPF selftest fixes to address compilation errors from recent changes
in kernel structures, from Alexei Starovoitov.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
xdp: bpf_xdp_metadata use EOPNOTSUPP for no driver support
bpf: Adjust insufficient default bpf_jit_limit
xsk: Add missing overflow check in xdp_umem_reg
selftests/bpf: Fix progs/test_deny_namespace.c issues.
selftests/bpf: Fix progs/find_vma_fail1.c build error.
libbpf: Revert poisoning of strlcpy
selftests/bpf: Tests for uninitialized stack reads
bpf: Allow reads from uninit stack
====================
Link: https://lore.kernel.org/r/20230323225221.6082-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Qemu will create vhost devices in the kernel which perform network, SCSI,
etc IO and management operations from worker threads created by the
kthread API. Because the kthread API does a copy_process on the kthreadd
thread, the vhost layer has to use kthread_use_mm to access the Qemu
thread's memory and cgroup_attach_task_all to add itself to the Qemu
thread's cgroups, and it bypasses the RLIMIT_NPROC limit which can result
in VMs creating more threads than the admin expected.
This patch adds a new struct vhost_task which can be used instead of
kthreads. They allow the vhost layer to use copy_process and inherit
the userspace process's mm and cgroups, the task is accounted for
under the userspace's nproc count and can be seen in its process tree,
and other features like namespaces work and are inherited by default.
Signed-off-by: Mike Christie <michael.christie@oracle.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
By improving the BPF_LINK_UPDATE command of bpf(), it should allow you
to conveniently switch between different struct_ops on a single
bpf_link. This would enable smoother transitions from one struct_ops
to another.
The struct_ops maps passing along with BPF_LINK_UPDATE should have the
BPF_F_LINK flag.
Signed-off-by: Kui-Feng Lee <kuifeng@meta.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230323032405.3735486-6-kuifeng@meta.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Make bpf_link support struct_ops. Previously, struct_ops were always
used alone without any associated links. Upon updating its value, a
struct_ops would be activated automatically. Yet other BPF program
types required to make a bpf_link with their instances before they
could become active. Now, however, you can create an inactive
struct_ops, and create a link to activate it later.
With bpf_links, struct_ops has a behavior similar to other BPF program
types. You can pin/unpin them from their links and the struct_ops will
be deactivated when its link is removed while previously need someone
to delete the value for it to be deactivated.
bpf_links are responsible for registering their associated
struct_ops. You can only use a struct_ops that has the BPF_F_LINK flag
set to create a bpf_link, while a structs without this flag behaves in
the same manner as before and is registered upon updating its value.
The BPF_LINK_TYPE_STRUCT_OPS serves a dual purpose. Not only is it
used to craft the links for BPF struct_ops programs, but also to
create links for BPF struct_ops them-self. Since the links of BPF
struct_ops programs are only used to create trampolines internally,
they are never seen in other contexts. Thus, they can be reused for
struct_ops themself.
To maintain a reference to the map supporting this link, we add
bpf_struct_ops_link as an additional type. The pointer of the map is
RCU and won't be necessary until later in the patchset.
Signed-off-by: Kui-Feng Lee <kuifeng@meta.com>
Link: https://lore.kernel.org/r/20230323032405.3735486-4-kuifeng@meta.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
We have replaced kvalue-refcnt with synchronize_rcu() to wait for an
RCU grace period.
Maintenance of kvalue->refcnt was a complicated task, as we had to
simultaneously keep track of two reference counts: one for the
reference count of bpf_map. When the kvalue->refcnt reaches zero, we
also have to reduce the reference count on bpf_map - yet these steps
are not performed in an atomic manner and require us to be vigilant
when managing them. By eliminating kvalue->refcnt, we can make our
maintenance more straightforward as the refcount of bpf_map is now
solely managed!
To prevent the trampoline image of a struct_ops from being released
while it is still in use, we wait for an RCU grace period. The
setsockopt(TCP_CONGESTION, "...") command allows you to change your
socket's congestion control algorithm and can result in releasing the
old struct_ops implementation. It is fine. However, this function is
exposed through bpf_setsockopt(), it may be accessed by BPF programs
as well. To ensure that the trampoline image belonging to struct_op
can be safely called while its method is in use, the trampoline
safeguarde the BPF program with rcu_read_lock(). Doing so prevents any
destruction of the associated images before returning from a
trampoline and requires us to wait for an RCU grace period.
Signed-off-by: Kui-Feng Lee <kuifeng@meta.com>
Link: https://lore.kernel.org/r/20230323032405.3735486-2-kuifeng@meta.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
For iter_new() functions iterator state's slot might not be yet
initialized, in which case iter_get_spi() will return -ERANGE. This is
expected and is handled properly. But for iter_next() and iter_destroy()
cases iter slot is supposed to be initialized and correct, so -ERANGE is
not possible.
Move meta->iter.{spi,frameno} initialization into iter_next/iter_destroy
handling branch to make it more explicit that valid information will be
remembered in meta->iter block for subsequent use in process_iter_next_call(),
avoiding confusingly looking -ERANGE assignment for meta->iter.spi.
Reported-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230322232502.836171-1-andrii@kernel.org
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Xu reports that after commit 3f50f132d8 ("bpf: Verifier, do explicit ALU32
bounds tracking"), the following BPF program is rejected by the verifier:
0: (61) r2 = *(u32 *)(r1 +0) ; R2_w=pkt(off=0,r=0,imm=0)
1: (61) r3 = *(u32 *)(r1 +4) ; R3_w=pkt_end(off=0,imm=0)
2: (bf) r1 = r2
3: (07) r1 += 1
4: (2d) if r1 > r3 goto pc+8
5: (71) r1 = *(u8 *)(r2 +0) ; R1_w=scalar(umax=255,var_off=(0x0; 0xff))
6: (18) r0 = 0x7fffffffffffff10
8: (0f) r1 += r0 ; R1_w=scalar(umin=0x7fffffffffffff10,umax=0x800000000000000f)
9: (18) r0 = 0x8000000000000000
11: (07) r0 += 1
12: (ad) if r0 < r1 goto pc-2
13: (b7) r0 = 0
14: (95) exit
And the verifier log says:
func#0 @0
0: R1=ctx(off=0,imm=0) R10=fp0
0: (61) r2 = *(u32 *)(r1 +0) ; R1=ctx(off=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
1: (61) r3 = *(u32 *)(r1 +4) ; R1=ctx(off=0,imm=0) R3_w=pkt_end(off=0,imm=0)
2: (bf) r1 = r2 ; R1_w=pkt(off=0,r=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
3: (07) r1 += 1 ; R1_w=pkt(off=1,r=0,imm=0)
4: (2d) if r1 > r3 goto pc+8 ; R1_w=pkt(off=1,r=1,imm=0) R3_w=pkt_end(off=0,imm=0)
5: (71) r1 = *(u8 *)(r2 +0) ; R1_w=scalar(umax=255,var_off=(0x0; 0xff)) R2_w=pkt(off=0,r=1,imm=0)
6: (18) r0 = 0x7fffffffffffff10 ; R0_w=9223372036854775568
8: (0f) r1 += r0 ; R0_w=9223372036854775568 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775823,s32_min=-240,s32_max=15)
9: (18) r0 = 0x8000000000000000 ; R0_w=-9223372036854775808
11: (07) r0 += 1 ; R0_w=-9223372036854775807
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775809)
13: (b7) r0 = 0 ; R0_w=0
14: (95) exit
from 12 to 11: R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775810,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775806
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775806 R1_w=scalar(umin=9223372036854775810,umax=9223372036854775810,var_off=(0x8000000000000000; 0xffffffff))
13: safe
[...]
from 12 to 11: R0_w=-9223372036854775795 R1=scalar(umin=9223372036854775822,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775794
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775794 R1=scalar(umin=9223372036854775822,umax=9223372036854775822,var_off=(0x8000000000000000; 0xffffffff))
13: safe
from 12 to 11: R0_w=-9223372036854775794 R1=scalar(umin=9223372036854775823,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775793
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775793 R1=scalar(umin=9223372036854775823,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff))
13: safe
from 12 to 11: R0_w=-9223372036854775793 R1=scalar(umin=9223372036854775824,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775792
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775792 R1=scalar(umin=9223372036854775824,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff))
13: safe
[...]
The 64bit umin=9223372036854775810 bound continuously bumps by +1 while
umax=9223372036854775823 stays as-is until the verifier complexity limit
is reached and the program gets finally rejected. During this simulation,
the umin also eventually surpasses umax. Looking at the first 'from 12
to 11' output line from the loop, R1 has the following state:
R1_w=scalar(umin=0x8000000000000002 (9223372036854775810),
umax=0x800000000000000f (9223372036854775823),
var_off=(0x8000000000000000;
0xffffffff))
The var_off has technically not an inconsistent state but it's very
imprecise and far off surpassing 64bit umax bounds whereas the expected
output with refined known bits in var_off should have been like:
R1_w=scalar(umin=0x8000000000000002 (9223372036854775810),
umax=0x800000000000000f (9223372036854775823),
var_off=(0x8000000000000000;
0xf))
In the above log, var_off stays as var_off=(0x8000000000000000; 0xffffffff)
and does not converge into a narrower mask where more bits become known,
eventually transforming R1 into a constant upon umin=9223372036854775823,
umax=9223372036854775823 case where the verifier would have terminated and
let the program pass.
The __reg_combine_64_into_32() marks the subregister unknown and propagates
64bit {s,u}min/{s,u}max bounds to their 32bit equivalents iff they are within
the 32bit universe. The question came up whether __reg_combine_64_into_32()
should special case the situation that when 64bit {s,u}min bounds have
the same value as 64bit {s,u}max bounds to then assign the latter as
well to the 32bit reg->{s,u}32_{min,max}_value. As can be seen from the
above example however, that is just /one/ special case and not a /generic/
solution given above example would still not be addressed this way and
remain at an imprecise var_off=(0x8000000000000000; 0xffffffff).
The improvement is needed in __reg_bound_offset() to refine var32_off with
the updated var64_off instead of the prior reg->var_off. The reg_bounds_sync()
code first refines information about the register's min/max bounds via
__update_reg_bounds() from the current var_off, then in __reg_deduce_bounds()
from sign bit and with the potentially learned bits from bounds it'll
update the var_off tnum in __reg_bound_offset(). For example, intersecting
with the old var_off might have improved bounds slightly, e.g. if umax
was 0x7f...f and var_off was (0; 0xf...fc), then new var_off will then
result in (0; 0x7f...fc). The intersected var64_off holds then the
universe which is a superset of var32_off. The point for the latter is
not to broaden, but to further refine known bits based on the intersection
of var_off with 32 bit bounds, so that we later construct the final var_off
from upper and lower 32 bits. The final __update_reg_bounds() can then
potentially still slightly refine bounds if more bits became known from the
new var_off.
After the improvement, we can see R1 converging successively:
func#0 @0
0: R1=ctx(off=0,imm=0) R10=fp0
0: (61) r2 = *(u32 *)(r1 +0) ; R1=ctx(off=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
1: (61) r3 = *(u32 *)(r1 +4) ; R1=ctx(off=0,imm=0) R3_w=pkt_end(off=0,imm=0)
2: (bf) r1 = r2 ; R1_w=pkt(off=0,r=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
3: (07) r1 += 1 ; R1_w=pkt(off=1,r=0,imm=0)
4: (2d) if r1 > r3 goto pc+8 ; R1_w=pkt(off=1,r=1,imm=0) R3_w=pkt_end(off=0,imm=0)
5: (71) r1 = *(u8 *)(r2 +0) ; R1_w=scalar(umax=255,var_off=(0x0; 0xff)) R2_w=pkt(off=0,r=1,imm=0)
6: (18) r0 = 0x7fffffffffffff10 ; R0_w=9223372036854775568
8: (0f) r1 += r0 ; R0_w=9223372036854775568 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775823,s32_min=-240,s32_max=15)
9: (18) r0 = 0x8000000000000000 ; R0_w=-9223372036854775808
11: (07) r0 += 1 ; R0_w=-9223372036854775807
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775809)
13: (b7) r0 = 0 ; R0_w=0
14: (95) exit
from 12 to 11: R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775810,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775806
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775806 R1_w=-9223372036854775806
13: safe
from 12 to 11: R0_w=-9223372036854775806 R1_w=scalar(umin=9223372036854775811,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775805
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775805 R1_w=-9223372036854775805
13: safe
[...]
from 12 to 11: R0_w=-9223372036854775798 R1=scalar(umin=9223372036854775819,umax=9223372036854775823,var_off=(0x8000000000000008; 0x7),s32_min=8,s32_max=15,u32_min=8,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775797
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775797 R1=-9223372036854775797
13: safe
from 12 to 11: R0_w=-9223372036854775797 R1=scalar(umin=9223372036854775820,umax=9223372036854775823,var_off=(0x800000000000000c; 0x3),s32_min=12,s32_max=15,u32_min=12,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775796
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775796 R1=-9223372036854775796
13: safe
from 12 to 11: R0_w=-9223372036854775796 R1=scalar(umin=9223372036854775821,umax=9223372036854775823,var_off=(0x800000000000000c; 0x3),s32_min=12,s32_max=15,u32_min=12,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775795
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775795 R1=-9223372036854775795
13: safe
from 12 to 11: R0_w=-9223372036854775795 R1=scalar(umin=9223372036854775822,umax=9223372036854775823,var_off=(0x800000000000000e; 0x1),s32_min=14,s32_max=15,u32_min=14,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775794
12: (ad) if r0 < r1 goto pc-2 ; R0_w=-9223372036854775794 R1=-9223372036854775794
13: safe
from 12 to 11: R0_w=-9223372036854775794 R1=-9223372036854775793 R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
11: (07) r0 += 1 ; R0_w=-9223372036854775793
12: (ad) if r0 < r1 goto pc-2
last_idx 12 first_idx 12
parent didn't have regs=1 stack=0 marks: R0_rw=P-9223372036854775801 R1_r=scalar(umin=9223372036854775815,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
last_idx 11 first_idx 11
regs=1 stack=0 before 11: (07) r0 += 1
parent didn't have regs=1 stack=0 marks: R0_rw=P-9223372036854775805 R1_rw=scalar(umin=9223372036854775812,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
last_idx 12 first_idx 0
regs=1 stack=0 before 12: (ad) if r0 < r1 goto pc-2
regs=1 stack=0 before 11: (07) r0 += 1
regs=1 stack=0 before 12: (ad) if r0 < r1 goto pc-2
regs=1 stack=0 before 11: (07) r0 += 1
regs=1 stack=0 before 12: (ad) if r0 < r1 goto pc-2
regs=1 stack=0 before 11: (07) r0 += 1
regs=1 stack=0 before 9: (18) r0 = 0x8000000000000000
last_idx 12 first_idx 12
parent didn't have regs=2 stack=0 marks: R0_rw=P-9223372036854775801 R1_r=Pscalar(umin=9223372036854775815,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
last_idx 11 first_idx 11
regs=2 stack=0 before 11: (07) r0 += 1
parent didn't have regs=2 stack=0 marks: R0_rw=P-9223372036854775805 R1_rw=Pscalar(umin=9223372036854775812,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
last_idx 12 first_idx 0
regs=2 stack=0 before 12: (ad) if r0 < r1 goto pc-2
regs=2 stack=0 before 11: (07) r0 += 1
regs=2 stack=0 before 12: (ad) if r0 < r1 goto pc-2
regs=2 stack=0 before 11: (07) r0 += 1
regs=2 stack=0 before 12: (ad) if r0 < r1 goto pc-2
regs=2 stack=0 before 11: (07) r0 += 1
regs=2 stack=0 before 9: (18) r0 = 0x8000000000000000
regs=2 stack=0 before 8: (0f) r1 += r0
regs=3 stack=0 before 6: (18) r0 = 0x7fffffffffffff10
regs=2 stack=0 before 5: (71) r1 = *(u8 *)(r2 +0)
13: safe
from 4 to 13: safe
verification time 322 usec
stack depth 0
processed 56 insns (limit 1000000) max_states_per_insn 1 total_states 3 peak_states 3 mark_read 1
This also fixes up a test case along with this improvement where we match
on the verifier log. The updated log now has a refined var_off, too.
Fixes: 3f50f132d8 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Xu Kuohai <xukuohai@huaweicloud.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20230314203424.4015351-2-xukuohai@huaweicloud.com
Link: https://lore.kernel.org/bpf/20230322213056.2470-1-daniel@iogearbox.net
Use kunmap_local() to unmap pages locally mapped with kmap_local_page().
kunmap_local() must be called on the kernel virtual address returned by
kmap_local_page(), differently from how we use kunmap() which instead
expects the mapped page as its argument.
In module_zstd_decompress() we currently map with kmap_local_page() and
unmap with kunmap(). This breaks the code and so it should be fixed.
Cc: Piotr Gorski <piotrgorski@cachyos.org>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Stephen Boyd <swboyd@chromium.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Fixes: 169a58ad82 ("module/decompress: Support zstd in-kernel decompression")
Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Reviewed-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Piotr Gorski <piotrgorski@cachyos.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
This patch changes the return types of bpf_map_ops functions to long, where
previously int was returned. Using long allows for bpf programs to maintain
the sign bit in the absence of sign extension during situations where
inlined bpf helper funcs make calls to the bpf_map_ops funcs and a negative
error is returned.
The definitions of the helper funcs are generated from comments in the bpf
uapi header at `include/uapi/linux/bpf.h`. The return type of these
helpers was previously changed from int to long in commit bdb7b79b4c. For
any case where one of the map helpers call the bpf_map_ops funcs that are
still returning 32-bit int, a compiler might not include sign extension
instructions to properly convert the 32-bit negative value a 64-bit
negative value.
For example:
bpf assembly excerpt of an inlined helper calling a kernel function and
checking for a specific error:
; err = bpf_map_update_elem(&mymap, &key, &val, BPF_NOEXIST);
...
46: call 0xffffffffe103291c ; htab_map_update_elem
; if (err && err != -EEXIST) {
4b: cmp $0xffffffffffffffef,%rax ; cmp -EEXIST,%rax
kernel function assembly excerpt of return value from
`htab_map_update_elem` returning 32-bit int:
movl $0xffffffef, %r9d
...
movl %r9d, %eax
...results in the comparison:
cmp $0xffffffffffffffef, $0x00000000ffffffef
Fixes: bdb7b79b4c ("bpf: Switch most helper return values from 32-bit int to 64-bit long")
Tested-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: JP Kobryn <inwardvessel@gmail.com>
Link: https://lore.kernel.org/r/20230322194754.185781-3-inwardvessel@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Teach the verifier to recognize PTR_TO_MEM | MEM_RDONLY as not NULL
otherwise if (!bpf_ksym_exists(known_kfunc)) doesn't go through
dead code elimination.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230321203854.3035-3-alexei.starovoitov@gmail.com
The current task doesn't need the scheduler's protection to unwind its
own stack.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Tested-by: Seth Forshee (DigitalOcean) <sforshee@kernel.org>
Link: https://lore.kernel.org/r/4b92e793462d532a05f03767151fa29db3e68e13.1677257135.git.jpoimboe@kernel.org
The entries array in klp_check_stack() is static local because it's too
big to be reasonably allocated on the stack. Serialized access is
enforced by the klp_mutex.
In preparation for calling klp_check_stack() without the mutex (from
cond_resched), convert it to a percpu variable.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230313233346.kayh4t2lpicjkpsv@treble
CPU cfs bandwidth controller uses hrtimer. Currently there is no initial
value set. Hence all period timers would align at expiry.
This happens when there are multiple CPU cgroup's.
There is a performance gain that can be achieved here if the timers are
interleaved when the utilization of each CPU cgroup is low and total
utilization of all the CPU cgroup's is less than 50%. If the timers are
interleaved, then the unthrottled cgroup can run freely without many
context switches and can also benefit from SMT Folding. This effect will
be further amplified in SPLPAR environment.
This commit adds a random offset after initializing each hrtimer. This
would result in interleaving the timers at expiry, which helps in achieving
the said performance gain.
This was tested on powerpc platform with 8 core SMT=8. Socket power was
measured when the workload. Benchmarked the stress-ng with power
information. Throughput oriented benchmarks show significant gain up to
25% while power consumption increases up to 15%.
Workload: stress-ng --cpu=32 --cpu-ops=50000.
1CG - 1 cgroup is running.
2CG - 2 cgroups are running together.
Time taken to complete stress-ng in seconds and power is in watts.
each cgroup is throttled at 25% with 100ms as the period value.
6.2-rc6 | with patch
8 core 1CG power 2CG power | 1CG power 2 CG power
27.5 80.6 40 90 | 27.3 82 32.3 104
27.5 81 40.2 91 | 27.5 81 38.7 96
27.7 80 40.1 89 | 27.6 80 29.7 106
27.7 80.1 40.3 94 | 27.6 80 31.5 105
Latency might be affected by this change. That could happen if the CPU was
in a deep idle state which is possible if we interleave the timers. Used
schbench for measuring the latency. Each cgroup is throttled at 25% with
period value is set to 100ms. Numbers are when both the cgroups are
running simultaneously. Latency values don't degrade much. Some
improvement is seen in tail latencies.
6.2-rc6 with patch
Groups: 16
50.0th: 39.5 42.5
75.0th: 924.0 922.0
90.0th: 972.0 968.0
95.0th: 1005.5 994.0
99.0th: 4166.0 2287.0
99.5th: 7314.0 7448.0
99.9th: 15024.0 13600.0
Groups: 32
50.0th: 819.0 463.0
75.0th: 1596.0 918.0
90.0th: 5992.0 1281.5
95.0th: 13184.0 2765.0
99.0th: 21792.0 14240.0
99.5th: 25696.0 18920.0
99.9th: 33280.0 35776.0
Groups: 64
50.0th: 4806.0 3440.0
75.0th: 31136.0 33664.0
90.0th: 54144.0 58752.0
95.0th: 66176.0 67200.0
99.0th: 84736.0 91520.0
99.5th: 97408.0 114048.0
99.9th: 136448.0 140032.0
Initial RFC PATCH, discussions and details on the problem:
Link1: https://lore.kernel.org/lkml/5ae3cb09-8c9a-11e8-75a7-cc774d9bc283@linux.vnet.ibm.com/
Link2: https://lore.kernel.org/lkml/9c57c92c-3e0c-b8c5-4be9-8f4df344a347@linux.vnet.ibm.com/
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Shrikanth Hegde<sshegde@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20230223185153.1499710-1-sshegde@linux.vnet.ibm.com
Some sched_move_task calls are useless because that
task_struct->sched_task_group maybe not changed (equals task_group
of cpu_cgroup) when system enable autogroup. So do some checks in
sched_move_task.
sched_move_task eg:
task A belongs to cpu_cgroup0 and autogroup0, it will always belong
to cpu_cgroup0 when do_exit. So there is no need to do {de|en}queue.
The call graph is as follow.
do_exit
sched_autogroup_exit_task
sched_move_task
dequeue_task
sched_change_group
A.sched_task_group = sched_get_task_group (=cpu_cgroup0)
enqueue_task
Performance results:
===========================
1. env
cpu: bogomips=4600.00
kernel: 6.3.0-rc3
cpu_cgroup: 6:cpu,cpuacct:/user.slice
2. cmds
do_exit script:
for i in {0..10000}; do
sleep 0 &
done
wait
Run the above script, then use the following bpftrace cmd to get
the cost of sched_move_task:
bpftrace -e 'k:sched_move_task { @ts[tid] = nsecs; }
kr:sched_move_task /@ts[tid]/
{ @ns += nsecs - @ts[tid]; delete(@ts[tid]); }'
3. cost time(ns):
without patch: 43528033
with patch: 18541416
diff:-24986617 -57.4%
As the result show, the patch will save 57.4% in the scenario.
Signed-off-by: wuchi <wuchi.zero@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230321064459.39421-1-wuchi.zero@gmail.com
When {rt, cfs}_rq or dl task is throttled, since cookied tasks
are not dequeued from the core tree, So sched_core_find() and
sched_core_next() may return throttled task, which may
cause throttled task to run on the CPU.
So we add checks in sched_core_find() and sched_core_next()
to make sure that the return is a runnable task that is
not throttled.
Co-developed-by: Cruz Zhao <CruzZhao@linux.alibaba.com>
Signed-off-by: Cruz Zhao <CruzZhao@linux.alibaba.com>
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230316081806.69544-1-jiahao.os@bytedance.com
smatch reports
kernel/sched/topology.c:212:1: warning:
symbol 'sched_energy_mutex' was not declared. Should it be static?
kernel/sched/topology.c:213:6: warning:
symbol 'sched_energy_update' was not declared. Should it be static?
These variables are only used in topology.c, so should be static
Signed-off-by: Tom Rix <trix@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230314144818.1453523-1-trix@redhat.com
Explicit alignment and page alignment are used only to calculate
the stride, not when checking actual slot physical address.
Originally, only page alignment was implemented, and that worked,
because the whole SWIOTLB is allocated on a page boundary, so
aligning the start index was sufficient to ensure a page-aligned
slot.
When commit 1f221a0d0d ("swiotlb: respect min_align_mask") added
support for min_align_mask, the index could be incremented in the
search loop, potentially finding an unaligned slot if minimum device
alignment is between IO_TLB_SIZE and PAGE_SIZE. The bug could go
unnoticed, because the slot size is 2 KiB, and the most common page
size is 4 KiB, so there is no alignment value in between.
IIUC the intention has been to find a slot that conforms to all
alignment constraints: device minimum alignment, an explicit
alignment (given as function parameter) and optionally page
alignment (if allocation size is >= PAGE_SIZE). The most
restrictive mask can be trivially computed with logical AND. The
rest can stay.
Fixes: 1f221a0d0d ("swiotlb: respect min_align_mask")
Fixes: e81e99bacc ("swiotlb: Support aligned swiotlb buffers")
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
No functional change, just use an existing helper.
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
We've seen recent AWS EKS (Kubernetes) user reports like the following:
After upgrading EKS nodes from v20230203 to v20230217 on our 1.24 EKS
clusters after a few days a number of the nodes have containers stuck
in ContainerCreating state or liveness/readiness probes reporting the
following error:
Readiness probe errored: rpc error: code = Unknown desc = failed to
exec in container: failed to start exec "4a11039f730203ffc003b7[...]":
OCI runtime exec failed: exec failed: unable to start container process:
unable to init seccomp: error loading seccomp filter into kernel:
error loading seccomp filter: errno 524: unknown
However, we had not been seeing this issue on previous AMIs and it only
started to occur on v20230217 (following the upgrade from kernel 5.4 to
5.10) with no other changes to the underlying cluster or workloads.
We tried the suggestions from that issue (sysctl net.core.bpf_jit_limit=452534528)
which helped to immediately allow containers to be created and probes to
execute but after approximately a day the issue returned and the value
returned by cat /proc/vmallocinfo | grep bpf_jit | awk '{s+=$2} END {print s}'
was steadily increasing.
I tested bpf tree to observe bpf_jit_charge_modmem, bpf_jit_uncharge_modmem
their sizes passed in as well as bpf_jit_current under tcpdump BPF filter,
seccomp BPF and native (e)BPF programs, and the behavior all looks sane
and expected, that is nothing "leaking" from an upstream perspective.
The bpf_jit_limit knob was originally added in order to avoid a situation
where unprivileged applications loading BPF programs (e.g. seccomp BPF
policies) consuming all the module memory space via BPF JIT such that loading
of kernel modules would be prevented. The default limit was defined back in
2018 and while good enough back then, we are generally seeing far more BPF
consumers today.
Adjust the limit for the BPF JIT pool from originally 1/4 to now 1/2 of the
module memory space to better reflect today's needs and avoid more users
running into potentially hard to debug issues.
Fixes: fdadd04931 ("bpf: fix bpf_jit_limit knob for PAGE_SIZE >= 64K")
Reported-by: Stephen Haynes <sh@synk.net>
Reported-by: Lefteris Alexakis <lefteris.alexakis@kpn.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://github.com/awslabs/amazon-eks-ami/issues/1179
Link: https://github.com/awslabs/amazon-eks-ami/issues/1219
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20230320143725.8394-1-daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When debugging a crash that appears to be related to ftrace, but not for
sure, it is useful to know if a function was ever enabled by ftrace or
not. It could be that a BPF program was attached to it, or possibly a live
patch.
We are having crashes in the field where this information is not always
known. But having ftrace set a flag if a function has ever been attached
since boot up helps tremendously in trying to know if a crash had to do
with something using ftrace.
For analyzing crashes, the use of a kdump image can have access to the
flags. When looking at issues where the kernel did not panic, the
touched_functions file can simply be used.
Link: https://lore.kernel.org/linux-trace-kernel/20230124095653.6fd1640e@gandalf.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Chris Li <chriscli@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Use try_cmpxchg instead of cmpxchg (*ptr, old, new) == old.
x86 CMPXCHG instruction returns success in ZF flag, so this change
saves a compare after cmpxchg (and related move instruction in
front of cmpxchg).
Also, try_cmpxchg implicitly assigns old *ptr value to "old" when cmpxchg
fails. There is no need to re-read the value in the loop.
No functional change intended.
Link: https://lkml.kernel.org/r/20230305155532.5549-4-ubizjak@gmail.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Acked-by: Mukesh Ojha <quic_mojha@quicinc.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The return values of some functions are of boolean type. Change the
type of these function to bool and adjust their return values. Also
change type of some internal varibles to bool.
No functional change intended.
Link: https://lkml.kernel.org/r/20230305155532.5549-3-ubizjak@gmail.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The results of some static functions are not used. Change the
type of these function to void and remove unnecessary returns.
No functional change intended.
Link: https://lkml.kernel.org/r/20230305155532.5549-2-ubizjak@gmail.com
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The ftrace selftest code has a trace_direct_tramp() function which it
uses as a direct call trampoline. This happens to work on x86, since the
direct call's return address is in the usual place, and can be returned
to via a RET, but in general the calling convention for direct calls is
different from regular function calls, and requires a trampoline written
in assembly.
On s390, regular function calls place the return address in %r14, and an
ftrace patch-site in an instrumented function places the trampoline's
return address (which is within the instrumented function) in %r0,
preserving the original %r14 value in-place. As a regular C function
will return to the address in %r14, using a C function as the trampoline
results in the trampoline returning to the caller of the instrumented
function, skipping the body of the instrumented function.
Note that the s390 issue is not detcted by the ftrace selftest code, as
the instrumented function is trivial, and returning back into the caller
happens to be equivalent.
On arm64, regular function calls place the return address in x30, and
an ftrace patch-site in an instrumented function saves this into r9
and places the trampoline's return address (within the instrumented
function) in x30. A regular C function will return to the address in
x30, but will not restore x9 into x30. Consequently, using a C function
as the trampoline results in returning to the trampoline's return
address having corrupted x30, such that when the instrumented function
returns, it will return back into itself.
To avoid future issues in this area, remove the trace_direct_tramp()
function, and require that each architecture with direct calls provides
a stub trampoline, named ftrace_stub_direct_tramp. This can be written
to handle the architecture's trampoline calling convention, and in
future could be used elsewhere (e.g. in the ftrace ops sample, to
measure the overhead of direct calls), so we may as well always build it
in.
Link: https://lkml.kernel.org/r/20230321140424.345218-8-revest@chromium.org
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Li Huafei <lihuafei1@huawei.com>
Cc: Xu Kuohai <xukuohai@huawei.com>
Signed-off-by: Florent Revest <revest@chromium.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Direct called trampolines can be called in two ways:
- either from the ftrace callsite. In this case, they do not access any
struct ftrace_regs nor pt_regs
- Or, if a ftrace ops is also attached, from the end of a ftrace
trampoline. In this case, the call_direct_funcs ops is in charge of
setting the direct call trampoline's address in a struct ftrace_regs
Since:
commit 9705bc7096 ("ftrace: pass fregs to arch_ftrace_set_direct_caller()")
The later case no longer requires a full pt_regs. It only needs a struct
ftrace_regs so DIRECT_CALLS can work with both WITH_ARGS or WITH_REGS.
With architectures like arm64 already abandoning WITH_REGS in favor of
WITH_ARGS, it's important to have DIRECT_CALLS work WITH_ARGS only.
Link: https://lkml.kernel.org/r/20230321140424.345218-7-revest@chromium.org
Signed-off-by: Florent Revest <revest@chromium.org>
Co-developed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
All direct calls are now registered using the register_ftrace_direct API
so each ops can jump to only one direct-called trampoline.
By storing the direct called trampoline address directly in the ops we
can save one hashmap lookup in the direct call ops and implement arm64
direct calls on top of call ops.
Link: https://lkml.kernel.org/r/20230321140424.345218-6-revest@chromium.org
Signed-off-by: Florent Revest <revest@chromium.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Now that the original _ftrace_direct APIs are gone, the "_multi"
suffixes only add confusion.
Link: https://lkml.kernel.org/r/20230321140424.345218-5-revest@chromium.org
Signed-off-by: Florent Revest <revest@chromium.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
This API relies on a single global ops, used for all direct calls
registered with it. However, to implement arm64 direct calls, we need
each ops to point to a single direct call trampoline.
Link: https://lkml.kernel.org/r/20230321140424.345218-4-revest@chromium.org
Signed-off-by: Florent Revest <revest@chromium.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The _multi API requires that users keep their own ops but can enforce
that an op is only associated to one direct call.
Link: https://lkml.kernel.org/r/20230321140424.345218-3-revest@chromium.org
Signed-off-by: Florent Revest <revest@chromium.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
A common pattern when using the ftrace_direct_multi API is to unregister
the ops and also immediately free its filter. We've noticed it's very
easy for users to miss calling ftrace_free_filter().
This adds a "free_filters" argument to unregister_ftrace_direct_multi()
to both remind the user they should free filters and also to make their
life easier.
Link: https://lkml.kernel.org/r/20230321140424.345218-2-revest@chromium.org
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Florent Revest <revest@chromium.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
RCU sometimes needs to perform a delayed wake up for specific kthreads
handling offloaded callbacks (RCU_NOCB). These wakeups are performed
by timers and upon entry to idle (also to guest and to user on nohz_full).
However the delayed wake-up on kernel exit is actually performed after
the thread flags are fetched towards the fast path check for work to
do on exit to user. As a result, and if there is no other pending work
to do upon that kernel exit, the current task will resume to userspace
with TIF_RESCHED set and the pending wake up ignored.
Fix this with fetching the thread flags _after_ the delayed RCU-nocb
kthread wake-up.
Fixes: 47b8ff194c ("entry: Explicitly flush pending rcuog wakeup before last rescheduling point")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230315194349.10798-3-joel@joelfernandes.org
Commit 829c1651e9 ("sched/fair: sanitize vruntime of entity being placed")
fixes an overflowing bug, but ignore a case that se->exec_start is reset
after a migration.
For fixing this case, we delay the reset of se->exec_start after
placing the entity which se->exec_start to detect long sleeping task.
In order to take into account a possible divergence between the clock_task
of 2 rqs, we increase the threshold to around 104 days.
Fixes: 829c1651e9 ("sched/fair: sanitize vruntime of entity being placed")
Originally-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Qiao <zhangqiao22@huawei.com>
Link: https://lore.kernel.org/r/20230317160810.107988-1-vincent.guittot@linaro.org
__enter_from_user_mode() is triggering noinstr warnings with
CONFIG_DEBUG_PREEMPT due to its call of preempt_count_add() via
ct_state().
The preemption disable isn't needed as interrupts are already disabled.
And the context_tracking_enabled() check in ct_state() also isn't needed
as that's already being done by the CT_WARN_ON().
Just use __ct_state() instead.
Fixes the following warnings:
vmlinux.o: warning: objtool: enter_from_user_mode+0xba: call to preempt_count_add() leaves .noinstr.text section
vmlinux.o: warning: objtool: syscall_enter_from_user_mode+0xf9: call to preempt_count_add() leaves .noinstr.text section
vmlinux.o: warning: objtool: syscall_enter_from_user_mode_prepare+0xc7: call to preempt_count_add() leaves .noinstr.text section
vmlinux.o: warning: objtool: irqentry_enter_from_user_mode+0xba: call to preempt_count_add() leaves .noinstr.text section
Fixes: 171476775d ("context_tracking: Convert state to atomic_t")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/d8955fa6d68dc955dda19baf13ae014ae27926f5.1677369694.git.jpoimboe@kernel.org
This moves all hugetlb sysctls to its own file, also kill an
useless hugetlb_treat_movable_handler() defination.
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
The sysctl_unprivileged_userfaultfd is part of userfaultfd, move it to
its own file.
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
The ref_scale_shutdown() kthread/function uses wait_event() to wait for
the refscale test to complete. However, although the read-side tests
are normally extremely fast, there is no law against specifying a very
large value for the refscale.loops module parameter or against having
a slow read-side primitive. Either way, this might well trigger the
hung-task timeout.
This commit therefore replaces those wait_event() calls with calls to
wait_event_idle(), which do not trigger the hung-task timeout.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
The rcu_scale_shutdown() and kfree_scale_shutdown() kthreads/functions
use wait_event() to wait for the rcuscale test to complete. However,
each updater thread in such a test waits for at least 100 grace periods.
If each grace period takes more than 1.2 seconds, which is long, but
not insanely so, this can trigger the hung-task timeout.
This commit therefore replaces those wait_event() calls with calls to
wait_event_idle(), which do not trigger the hung-task timeout.
Reported-by: kernel test robot <yujie.liu@intel.com>
Reported-by: Liam Howlett <liam.howlett@oracle.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Yujie Liu <yujie.liu@intel.com>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Given a non-zero rcutorture.nocbs_nthreads module parameter, the specified
number of nocb kthreads will be created, regardless of whether or not
the RCU implementation under test is capable of offloading callbacks.
Please note that even vanilla RCU is incapable of offloading in kernels
built with CONFIG_RCU_NOCB_CPU=n. And when the RCU implementation is
incapable of offloading callbacks, there is no point in creating those
kthreads.
This commit therefore checks the cur_ops.torture_type module parameter and
CONFIG_RCU_NOCB_CPU Kconfig option in order to avoid creating unnecessary
nocb tasks.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
[ boqun: Fix checkpatch warning ]
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
The parameter 'struct module *' in the hook function associated with
{module_}kallsyms_on_each_symbol() is no longer used. Delete it.
Suggested-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Reviewed-by: Vincenzo Palazzo <vincenzopalazzodev@gmail.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
- Fix setting affinity of hwlat threads in containers
Using sched_set_affinity() has unwanted side effects when being
called within a container. Use set_cpus_allowed_ptr() instead.
- Fix per cpu thread management of the hwlat tracer
* Do not start per_cpu threads if one is already running for the CPU.
* When starting per_cpu threads, do not clear the kthread variable
as it may already be set to running per cpu threads
- Fix return value for test_gen_kprobe_cmd()
On error the return value was overwritten by being set to
the result of the call from kprobe_event_delete(), which would
likely succeed, and thus have the function return success.
- Fix splice() reads from the trace file that was broken by
36e2c7421f ("fs: don't allow splice read/write without explicit ops")
- Remove obsolete and confusing comment in ring_buffer.c
The original design of the ring buffer used struct page flags
for tricks to optimize, which was shortly removed due to them
being tricks. But a comment for those tricks remained.
- Set local functions and variables to static
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZBdIkBQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qti2AP49s1GM8teFgDF/CO3oa45BoYq1lMJO
1Z+x+mS/bdUAZgEAw+3KGo8oZDuvWu/nr04JPeoy0GL1/JnbQ6JNCCjzhQc=
=Yk66
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.3-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing fixes from Steven Rostedt:
- Fix setting affinity of hwlat threads in containers
Using sched_set_affinity() has unwanted side effects when being
called within a container. Use set_cpus_allowed_ptr() instead
- Fix per cpu thread management of the hwlat tracer:
- Do not start per_cpu threads if one is already running for the CPU
- When starting per_cpu threads, do not clear the kthread variable
as it may already be set to running per cpu threads
- Fix return value for test_gen_kprobe_cmd()
On error the return value was overwritten by being set to the result
of the call from kprobe_event_delete(), which would likely succeed,
and thus have the function return success
- Fix splice() reads from the trace file that was broken by commit
36e2c7421f ("fs: don't allow splice read/write without explicit
ops")
- Remove obsolete and confusing comment in ring_buffer.c
The original design of the ring buffer used struct page flags for
tricks to optimize, which was shortly removed due to them being
tricks. But a comment for those tricks remained
- Set local functions and variables to static
* tag 'trace-v6.3-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing/hwlat: Replace sched_setaffinity with set_cpus_allowed_ptr
ring-buffer: remove obsolete comment for free_buffer_page()
tracing: Make splice_read available again
ftrace: Set direct_ops storage-class-specifier to static
trace/hwlat: Do not start per-cpu thread if it is already running
trace/hwlat: Do not wipe the contents of per-cpu thread data
tracing/osnoise: set several trace_osnoise.c variables storage-class-specifier to static
tracing: Fix wrong return in kprobe_event_gen_test.c
There is a problem with the behavior of hwlat in a container,
resulting in incorrect output. A warning message is generated:
"cpumask changed while in round-robin mode, switching to mode none",
and the tracing_cpumask is ignored. This issue arises because
the kernel thread, hwlatd, is not a part of the container, and
the function sched_setaffinity is unable to locate it using its PID.
Additionally, the task_struct of hwlatd is already known.
Ultimately, the function set_cpus_allowed_ptr achieves
the same outcome as sched_setaffinity, but employs task_struct
instead of PID.
Test case:
# cd /sys/kernel/tracing
# echo 0 > tracing_on
# echo round-robin > hwlat_detector/mode
# echo hwlat > current_tracer
# unshare --fork --pid bash -c 'echo 1 > tracing_on'
# dmesg -c
Actual behavior:
[573502.809060] hwlat_detector: cpumask changed while in round-robin mode, switching to mode none
Link: https://lore.kernel.org/linux-trace-kernel/20230316144535.1004952-1-costa.shul@redhat.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Fixes: 0330f7aa8e ("tracing: Have hwlat trace migrate across tracing_cpumask CPUs")
Signed-off-by: Costa Shulyupin <costa.shul@redhat.com>
Acked-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The comment refers to mm/slob.c which is being removed. It comes from
commit ed56829cb3 ("ring_buffer: reset buffer page when freeing") and
according to Steven the borrowed code was a page mapcount and mapping
reset, which was later removed by commit e4c2ce82ca ("ring_buffer:
allocate buffer page pointer"). Thus the comment is not accurate anyway,
remove it.
Link: https://lore.kernel.org/linux-trace-kernel/20230315142446.27040-1-vbabka@suse.cz
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Reported-by: Mike Rapoport <mike.rapoport@gmail.com>
Suggested-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Fixes: e4c2ce82ca ("ring_buffer: allocate buffer page pointer")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Since the commit 36e2c7421f ("fs: don't allow splice read/write
without explicit ops") is applied to the kernel, splice() and
sendfile() calls on the trace file (/sys/kernel/debug/tracing
/trace) return EINVAL.
This patch restores these system calls by initializing splice_read
in file_operations of the trace file. This patch only enables such
functionalities for the read case.
Link: https://lore.kernel.org/linux-trace-kernel/20230314013707.28814-1-sfoon.kim@samsung.com
Cc: stable@vger.kernel.org
Fixes: 36e2c7421f ("fs: don't allow splice read/write without explicit ops")
Signed-off-by: Sung-hun Kim <sfoon.kim@samsung.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
This effectively reverts the change made in commit f689054aac
("percpu_counter: add percpu_counter_sum_all interface") as the
race condition percpu_counter_sum_all() was invented to avoid is
now handled directly in percpu_counter_sum() and nobody needs to
care about summing racing with cpu unplug anymore.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
to groups
- Update the proper event time tracking variable depending on the
event type
- Fix a memory overwrite issue due to using the wrong function argument
when outputting perf events
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmQXBiQACgkQEsHwGGHe
VUrTHg//dTd+7Oo1vao32lZCkVW0bBvx3KzoyAcvEPh7Yu3Cw+tZkfI8lWY8dgU3
lgecN1pUa9IiZNULFbulXqRumcq3HIRKCp/RejEmR3W30KCwxnEAwGdakkCPEcMS
2vXl4SZn7rU8avKJBd/ZUUS5lDWz6YHPNbLX3iamFH+7oN56Vf2LFJuuO0WtZSgr
Sqv25oaV1ZZjeEAI5KrPM04hcldj4BXGPoIPvP30/c3z6aPnwt6v5H2gw5IUJNHl
Qm0ycgW7An6iNR4bFpm/NP9cSAI7FgmAB3VuhQAExl6NroUxE8R+HEO04PsJAOgd
BpNB1eXIjrTgw8r+TsDq4Z9VY8fgMtHbwutAp348XwF6//5F/WOzojwSGAAX7LCx
5+fK4eA4gLkQJmuyI5/3fNCC0EnUTsK/YCC5eFyas8KFERTmmq8hafCBQO4W9VPr
8A7TD2X6fWNWvS/UF1RqVv/gCa0ub7ifz+eOx42/vK2PXn4vsjMv0JtwnARj8PzZ
Ymo/3ArmBWhuP+94FdVP4AduBuEdHvWO7EZG5buRdOo//sb2MwX05zufowLvR9YQ
E+VkZxf0RFPaDQdPnoS/SwFE206ii2Z5MtgsQX7XpoBo06R5AzZQlhlMl/StFvN0
65ut1dWwqrVG0uSN0GOzTIZl5x5YZASm5I49ItZsnZyoMPTwDOc=
=l7PF
-----END PGP SIGNATURE-----
Merge tag 'perf_urgent_for_v6.3_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Borislav Petkov:
- Check whether sibling events have been deactivated before adding them
to groups
- Update the proper event time tracking variable depending on the event
type
- Fix a memory overwrite issue due to using the wrong function argument
when outputting perf events
* tag 'perf_urgent_for_v6.3_rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf: Fix check before add_event_to_groups() in perf_group_detach()
perf: fix perf_event_context->time
perf/core: Fix perf_output_begin parameter is incorrectly invoked in perf_event_bpf_output
smatch reports this warning
kernel/trace/ftrace.c:2594:19: warning:
symbol 'direct_ops' was not declared. Should it be static?
The variable direct_ops is only used in ftrace.c, so it should be static
Link: https://lore.kernel.org/linux-trace-kernel/20230311135113.711824-1-trix@redhat.com
Signed-off-by: Tom Rix <trix@redhat.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The hwlatd tracer will end up starting multiple per-cpu threads with
the following script:
#!/bin/sh
cd /sys/kernel/debug/tracing
echo 0 > tracing_on
echo hwlat > current_tracer
echo per-cpu > hwlat_detector/mode
echo 100000 > hwlat_detector/width
echo 200000 > hwlat_detector/window
echo 1 > tracing_on
To fix the issue, check if the hwlatd thread for the cpu is already
running, before starting a new one. Along with the previous patch, this
avoids running multiple instances of the same CPU thread on the system.
Link: https://lore.kernel.org/all/20230302113654.2984709-1-tero.kristo@linux.intel.com/
Link: https://lkml.kernel.org/r/20230310100451.3948583-3-tero.kristo@linux.intel.com
Cc: stable@vger.kernel.org
Fixes: f46b16520a ("trace/hwlat: Implement the per-cpu mode")
Signed-off-by: Tero Kristo <tero.kristo@linux.intel.com>
Acked-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
smatch reports several similar warnings
kernel/trace/trace_osnoise.c:220:1: warning:
symbol '__pcpu_scope_per_cpu_osnoise_var' was not declared. Should it be static?
kernel/trace/trace_osnoise.c:243:1: warning:
symbol '__pcpu_scope_per_cpu_timerlat_var' was not declared. Should it be static?
kernel/trace/trace_osnoise.c:335:14: warning:
symbol 'interface_lock' was not declared. Should it be static?
kernel/trace/trace_osnoise.c:2242:5: warning:
symbol 'timerlat_min_period' was not declared. Should it be static?
kernel/trace/trace_osnoise.c:2243:5: warning:
symbol 'timerlat_max_period' was not declared. Should it be static?
These variables are only used in trace_osnoise.c, so it should be static
Link: https://lore.kernel.org/linux-trace-kernel/20230309150414.4036764-1-trix@redhat.com
Signed-off-by: Tom Rix <trix@redhat.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Overwriting the error code with the deletion result may cause the
function to return 0 despite encountering an error. Commit b111545d26
("tracing: Remove the useless value assignment in
test_create_synth_event()") solves a similar issue by
returning the original error code, so this patch does the same.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
Link: https://lore.kernel.org/linux-trace-kernel/20230131075818.5322-1-aagusev@ispras.ru
Signed-off-by: Anton Gusev <aagusev@ispras.ru>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Allow ld_imm64 insn with BPF_PSEUDO_BTF_ID to hold the address of kfunc. The
ld_imm64 pointing to a valid kfunc will be seen as non-null PTR_TO_MEM by
is_branch_taken() logic of the verifier, while libbpf will resolve address to
unknown kfunc as ld_imm64 reg, 0 which will also be recognized by
is_branch_taken() and the verifier will proceed dead code elimination. BPF
programs can use this logic to detect at load time whether kfunc is present in
the kernel with bpf_ksym_exists() macro that is introduced in the next patches.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Martin KaFai Lau <martin.lau@kernel.org>
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20230317201920.62030-2-alexei.starovoitov@gmail.com
We need to reset forceidle_sum to 0 when reading from root, since the
bstat we accumulate into is stack allocated.
To make this more robust, just replace the existing cputime reset with a
memset of the overall bstat.
Signed-off-by: Josh Don <joshdon@google.com>
Fixes: 1fcf54deb7 ("sched/core: add forced idle accounting for cgroups")
Cc: stable@vger.kernel.org # v6.0+
Signed-off-by: Tejun Heo <tj@kernel.org>
Replace mutex_[un]lock() with cgroup_[un]lock() wrappers to stay
consistent across cgroup core and other subsystem code, while
operating on the cgroup_mutex.
Signed-off-by: Kamalesh Babulal <kamalesh.babulal@oracle.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
The workqueue watchdog reports a lockup when there was not any progress
in the worker pool for a long time. The progress means that a pending
work item starts being proceed.
Worker pools for unbound workqueues always wake up an idle worker and
try to process the work immediately. The last idle worker has to create
new worker first. The stall might happen only when a new worker could
not be created in which case an error should get printed. Another problem
might be too high load. In this case, workers are victims of a global
system problem.
Worker pools for CPU bound workqueues are designed for lightweight
work items that do not need much CPU time. They are proceed one by
one on a single worker. New worker is used only when a work is sleeping.
It creates one additional scenario. The stall might happen when
the CPU-bound workqueue is used for CPU-intensive work.
More precisely, the stall is detected when a CPU-bound worker is in
the TASK_RUNNING state for too long. In this case, it might be useful
to see the backtrace from the problematic worker.
The information how long a worker is in the running state is not available.
But the CPU-bound worker pools do not have many workers in the running
state by definition. And only few pools are typically blocked.
It should be acceptable to print backtraces from all workers in
TASK_RUNNING state in the stalled worker pools. The number of false
positives should be very low.
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Rescuers are created when a workqueue with WQ_MEM_RECLAIM is allocated.
It typically happens during the system boot.
systemd switches the root filesystem from initrd to the booted system
during boot. It kills processes that block the switch for too long.
One of the process might be modprobe that tries to create a workqueue.
These problems are hard to reproduce. Also alloc_workqueue() does not
pass the error code. Make the debugging easier by printing an error,
similar to create_worker().
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
kthread_create_on_node() might get interrupted(). It is rare but realistic.
For example, when an unbound workqueue is allocated in module_init()
callback. It is done in the context of the "modprobe" process. And,
for example, systemd might kill pending processes when switching root
from initrd to the booted system.
The interrupt is a one-off event and the race might be hard to reproduce.
It is always worth printing.
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The workqueue watchdog reports a lockup when there was not any progress
in the worker pool for a long time. The progress means that a pending
work item starts being proceed.
The progress is guaranteed by using idle workers or creating new workers
for pending work items.
There are several reasons why a new worker could not be created:
+ there is not enough memory
+ there is no free pool ID (IDR API)
+ the system reached PID limit
+ the process creating the new worker was interrupted
+ the last idle worker (manager) has not been scheduled for a long
time. It was not able to even start creating the kthread.
None of these failures is reported at the moment. The only clue is that
show_one_worker_pool() prints that there is a manager. It is the last
idle worker that is responsible for creating a new one. But it is not
clear if create_worker() is failing and why.
Make the debugging easier by printing errors in create_worker().
The error code is important, especially from kthread_create_on_node().
It helps to distinguish the various reasons. For example, reaching
memory limit (-ENOMEM), other system limits (-EAGAIN), or process
interrupted (-EINTR).
Use pr_once() to avoid repeating the same error every CREATE_COOLDOWN
for each stuck worker pool.
Ratelimited printk() might be better. It would help to know if the problem
remains. It would be more clear if the create_worker() errors and workqueue
stalls are related. Also old messages might get lost when the internal log
buffer is full. The problem is that printk() might touch the watchdog.
For example, see touch_nmi_watchdog() in serial8250_console_write().
It would require synchronization of the begin and length of the ratelimit
interval with the workqueue watchdog. Otherwise, the error messages
might break the watchdog. This does not look worth the complexity.
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The workqueue watchdog prints a warning when there is no progress in
a worker pool. Where the progress means that the pool started processing
a pending work item.
Note that it is perfectly fine to process work items much longer.
The progress should be guaranteed by waking up or creating idle
workers.
show_one_worker_pool() prints state of non-idle worker pool. It shows
a delay since the last pool->watchdog_ts.
The timestamp is updated when a first pending work is queued in
__queue_work(). Also it is updated when a work is dequeued for
processing in worker_thread() and rescuer_thread().
The delay is misleading when there is no pending work item. In this
case it shows how long the last work item is being proceed. Show
zero instead. There is no stall if there is no pending work.
Fixes: 82607adcf9 ("workqueue: implement lockup detector")
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Use pr_warn_once() to achieve the same thing. It's simpler.
Signed-off-by: Ammar Faizi <ammarfaizi2@gnuweeb.org>
Reviewed-by: Lai Jiangshan <jiangshanlai@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Direct access to the struct bus_type dev_root pointer is going away soon
so replace that with a call to bus_get_dev_root() instead, which is what
it is there for.
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20230313182918.1312597-8-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Direct access to the struct bus_type dev_root pointer is going away soon
so replace that with a call to bus_get_dev_root() instead, which is what
it is there for.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Phil Auld <pauld@redhat.com>
Cc: Steven Price <steven.price@arm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Link: https://lore.kernel.org/r/20230313182918.1312597-7-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The debug files under sched/domains can take a long time to regenerate,
especially when updates are done one at a time. Move these files under
the sched verbose debug flag. Allow changes to verbose to trigger
generation of the files. This lets a user batch the updates but still
have the information available. The detailed topology printk messages
are also under verbose.
Discussion that lead to this approach can be found in the link below.
Simplified code to maintain use of debugfs bool routines suggested by
Michael Ellerman <mpe@ellerman.id.au>.
Signed-off-by: Phil Auld <pauld@redhat.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Tested-by: Vishal Chourasia <vishalc@linux.vnet.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Vishal Chourasia <vishalc@linux.vnet.ibm.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/all/Y01UWQL2y2r69sBX@li-05afa54c-330e-11b2-a85c-e3f3aa0db1e9.ibm.com/
Link: https://lore.kernel.org/r/20230303183754.3076321-1-pauld@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Moving find_kallsyms_symbol_value from kernel/module/internal.h to
include/linux/module.h. The reason is that internal.h is not prepared to
be included when CONFIG_MODULES=n. find_kallsyms_symbol_value is used by
kernel/bpf/verifier.c and including internal.h from it (without modules)
leads into a compilation error:
In file included from ../include/linux/container_of.h:5,
from ../include/linux/list.h:5,
from ../include/linux/timer.h:5,
from ../include/linux/workqueue.h:9,
from ../include/linux/bpf.h:10,
from ../include/linux/bpf-cgroup.h:5,
from ../kernel/bpf/verifier.c:7:
../kernel/bpf/../module/internal.h: In function 'mod_find':
../include/linux/container_of.h:20:54: error: invalid use of undefined type 'struct module'
20 | static_assert(__same_type(*(ptr), ((type *)0)->member) || \
| ^~
[...]
This patch fixes the above error.
Fixes: 31bf1dbccf ("bpf: Fix attaching fentry/fexit/fmod_ret/lsm to modules")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Viktor Malik <vmalik@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/oe-kbuild-all/202303161404.OrmfCy09-lkp@intel.com/
Link: https://lore.kernel.org/bpf/20230317095601.386738-1-vmalik@redhat.com
For every BPF_ADD/SUB involving a pointer, adjust_ptr_min_max_vals()
ensures that the resulting pointer has a constant offset if
bypass_spec_v1 is false. This is ensured by calling sanitize_check_bounds()
which in turn calls check_stack_access_for_ptr_arithmetic(). There,
-EACCESS is returned if the register's offset is not constant, thereby
rejecting the program.
In summary, an unprivileged user must never be able to create stack
pointers with a variable offset. That is also the case, because a
respective check in check_stack_write() is missing. If they were able
to create a variable-offset pointer, users could still use it in a
stack-write operation to trigger unsafe speculative behavior [1].
Because unprivileged users must already be prevented from creating
variable-offset stack pointers, viable options are to either remove
this check (replacing it with a clarifying comment), or to turn it
into a "verifier BUG"-message, also adding a similar check in
check_stack_write() (for consistency, as a second-level defense).
This patch implements the first option to reduce verifier bloat.
This check was introduced by commit 01f810ace9 ("bpf: Allow
variable-offset stack access") which correctly notes that
"variable-offset reads and writes are disallowed (they were already
disallowed for the indirect access case) because the speculative
execution checking code doesn't support them". However, it does not
further discuss why the check in check_stack_read() is necessary.
The code which made this check obsolete was also introduced in this
commit.
I have compiled ~650 programs from the Linux selftests, Linux samples,
Cilium, and libbpf/examples projects and confirmed that none of these
trigger the check in check_stack_read() [2]. Instead, all of these
programs are, as expected, already rejected when constructing the
variable-offset pointers. Note that the check in
check_stack_access_for_ptr_arithmetic() also prints "off=%d" while the
code removed by this patch does not (the error removed does not appear
in the "verification_error" values). For reproducibility, the
repository linked includes the raw data and scripts used to create
the plot.
[1] https://arxiv.org/pdf/1807.03757.pdf
[2] 53dc19fcf4/data/plots/23-02-26_23-56_bpftool/bpftool/0004-errors.pdf?inline=false
Fixes: 01f810ace9 ("bpf: Allow variable-offset stack access")
Signed-off-by: Luis Gerhorst <gerhorst@cs.fau.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230315165358.23701-1-gerhorst@cs.fau.de
Now that struct bpf_cpumask is RCU safe, there's no need for this kfunc.
Rather than doing the following:
private(MASK) static struct bpf_cpumask __kptr *global;
int BPF_PROG(prog, s32 cpu, ...)
{
struct bpf_cpumask *cpumask;
bpf_rcu_read_lock();
cpumask = bpf_cpumask_kptr_get(&global);
if (!cpumask) {
bpf_rcu_read_unlock();
return -1;
}
bpf_cpumask_setall(cpumask);
...
bpf_cpumask_release(cpumask);
bpf_rcu_read_unlock();
}
Programs can instead simply do (assume same global cpumask):
int BPF_PROG(prog, ...)
{
struct bpf_cpumask *cpumask;
bpf_rcu_read_lock();
cpumask = global;
if (!cpumask) {
bpf_rcu_read_unlock();
return -1;
}
bpf_cpumask_setall(cpumask);
...
bpf_rcu_read_unlock();
}
In other words, no extra atomic acquire / release, and less boilerplate
code.
This patch removes both the kfunc, as well as its selftests and
documentation.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230316054028.88924-5-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
struct bpf_cpumask is a BPF-wrapper around the struct cpumask type which
can be instantiated by a BPF program, and then queried as a cpumask in
similar fashion to normal kernel code. The previous patch in this series
makes the type fully RCU safe, so the type can be included in the
rcu_protected_type BTF ID list.
A subsequent patch will remove bpf_cpumask_kptr_get(), as it's no longer
useful now that we can just treat the type as RCU safe by default and do
our own if check.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230316054028.88924-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The struct bpf_cpumask type uses the bpf_mem_cache_{alloc,free}() APIs
to allocate and free its cpumasks. The bpf_mem allocator may currently
immediately reuse some memory when its freed, without waiting for an RCU
read cycle to elapse. We want to be able to treat struct bpf_cpumask
objects as completely RCU safe.
This is necessary for two reasons:
1. bpf_cpumask_kptr_get() currently does an RCU-protected
refcnt_inc_not_zero(). This of course assumes that the underlying
memory is not reused, and is therefore unsafe in its current form.
2. We want to be able to get rid of bpf_cpumask_kptr_get() entirely, and
intead use the superior kptr RCU semantics now afforded by the
verifier.
This patch fixes (1), and enables (2), by making struct bpf_cpumask RCU
safe. A subsequent patch will update the verifier to allow struct
bpf_cpumask * pointers to be passed to KF_RCU kfuncs, and then a latter
patch will remove bpf_cpumask_kptr_get().
Fixes: 516f4d3397 ("bpf: Enable cpumasks to be queried and used as kptrs")
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230316054028.88924-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This resolves two problems with attachment of fentry/fexit/fmod_ret/lsm
to functions located in modules:
1. The verifier tries to find the address to attach to in kallsyms. This
is always done by searching the entire kallsyms, not respecting the
module in which the function is located. Such approach causes an
incorrect attachment address to be computed if the function to attach
to is shadowed by a function of the same name located earlier in
kallsyms.
2. If the address to attach to is located in a module, the module
reference is only acquired in register_fentry. If the module is
unloaded between the place where the address is found
(bpf_check_attach_target in the verifier) and register_fentry, it is
possible that another module is loaded to the same address which may
lead to potential errors.
Since the attachment must contain the BTF of the program to attach to,
we extract the module from it and search for the function address in the
correct module (resolving problem no. 1). Then, the module reference is
taken directly in bpf_check_attach_target and stored in the bpf program
(in bpf_prog_aux). The reference is only released when the program is
unloaded (resolving problem no. 2).
Signed-off-by: Viktor Malik <vmalik@redhat.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Link: https://lore.kernel.org/r/3f6a9d8ae850532b5ef864ef16327b0f7a669063.1678432753.git.vmalik@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Events should only be added to a groups rb tree if they have not been
removed from their context by list_del_event(). Since remove_on_exec
made it possible to call list_del_event() on individual events before
they are detached from their group, perf_group_detach() should check each
sibling's attach_state before calling add_event_to_groups() on it.
Fixes: 2e498d0a74 ("perf: Add support for event removal on exec")
Signed-off-by: Budimir Markovic <markovicbudimir@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/ZBFzvQV9tEqoHEtH@gentoo
Time readers rely on perf_event_context->[time|timestamp|timeoffset] to get
accurate time_enabled and time_running for an event. The difference between
ctx->timestamp and ctx->time is the among of time when the context is not
enabled. __update_context_time(ctx, false) is used to increase timestamp,
but not time. Therefore, it should only be called in ctx_sched_in() when
EVENT_TIME was not enabled.
Fixes: 09f5e7dc7a ("perf: Fix perf_event_read_local() time")
Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Link: https://lkml.kernel.org/r/20230313171608.298734-1-song@kernel.org
syzkaller reportes a KASAN issue with stack-out-of-bounds.
The call trace is as follows:
dump_stack+0x9c/0xd3
print_address_description.constprop.0+0x19/0x170
__kasan_report.cold+0x6c/0x84
kasan_report+0x3a/0x50
__perf_event_header__init_id+0x34/0x290
perf_event_header__init_id+0x48/0x60
perf_output_begin+0x4a4/0x560
perf_event_bpf_output+0x161/0x1e0
perf_iterate_sb_cpu+0x29e/0x340
perf_iterate_sb+0x4c/0xc0
perf_event_bpf_event+0x194/0x2c0
__bpf_prog_put.constprop.0+0x55/0xf0
__cls_bpf_delete_prog+0xea/0x120 [cls_bpf]
cls_bpf_delete_prog_work+0x1c/0x30 [cls_bpf]
process_one_work+0x3c2/0x730
worker_thread+0x93/0x650
kthread+0x1b8/0x210
ret_from_fork+0x1f/0x30
commit 267fb27352 ("perf: Reduce stack usage of perf_output_begin()")
use on-stack struct perf_sample_data of the caller function.
However, perf_event_bpf_output uses incorrect parameter to convert
small-sized data (struct perf_bpf_event) into large-sized data
(struct perf_sample_data), which causes memory overwriting occurs in
__perf_event_header__init_id.
Fixes: 267fb27352 ("perf: Reduce stack usage of perf_output_begin()")
Signed-off-by: Yang Jihong <yangjihong1@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230314044735.56551-1-yangjihong1@huawei.com
In general, if swiotlb is sufficient, the logic of index =
wrap_area_index(mem, index + 1) is fine, it will quickly take a slot and
release the area->lock; But if swiotlb is insufficient and the device
has min_align_mask requirements, such as NVME, we may not be able to
satisfy index == wrap and exit the loop properly. In this case, other
kernel threads will not be able to acquire the area->lock and release
the slot, resulting in a deadlock.
The current implementation of wrap_area_index does not involve a modulo
operation, so adjusting the wrap to ensure the loop ends is not trivial.
Introduce a new variable to record the number of loops and exit the loop
after completing the traversal.
Backtraces:
Other CPUs are waiting this core to exit the swiotlb_do_find_slots
loop.
[10199.924391] RIP: 0010:swiotlb_do_find_slots+0x1fe/0x3e0
[10199.924403] Call Trace:
[10199.924404] <TASK>
[10199.924405] swiotlb_tbl_map_single+0xec/0x1f0
[10199.924407] swiotlb_map+0x5c/0x260
[10199.924409] ? nvme_pci_setup_prps+0x1ed/0x340
[10199.924411] dma_direct_map_page+0x12e/0x1c0
[10199.924413] nvme_map_data+0x304/0x370
[10199.924415] nvme_prep_rq.part.0+0x31/0x120
[10199.924417] nvme_queue_rq+0x77/0x1f0
...
[ 9639.596311] NMI backtrace for cpu 48
[ 9639.596336] Call Trace:
[ 9639.596337]
[ 9639.596338] _raw_spin_lock_irqsave+0x37/0x40
[ 9639.596341] swiotlb_do_find_slots+0xef/0x3e0
[ 9639.596344] swiotlb_tbl_map_single+0xec/0x1f0
[ 9639.596347] swiotlb_map+0x5c/0x260
[ 9639.596349] dma_direct_map_sg+0x7a/0x280
[ 9639.596352] __dma_map_sg_attrs+0x30/0x70
[ 9639.596355] dma_map_sgtable+0x1d/0x30
[ 9639.596356] nvme_map_data+0xce/0x370
...
[ 9639.595665] NMI backtrace for cpu 50
[ 9639.595682] Call Trace:
[ 9639.595682]
[ 9639.595683] _raw_spin_lock_irqsave+0x37/0x40
[ 9639.595686] swiotlb_release_slots.isra.0+0x86/0x180
[ 9639.595688] dma_direct_unmap_sg+0xcf/0x1a0
[ 9639.595690] nvme_unmap_data.part.0+0x43/0xc0
Fixes: 1f221a0d0d ("swiotlb: respect min_align_mask")
Signed-off-by: GuoRui.Yu <GuoRui.Yu@linux.alibaba.com>
Signed-off-by: Xiaokang Hu <xiaokang.hxk@alibaba-inc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
The getaffinity() system call uses 'cpumask_size()' to decide how big
the CPU mask is - so far so good. It is indeed the allocation size of a
cpumask.
But the code also assumes that the whole allocation is initialized
without actually doing so itself. That's wrong, because we might have
fixed-size allocations (making copying and clearing more efficient), but
not all of it is then necessarily used if 'nr_cpu_ids' is smaller.
Having checked other users of 'cpumask_size()', they all seem to be ok,
either using it purely for the allocation size, or explicitly zeroing
the cpumask before using the size in bytes to copy it.
See for example the ublk_ctrl_get_queue_affinity() function that uses
the proper 'zalloc_cpumask_var()' to make sure that the whole mask is
cleared, whether the storage is on the stack or if it was an external
allocation.
Fix this by just zeroing the allocation before using it. Do the same
for the compat version of sched_getaffinity(), which had the same logic.
Also, for consistency, make sched_getaffinity() use 'cpumask_bits()' to
access the bits. For a cpumask_var_t, it ends up being a pointer to the
same data either way, but it's just a good idea to treat it like you
would a 'cpumask_t'. The compat case already did that.
Reported-by: Ryan Roberts <ryan.roberts@arm.com>
Link: https://lore.kernel.org/lkml/7d026744-6bd6-6827-0471-b5e8eae0be3f@arm.com/
Cc: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Do not allow histogram values to have modifies.
Can cause a NULL pointer dereference if they do.
- Warn if hist_field_name() is passed a NULL.
Prevent the NULL pointer dereference mentioned above.
- Fix invalid address look up race in lookup_rec()
- Define ftrace_stub_graph conditionally to prevent linker errors
- Always check if RCU is watching at all tracepoint locations
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZBDuTBQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qsboAP4yfrFYvIIKM5EkzkEiPI+V2hdlA12x
bt839jO5AWCmhAEAiY8FmKatpBJQKsiGqSOab8aHOMnhGFZwltCHAPa9PAI=
=vtA2
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing fixes from Steven Rostedt:
- Do not allow histogram values to have modifies. They can cause a NULL
pointer dereference if they do.
- Warn if hist_field_name() is passed a NULL. Prevent the NULL pointer
dereference mentioned above.
- Fix invalid address look up race in lookup_rec()
- Define ftrace_stub_graph conditionally to prevent linker errors
- Always check if RCU is watching at all tracepoint locations
* tag 'trace-v6.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing: Make tracepoint lockdep check actually test something
ftrace,kcfi: Define ftrace_stub_graph conditionally
ftrace: Fix invalid address access in lookup_rec() when index is 0
tracing: Check field value in hist_field_name()
tracing: Do not let histogram values have some modifiers
The commit 332ea1f697 ("bpf: Add bpf_cgroup_from_id() kfunc") added
bpf_cgroup_from_id() which calls current_cgns_cgroup_dfl() through
cgroup_get_from_id(). However, BPF programs may be attached to a point where
current->nsproxy has already been cleared to NULL by exit_task_namespace()
and calling bpf_cgroup_from_id() would cause an oops.
Just return the system-wide root if nsproxy has been cleared. This allows
all cgroups to be looked up after the task passed through
exit_task_namespace(), which semantically makes sense. Given that the only
way to get this behavior is through BPF programs, it seems safe but let's
see what others think.
Fixes: 332ea1f697 ("bpf: Add bpf_cgroup_from_id() kfunc")
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/ZBDuVWiFj2jiz3i8@slm.duckdns.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For multithreaded jobs the computed chunk size is rounded up by the
caller-specified alignment. However, the number of worker threads to
use is computed using the minimum chunk size without taking alignment
into account. A sufficiently large alignment value can result in too
many worker threads being allocated for the job.
Signed-off-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Acked-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Since commit ee6d3dd4ed ("driver core: make kobj_type constant.")
the driver core allows the usage of const struct kobj_type.
Take advantage of this to constify the structure definition to prevent
modification at runtime.
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Acked-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The verifier rejects the code:
bpf_strncmp(task->comm, 16, "my_task");
with the message:
16: (85) call bpf_strncmp#182
R1 type=trusted_ptr_ expected=fp, pkt, pkt_meta, map_key, map_value, mem, ringbuf_mem, buf
Teach the verifier that such access pattern is safe.
Do not allow untrusted and legacy ptr_to_btf_id to be passed into helpers.
Reported-by: David Vernet <void@manifault.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230313235845.61029-3-alexei.starovoitov@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
bpf_strncmp() doesn't write into its first argument.
Make sure that the verifier knows about it.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230313235845.61029-2-alexei.starovoitov@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
When a local kptr is stashed in a map and freed when the map goes away,
currently an error like the below appears:
[ 39.195695] BUG: using smp_processor_id() in preemptible [00000000] code: kworker/u32:15/2875
[ 39.196549] caller is bpf_mem_free+0x56/0xc0
[ 39.196958] CPU: 15 PID: 2875 Comm: kworker/u32:15 Tainted: G O 6.2.0-13016-g22df776a9a86 #4477
[ 39.197897] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[ 39.198949] Workqueue: events_unbound bpf_map_free_deferred
[ 39.199470] Call Trace:
[ 39.199703] <TASK>
[ 39.199911] dump_stack_lvl+0x60/0x70
[ 39.200267] check_preemption_disabled+0xbf/0xe0
[ 39.200704] bpf_mem_free+0x56/0xc0
[ 39.201032] ? bpf_obj_new_impl+0xa0/0xa0
[ 39.201430] bpf_obj_free_fields+0x1cd/0x200
[ 39.201838] array_map_free+0xad/0x220
[ 39.202193] ? finish_task_switch+0xe5/0x3c0
[ 39.202614] bpf_map_free_deferred+0xea/0x210
[ 39.203006] ? lockdep_hardirqs_on_prepare+0xe/0x220
[ 39.203460] process_one_work+0x64f/0xbe0
[ 39.203822] ? pwq_dec_nr_in_flight+0x110/0x110
[ 39.204264] ? do_raw_spin_lock+0x107/0x1c0
[ 39.204662] ? lockdep_hardirqs_on_prepare+0xe/0x220
[ 39.205107] worker_thread+0x74/0x7a0
[ 39.205451] ? process_one_work+0xbe0/0xbe0
[ 39.205818] kthread+0x171/0x1a0
[ 39.206111] ? kthread_complete_and_exit+0x20/0x20
[ 39.206552] ret_from_fork+0x1f/0x30
[ 39.206886] </TASK>
This happens because the call to __bpf_obj_drop_impl I added in the patch
adding support for stashing local kptrs doesn't disable migration. Prior
to that patch, __bpf_obj_drop_impl logic only ran when called by a BPF
progarm, whereas now it can be called from map free path, so it's
necessary to explicitly disable migration.
Also, refactor a bit to just call __bpf_obj_drop_impl directly instead
of bothering w/ dtor union and setting pointer-to-obj_drop.
Fixes: c8e1875409 ("bpf: Support __kptr to local kptrs")
Reported-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230313214641.3731908-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Merge commit bf9bec4cb3 ("Merge branch 'bpf: Allow reads from uninit stack'")
from bpf-next to bpf tree to address verification issues in some programs
due to stack usage.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Fix wrong order of frame index vs register/slot index in precision
propagation verbose (level 2) output. It's wrong and very confusing as is.
Fixes: 529409ea92 ("bpf: propagate precision across all frames, not just the last one")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230313184017.4083374-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>