Commit Graph

5952 Commits (ea73e5ea442ee2aade67b1fb1233ccb3cbea2ceb)

Author SHA1 Message Date
Jakub Kicinski e63c1822ac Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Cross-merge networking fixes after downstream PR.

Conflicts:

drivers/net/ethernet/broadcom/bnxt/bnxt.c
  e009b2efb7 ("bnxt_en: Remove mis-applied code from bnxt_cfg_ntp_filters()")
  0f2b214779 ("bnxt_en: Fix compile error without CONFIG_RFS_ACCEL")
https://lore.kernel.org/all/20240105115509.225aa8a2@canb.auug.org.au/

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-01-04 18:06:46 -08:00
Linus Torvalds 453f5db061 tracing fixes for v6.7-rc7:
- Fix readers that are blocked on the ring buffer when buffer_percent is
   100%. They are supposed to wake up when the buffer is full, but
   because the sub-buffer that the writer is on is never considered
   "dirty" in the calculation, dirty pages will never equal nr_pages.
   Add +1 to the dirty count in order to count for the sub-buffer that
   the writer is on.
 
 - When a reader is blocked on the "snapshot_raw" file, it is to be
   woken up when a snapshot is done and be able to read the snapshot
   buffer. But because the snapshot swaps the buffers (the main one
   with the snapshot one), and the snapshot reader is waiting on the
   old snapshot buffer, it was not woken up (because it is now on
   the main buffer after the swap). Worse yet, when it reads the buffer
   after a snapshot, it's not reading the snapshot buffer, it's reading
   the live active main buffer.
 
   Fix this by forcing a wakeup of all readers on the snapshot buffer when
   a new snapshot happens, and then update the buffer that the reader
   is reading to be back on the snapshot buffer.
 
 - Fix the modification of the direct_function hash. There was a race
   when new functions were added to the direct_function hash as when
   it moved function entries from the old hash to the new one, a direct
   function trace could be hit and not see its entry.
 
   This is fixed by allocating the new hash, copy all the old entries
   onto it as well as the new entries, and then use rcu_assign_pointer()
   to update the new direct_function hash with it.
 
   This also fixes a memory leak in that code.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZZAzTxQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qs9IAP9e6wZ74aEjMED9nsbC49EpyCNTqa72
 y0uDS/p9ppv52gD7Be+l+kJQzYNh6bZU0+B19hNC2QVn38jb7sOadfO/1Q8=
 =NDkf
 -----END PGP SIGNATURE-----

Merge tag 'trace-v6.7-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull tracing fixes from Steven Rostedt:

 - Fix readers that are blocked on the ring buffer when buffer_percent
   is 100%. They are supposed to wake up when the buffer is full, but
   because the sub-buffer that the writer is on is never considered
   "dirty" in the calculation, dirty pages will never equal nr_pages.
   Add +1 to the dirty count in order to count for the sub-buffer that
   the writer is on.

 - When a reader is blocked on the "snapshot_raw" file, it is to be
   woken up when a snapshot is done and be able to read the snapshot
   buffer. But because the snapshot swaps the buffers (the main one with
   the snapshot one), and the snapshot reader is waiting on the old
   snapshot buffer, it was not woken up (because it is now on the main
   buffer after the swap). Worse yet, when it reads the buffer after a
   snapshot, it's not reading the snapshot buffer, it's reading the live
   active main buffer.

   Fix this by forcing a wakeup of all readers on the snapshot buffer
   when a new snapshot happens, and then update the buffer that the
   reader is reading to be back on the snapshot buffer.

 - Fix the modification of the direct_function hash. There was a race
   when new functions were added to the direct_function hash as when it
   moved function entries from the old hash to the new one, a direct
   function trace could be hit and not see its entry.

   This is fixed by allocating the new hash, copy all the old entries
   onto it as well as the new entries, and then use rcu_assign_pointer()
   to update the new direct_function hash with it.

   This also fixes a memory leak in that code.

 - Fix eventfs ownership

* tag 'trace-v6.7-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  ftrace: Fix modification of direct_function hash while in use
  tracing: Fix blocked reader of snapshot buffer
  ring-buffer: Fix wake ups when buffer_percent is set to 100
  eventfs: Fix file and directory uid and gid ownership
2023-12-30 11:37:35 -08:00
Steven Rostedt (Google) d05cb47066 ftrace: Fix modification of direct_function hash while in use
Masami Hiramatsu reported a memory leak in register_ftrace_direct() where
if the number of new entries are added is large enough to cause two
allocations in the loop:

        for (i = 0; i < size; i++) {
                hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
                        new = ftrace_add_rec_direct(entry->ip, addr, &free_hash);
                        if (!new)
                                goto out_remove;
                        entry->direct = addr;
                }
        }

Where ftrace_add_rec_direct() has:

        if (ftrace_hash_empty(direct_functions) ||
            direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
                struct ftrace_hash *new_hash;
                int size = ftrace_hash_empty(direct_functions) ? 0 :
                        direct_functions->count + 1;

                if (size < 32)
                        size = 32;

                new_hash = dup_hash(direct_functions, size);
                if (!new_hash)
                        return NULL;

                *free_hash = direct_functions;
                direct_functions = new_hash;
        }

The "*free_hash = direct_functions;" can happen twice, losing the previous
allocation of direct_functions.

But this also exposed a more serious bug.

The modification of direct_functions above is not safe. As
direct_functions can be referenced at any time to find what direct caller
it should call, the time between:

                new_hash = dup_hash(direct_functions, size);
 and
                direct_functions = new_hash;

can have a race with another CPU (or even this one if it gets interrupted),
and the entries being moved to the new hash are not referenced.

That's because the "dup_hash()" is really misnamed and is really a
"move_hash()". It moves the entries from the old hash to the new one.

Now even if that was changed, this code is not proper as direct_functions
should not be updated until the end. That is the best way to handle
function reference changes, and is the way other parts of ftrace handles
this.

The following is done:

 1. Change add_hash_entry() to return the entry it created and inserted
    into the hash, and not just return success or not.

 2. Replace ftrace_add_rec_direct() with add_hash_entry(), and remove
    the former.

 3. Allocate a "new_hash" at the start that is made for holding both the
    new hash entries as well as the existing entries in direct_functions.

 4. Copy (not move) the direct_function entries over to the new_hash.

 5. Copy the entries of the added hash to the new_hash.

 6. If everything succeeds, then use rcu_pointer_assign() to update the
    direct_functions with the new_hash.

This simplifies the code and fixes both the memory leak as well as the
race condition mentioned above.

Link: https://lore.kernel.org/all/170368070504.42064.8960569647118388081.stgit@devnote2/
Link: https://lore.kernel.org/linux-trace-kernel/20231229115134.08dd5174@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Fixes: 763e34e74b ("ftrace: Add register_ftrace_direct()")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-30 10:07:27 -05:00
Steven Rostedt (Google) 39a7dc23a1 tracing: Fix blocked reader of snapshot buffer
If an application blocks on the snapshot or snapshot_raw files, expecting
to be woken up when a snapshot occurs, it will not happen. Or it may
happen with an unexpected result.

That result is that the application will be reading the main buffer
instead of the snapshot buffer. That is because when the snapshot occurs,
the main and snapshot buffers are swapped. But the reader has a descriptor
still pointing to the buffer that it originally connected to.

This is fine for the main buffer readers, as they may be blocked waiting
for a watermark to be hit, and when a snapshot occurs, the data that the
main readers want is now on the snapshot buffer.

But for waiters of the snapshot buffer, they are waiting for an event to
occur that will trigger the snapshot and they can then consume it quickly
to save the snapshot before the next snapshot occurs. But to do this, they
need to read the new snapshot buffer, not the old one that is now
receiving new data.

Also, it does not make sense to have a watermark "buffer_percent" on the
snapshot buffer, as the snapshot buffer is static and does not receive new
data except all at once.

Link: https://lore.kernel.org/linux-trace-kernel/20231228095149.77f5b45d@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Fixes: debdd57f51 ("tracing: Make a snapshot feature available from userspace")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-29 09:18:49 -05:00
Steven Rostedt (Google) 623b1f896f ring-buffer: Fix wake ups when buffer_percent is set to 100
The tracefs file "buffer_percent" is to allow user space to set a
water-mark on how much of the tracing ring buffer needs to be filled in
order to wake up a blocked reader.

 0 - is to wait until any data is in the buffer
 1 - is to wait for 1% of the sub buffers to be filled
 50 - would be half of the sub buffers are filled with data
 100 - is not to wake the waiter until the ring buffer is completely full

Unfortunately the test for being full was:

	dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
	return (dirty * 100) > (full * nr_pages);

Where "full" is the value for "buffer_percent".

There is two issues with the above when full == 100.

1. dirty * 100 > 100 * nr_pages will never be true
   That is, the above is basically saying that if the user sets
   buffer_percent to 100, more pages need to be dirty than exist in the
   ring buffer!

2. The page that the writer is on is never considered dirty, as dirty
   pages are only those that are full. When the writer goes to a new
   sub-buffer, it clears the contents of that sub-buffer.

That is, even if the check was ">=" it would still not be equal as the
most pages that can be considered "dirty" is nr_pages - 1.

To fix this, add one to dirty and use ">=" in the compare.

Link: https://lore.kernel.org/linux-trace-kernel/20231226125902.4a057f1d@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Fixes: 03329f9939 ("tracing: Add tracefs file buffer_percentage")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-29 09:18:30 -05:00
Paolo Abeni 56794e5358 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Cross-merge networking fixes after downstream PR.

Adjacent changes:

drivers/net/ethernet/broadcom/bnxt/bnxt_xdp.c
  23c93c3b62 ("bnxt_en: do not map packet buffers twice")
  6d1add9553 ("bnxt_en: Modify TX ring indexing logic.")

tools/testing/selftests/net/Makefile
  2258b66648 ("selftests: add vlan hw filter tests")
  a0bc96c0cd ("selftests: net: verify fq per-band packet limit")

Signed-off-by: Paolo Abeni <pabeni@redhat.com>
2023-12-21 22:17:23 +01:00
Linus Torvalds 13b734465a Tracing fixes for 6.7:
- Fix another kerneldoc warning
 
 - Fix eventfs files to inherit the ownership of its parent directory.
   The dynamic creating of dentries in eventfs did not take into
   account if the tracefs file system was mounted with a gid/uid,
   and would still default to the gid/uid of root. This is a regression.
 
 - Fix warning when synthetic event testing is enabled along with
   startup event tracing testing is enabled
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZYRYjhQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qs0aAQCXWcBeDEWsi8VxAOBU5Q6isvXn2koM
 +xSX6LJPh6hFVAD+Pc3oLgvyE5IyqNUM9RYtpwPVMhpAsyE9FIz3TWarEww=
 =LY0i
 -----END PGP SIGNATURE-----

Merge tag 'trace-v6.7-rc6-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull tracing fixes from Steven Rostedt:

 - Fix another kerneldoc warning

 - Fix eventfs files to inherit the ownership of its parent directory.

   The dynamic creation of dentries in eventfs did not take into account
   if the tracefs file system was mounted with a gid/uid, and would
   still default to the gid/uid of root. This is a regression.

 - Fix warning when synthetic event testing is enabled along with
   startup event tracing testing is enabled

* tag 'trace-v6.7-rc6-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  tracing / synthetic: Disable events after testing in synth_event_gen_test_init()
  eventfs: Have event files and directories default to parent uid and gid
  tracing/synthetic: fix kernel-doc warnings
2023-12-21 09:31:45 -08:00
Steven Rostedt (Google) 88b30c7f5d tracing / synthetic: Disable events after testing in synth_event_gen_test_init()
The synth_event_gen_test module can be built in, if someone wants to run
the tests at boot up and not have to load them.

The synth_event_gen_test_init() function creates and enables the synthetic
events and runs its tests.

The synth_event_gen_test_exit() disables the events it created and
destroys the events.

If the module is builtin, the events are never disabled. The issue is, the
events should be disable after the tests are run. This could be an issue
if the rest of the boot up tests are enabled, as they expect the events to
be in a known state before testing. That known state happens to be
disabled.

When CONFIG_SYNTH_EVENT_GEN_TEST=y and CONFIG_EVENT_TRACE_STARTUP_TEST=y
a warning will trigger:

 Running tests on trace events:
 Testing event create_synth_test:
 Enabled event during self test!
 ------------[ cut here ]------------
 WARNING: CPU: 2 PID: 1 at kernel/trace/trace_events.c:4150 event_trace_self_tests+0x1c2/0x480
 Modules linked in:
 CPU: 2 PID: 1 Comm: swapper/0 Not tainted 6.7.0-rc2-test-00031-gb803d7c664d5-dirty #276
 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
 RIP: 0010:event_trace_self_tests+0x1c2/0x480
 Code: bb e8 a2 ab 5d fc 48 8d 7b 48 e8 f9 3d 99 fc 48 8b 73 48 40 f6 c6 01 0f 84 d6 fe ff ff 48 c7 c7 20 b6 ad bb e8 7f ab 5d fc 90 <0f> 0b 90 48 89 df e8 d3 3d 99 fc 48 8b 1b 4c 39 f3 0f 85 2c ff ff
 RSP: 0000:ffffc9000001fdc0 EFLAGS: 00010246
 RAX: 0000000000000029 RBX: ffff88810399ca80 RCX: 0000000000000000
 RDX: 0000000000000000 RSI: ffffffffb9f19478 RDI: ffff88823c734e64
 RBP: ffff88810399f300 R08: 0000000000000000 R09: fffffbfff79eb32a
 R10: ffffffffbcf59957 R11: 0000000000000001 R12: ffff888104068090
 R13: ffffffffbc89f0a0 R14: ffffffffbc8a0f08 R15: 0000000000000078
 FS:  0000000000000000(0000) GS:ffff88823c700000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 0000000000000000 CR3: 00000001f6282001 CR4: 0000000000170ef0
 Call Trace:
  <TASK>
  ? __warn+0xa5/0x200
  ? event_trace_self_tests+0x1c2/0x480
  ? report_bug+0x1f6/0x220
  ? handle_bug+0x6f/0x90
  ? exc_invalid_op+0x17/0x50
  ? asm_exc_invalid_op+0x1a/0x20
  ? tracer_preempt_on+0x78/0x1c0
  ? event_trace_self_tests+0x1c2/0x480
  ? __pfx_event_trace_self_tests_init+0x10/0x10
  event_trace_self_tests_init+0x27/0xe0
  do_one_initcall+0xd6/0x3c0
  ? __pfx_do_one_initcall+0x10/0x10
  ? kasan_set_track+0x25/0x30
  ? rcu_is_watching+0x38/0x60
  kernel_init_freeable+0x324/0x450
  ? __pfx_kernel_init+0x10/0x10
  kernel_init+0x1f/0x1e0
  ? _raw_spin_unlock_irq+0x33/0x50
  ret_from_fork+0x34/0x60
  ? __pfx_kernel_init+0x10/0x10
  ret_from_fork_asm+0x1b/0x30
  </TASK>

This is because the synth_event_gen_test_init() left the synthetic events
that it created enabled. By having it disable them after testing, the
other selftests will run fine.

Link: https://lore.kernel.org/linux-trace-kernel/20231220111525.2f0f49b0@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Tom Zanussi <zanussi@kernel.org>
Fixes: 9fe41efaca ("tracing: Add synth event generation test module")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reported-by: Alexander Graf <graf@amazon.com>
Tested-by: Alexander Graf <graf@amazon.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-21 10:04:45 -05:00
Randy Dunlap 7beb82b7d5 tracing/synthetic: fix kernel-doc warnings
scripts/kernel-doc warns about using @args: for variadic arguments to
functions. Documentation/doc-guide/kernel-doc.rst says that this should
be written as @...: instead, so update the source code to match that,
preventing the warnings.

trace_events_synth.c:1165: warning: Excess function parameter 'args' description in '__synth_event_gen_cmd_start'
trace_events_synth.c:1714: warning: Excess function parameter 'args' description in 'synth_event_trace'

Link: https://lore.kernel.org/linux-trace-kernel/20231220061226.30962-1-rdunlap@infradead.org

Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 35ca5207c2 ("tracing: Add synthetic event command generation functions")
Fixes: 8dcc53ad95 ("tracing: Add synth_event_trace() and related functions")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-20 12:51:03 -05:00
Linus Torvalds 55cb5f4368 tracing fix for 6.7-rc6
While working on the ring buffer, I found one more bug with the timestamp
 code, and the fix for this removed the need for the final 64-bit cmpxchg!
 
 The ring buffer events hold a "delta" from the previous event. If it is
 determined that the delta can not be calculated, it falls back to adding an
 absolute timestamp value. The way to know if the delta can be used is via
 two stored timestamps in the per-cpu buffer meta data:
 
  before_stamp and write_stamp
 
 The before_stamp is written by every event before it tries to allocate its
 space on the ring buffer. The write_stamp is written after it allocates its
 space and knows that nothing came in after it read the previous
 before_stamp and write_stamp and the two matched.
 
 A previous fix dd93942570 ("ring-buffer: Do not try to put back
 write_stamp") removed putting back the write_stamp to match the
 before_stamp so that the next event could use the delta, but races were
 found where the two would match, but not be for of the previous event.
 
 It was determined to allow the event reservation to not have a valid
 write_stamp when it is finished, and this fixed a lot of races.
 
 The last use of the 64-bit timestamp cmpxchg depended on the write_stamp
 being valid after an interruption. But this is no longer the case, as if an
 event is interrupted by a softirq that writes an event, and that event gets
 interrupted by a hardirq or NMI and that writes an event, then the softirq
 could finish its reservation without a valid write_stamp.
 
 In the slow path of the event reservation, a delta can still be used if the
 write_stamp is valid. Instead of using a cmpxchg against the write stamp,
 the before_stamp needs to be read again to validate the write_stamp. The
 cmpxchg is not needed.
 
 This updates the slowpath to validate the write_stamp by comparing it to
 the before_stamp and removes all rb_time_cmpxchg() as there are no more
 users of that function.
 
 The removal of the 32-bit updates of rb_time_t will be done in the next
 merge window.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZYHVxhQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qhk5AQDT56Uis34ewzeEzkwBSs8nsV2HDhnA
 d0CU4BHsf0GUVQD9E2eWVbIB9z8MiQwNMvKslpFJYmGCzr359pCMzoOmcws=
 =0rcD
 -----END PGP SIGNATURE-----

Merge tag 'trace-v6.7-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull tracing fix from Steven Rostedt:
 "While working on the ring buffer, I found one more bug with the
  timestamp code, and the fix for this removed the need for the final
  64-bit cmpxchg!

  The ring buffer events hold a "delta" from the previous event. If it
  is determined that the delta can not be calculated, it falls back to
  adding an absolute timestamp value. The way to know if the delta can
  be used is via two stored timestamps in the per-cpu buffer meta data:

   before_stamp and write_stamp

  The before_stamp is written by every event before it tries to allocate
  its space on the ring buffer. The write_stamp is written after it
  allocates its space and knows that nothing came in after it read the
  previous before_stamp and write_stamp and the two matched.

  A previous fix dd93942570 ("ring-buffer: Do not try to put back
  write_stamp") removed putting back the write_stamp to match the
  before_stamp so that the next event could use the delta, but races
  were found where the two would match, but not be for of the previous
  event.

  It was determined to allow the event reservation to not have a valid
  write_stamp when it is finished, and this fixed a lot of races.

  The last use of the 64-bit timestamp cmpxchg depended on the
  write_stamp being valid after an interruption. But this is no longer
  the case, as if an event is interrupted by a softirq that writes an
  event, and that event gets interrupted by a hardirq or NMI and that
  writes an event, then the softirq could finish its reservation without
  a valid write_stamp.

  In the slow path of the event reservation, a delta can still be used
  if the write_stamp is valid. Instead of using a cmpxchg against the
  write stamp, the before_stamp needs to be read again to validate the
  write_stamp. The cmpxchg is not needed.

  This updates the slowpath to validate the write_stamp by comparing it
  to the before_stamp and removes all rb_time_cmpxchg() as there are no
  more users of that function.

  The removal of the 32-bit updates of rb_time_t will be done in the
  next merge window"

* tag 'trace-v6.7-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  ring-buffer: Fix slowpath of interrupted event
2023-12-19 12:25:43 -08:00
Andrii Nakryiko d17aff807f Revert BPF token-related functionality
This patch includes the following revert (one  conflicting BPF FS
patch and three token patch sets, represented by merge commits):
  - revert 0f5d5454c7 "Merge branch 'bpf-fs-mount-options-parsing-follow-ups'";
  - revert 750e785796 "bpf: Support uid and gid when mounting bpffs";
  - revert 733763285a "Merge branch 'bpf-token-support-in-libbpf-s-bpf-object'";
  - revert c35919dcce "Merge branch 'bpf-token-and-bpf-fs-based-delegation'".

Link: https://lore.kernel.org/bpf/CAHk-=wg7JuFYwGy=GOMbRCtOL+jwSQsdUaBsRWkDVYbxipbM5A@mail.gmail.com
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
2023-12-19 08:23:03 -08:00
Steven Rostedt (Google) b803d7c664 ring-buffer: Fix slowpath of interrupted event
To synchronize the timestamps with the ring buffer reservation, there are
two timestamps that are saved in the buffer meta data.

1. before_stamp
2. write_stamp

When the two are equal, the write_stamp is considered valid, as in, it may
be used to calculate the delta of the next event as the write_stamp is the
timestamp of the previous reserved event on the buffer.

This is done by the following:

 /*A*/	w = current position on the ring buffer
	before = before_stamp
	after = write_stamp
	ts = read current timestamp

	if (before != after) {
		write_stamp is not valid, force adding an absolute
		timestamp.
	}

 /*B*/	before_stamp = ts

 /*C*/	write = local_add_return(event length, position on ring buffer)

	if (w == write - event length) {
		/* Nothing interrupted between A and C */
 /*E*/		write_stamp = ts;
		delta = ts - after
		/*
		 * If nothing interrupted again,
		 * before_stamp == write_stamp and write_stamp
		 * can be used to calculate the delta for
		 * events that come in after this one.
		 */
	} else {

		/*
		 * The slow path!
		 * Was interrupted between A and C.
		 */

This is the place that there's a bug. We currently have:

		after = write_stamp
		ts = read current timestamp

 /*F*/		if (write == current position on the ring buffer &&
		    after < ts && cmpxchg(write_stamp, after, ts)) {

			delta = ts - after;

		} else {
			delta = 0;
		}

The assumption is that if the current position on the ring buffer hasn't
moved between C and F, then it also was not interrupted, and that the last
event written has a timestamp that matches the write_stamp. That is the
write_stamp is valid.

But this may not be the case:

If a task context event was interrupted by softirq between B and C.

And the softirq wrote an event that got interrupted by a hard irq between
C and E.

and the hard irq wrote an event (does not need to be interrupted)

We have:

 /*B*/ before_stamp = ts of normal context

   ---> interrupted by softirq

	/*B*/ before_stamp = ts of softirq context

	  ---> interrupted by hardirq

		/*B*/ before_stamp = ts of hard irq context
		/*E*/ write_stamp = ts of hard irq context

		/* matches and write_stamp valid */
	  <----

	/*E*/ write_stamp = ts of softirq context

	/* No longer matches before_stamp, write_stamp is not valid! */

   <---

 w != write - length, go to slow path

// Right now the order of events in the ring buffer is:
//
// |-- softirq event --|-- hard irq event --|-- normal context event --|
//

 after = write_stamp (this is the ts of softirq)
 ts = read current timestamp

 if (write == current position on the ring buffer [true] &&
     after < ts [true] && cmpxchg(write_stamp, after, ts) [true]) {

	delta = ts - after  [Wrong!]

The delta is to be between the hard irq event and the normal context
event, but the above logic made the delta between the softirq event and
the normal context event, where the hard irq event is between the two. This
will shift all the remaining event timestamps on the sub-buffer
incorrectly.

The write_stamp is only valid if it matches the before_stamp. The cmpxchg
does nothing to help this.

Instead, the following logic can be done to fix this:

	before = before_stamp
	ts = read current timestamp
	before_stamp = ts

	after = write_stamp

	if (write == current position on the ring buffer &&
	    after == before && after < ts) {

		delta = ts - after

	} else {
		delta = 0;
	}

The above will only use the write_stamp if it still matches before_stamp
and was tested to not have changed since C.

As a bonus, with this logic we do not need any 64-bit cmpxchg() at all!

This means the 32-bit rb_time_t workaround can finally be removed. But
that's for a later time.

Link: https://lore.kernel.org/linux-trace-kernel/20231218175229.58ec3daf@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20231218230712.3a76b081@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Fixes: dd93942570 ("ring-buffer: Do not try to put back write_stamp")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-18 23:12:22 -05:00
Jakub Kicinski c49b292d03 netdev
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE+soXsSLHKoYyzcli6rmadz2vbToFAmWAz2EACgkQ6rmadz2v
 bToqrw/9EwroZCc8GEHOKAlb/fzrMvn92rLo0ZW/cGN84QJPnx4zM6Zo0+fgLaaN
 oqqztwMUwdzGC3uX3FfVXaaLKbJ/MeHeL9BXFZNW8zkRHciw4R7kIBhOdPnHyET7
 uT+rQ4xPe1Mt7e9PjepKlSL5mEsxWfBkdUgsdn19Z2Vjdfr9mZMhYWYMJGcfTCD1
 TwxHKBPhq5fN3IsshmMBB8IrRp1HStUKb65MgZ4dI22LJXxTsFkx5XMFXcmuqvkH
 NhKj8jDcPEEh31bYcb6aG2Z4onw5F2lquygjk1Qyy5cyw45m/ipJKAXKdAyvJG+R
 VZCWOET/9wbRwFSK5wxwihCuKghFiofK52i2PcGtXZh0PCouyZZneSJOKM0yVWKO
 BvuJBxK4ETRnQyN6ZxhuJiEXG3/YMBBhyR2TX1LntVK9ct/k7qFVzATG49J39/sR
 SYMbptBRj4a5oMJ1qn0nFVEDFkg0jTnTDNnsEpcz60Ayt6EsJ1XosO5yz2huf861
 xgRMTKMseyG1/uV45tQ8ZPzbSPpBxjUi9Dl3coYsIm1a+y6clWUXcarONY5KVrpS
 CR98DuFgl+E7dXuisd/Kz2p2KxxSPq8nytsmLlgOvrUqhwiXqB+TKN8EHgIapVOt
 l1A5LrzXFTcGlT9MlaWBqEIy83Bu1nqQqbxrAFOE0k8A5jomXaw=
 =stU2
 -----END PGP SIGNATURE-----

Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next

Alexei Starovoitov says:

====================
pull-request: bpf-next 2023-12-18

This PR is larger than usual and contains changes in various parts
of the kernel.

The main changes are:

1) Fix kCFI bugs in BPF, from Peter Zijlstra.

End result: all forms of indirect calls from BPF into kernel
and from kernel into BPF work with CFI enabled. This allows BPF
to work with CONFIG_FINEIBT=y.

2) Introduce BPF token object, from Andrii Nakryiko.

It adds an ability to delegate a subset of BPF features from privileged
daemon (e.g., systemd) through special mount options for userns-bound
BPF FS to a trusted unprivileged application. The design accommodates
suggestions from Christian Brauner and Paul Moore.

Example:
$ sudo mkdir -p /sys/fs/bpf/token
$ sudo mount -t bpf bpffs /sys/fs/bpf/token \
             -o delegate_cmds=prog_load:MAP_CREATE \
             -o delegate_progs=kprobe \
             -o delegate_attachs=xdp

3) Various verifier improvements and fixes, from Andrii Nakryiko, Andrei Matei.

 - Complete precision tracking support for register spills
 - Fix verification of possibly-zero-sized stack accesses
 - Fix access to uninit stack slots
 - Track aligned STACK_ZERO cases as imprecise spilled registers.
   It improves the verifier "instructions processed" metric from single
   digit to 50-60% for some programs.
 - Fix verifier retval logic

4) Support for VLAN tag in XDP hints, from Larysa Zaremba.

5) Allocate BPF trampoline via bpf_prog_pack mechanism, from Song Liu.

End result: better memory utilization and lower I$ miss for calls to BPF
via BPF trampoline.

6) Fix race between BPF prog accessing inner map and parallel delete,
from Hou Tao.

7) Add bpf_xdp_get_xfrm_state() kfunc, from Daniel Xu.

It allows BPF interact with IPSEC infra. The intent is to support
software RSS (via XDP) for the upcoming ipsec pcpu work.
Experiments on AWS demonstrate single tunnel pcpu ipsec reaching
line rate on 100G ENA nics.

8) Expand bpf_cgrp_storage to support cgroup1 non-attach, from Yafang Shao.

9) BPF file verification via fsverity, from Song Liu.

It allows BPF progs get fsverity digest.

* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (164 commits)
  bpf: Ensure precise is reset to false in __mark_reg_const_zero()
  selftests/bpf: Add more uprobe multi fail tests
  bpf: Fail uprobe multi link with negative offset
  selftests/bpf: Test the release of map btf
  s390/bpf: Fix indirect trampoline generation
  selftests/bpf: Temporarily disable dummy_struct_ops test on s390
  x86/cfi,bpf: Fix bpf_exception_cb() signature
  bpf: Fix dtor CFI
  cfi: Add CFI_NOSEAL()
  x86/cfi,bpf: Fix bpf_struct_ops CFI
  x86/cfi,bpf: Fix bpf_callback_t CFI
  x86/cfi,bpf: Fix BPF JIT call
  cfi: Flip headers
  selftests/bpf: Add test for abnormal cnt during multi-kprobe attachment
  selftests/bpf: Don't use libbpf_get_error() in kprobe_multi_test
  selftests/bpf: Add test for abnormal cnt during multi-uprobe attachment
  bpf: Limit the number of kprobes when attaching program to multiple kprobes
  bpf: Limit the number of uprobes when attaching program to multiple uprobes
  bpf: xdp: Register generic_kfunc_set with XDP programs
  selftests/bpf: utilize string values for delegate_xxx mount options
  ...
====================

Link: https://lore.kernel.org/r/20231219000520.34178-1-alexei.starovoitov@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-12-18 16:46:08 -08:00
Jiri Olsa 3983c00281 bpf: Fail uprobe multi link with negative offset
Currently the __uprobe_register will return 0 (success) when called with
negative offset. The reason is that the call to register_for_each_vma and
then build_map_info won't return error for negative offset. They just won't
do anything - no matching vma is found so there's no registered breakpoint
for the uprobe.

I don't think we can change the behaviour of __uprobe_register and fail
for negative uprobe offset, because apps might depend on that already.

But I think we can still make the change and check for it on bpf multi
link syscall level.

Also moving the __get_user call and check for the offsets to the top of
loop, to fail early without extra __get_user calls for ref_ctr_offset
and cookie arrays.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/bpf/20231217215538.3361991-2-jolsa@kernel.org
2023-12-18 09:51:30 -08:00
Linus Torvalds 3b8a9b2e68 Tracing fixes for v6.7-rc5:
- Fix eventfs to check creating new files for events with names greater than
   NAME_MAX. The eventfs lookup needs to check the return result of
   simple_lookup().
 
 - Fix the ring buffer to check the proper max data size. Events must be able to
   fit on the ring buffer sub-buffer, if it cannot, then it fails to be written
   and the logic to add the event is avoided. The code to check if an event can
   fit failed to add the possible absolute timestamp which may make the event
   not be able to fit. This causes the ring buffer to go into an infinite loop
   trying to find a sub-buffer that would fit the event. Luckily, there's a check
   that will bail out if it looped over a 1000 times and it also warns.
 
   The real fix is not to add the absolute timestamp to an event that is
   starting at the beginning of a sub-buffer because it uses the sub-buffer
   timestamp. By avoiding the timestamp at the start of the sub-buffer allows
   events that pass the first check to always find a sub-buffer that it can fit
   on.
 
 - Have large events that do not fit on a trace_seq to print "LINE TOO BIG" like
   it does for the trace_pipe instead of what it does now which is to silently
   drop the output.
 
 - Fix a memory leak of forgetting to free the spare page that is saved by a
   trace instance.
 
 - Update the size of the snapshot buffer when the main buffer is updated if the
   snapshot buffer is allocated.
 
 - Fix ring buffer timestamp logic by removing all the places that tried to put
   the before_stamp back to the write stamp so that the next event doesn't add
   an absolute timestamp. But each of these updates added a race where by making
   the two timestamp equal, it was validating the write_stamp so that it can be
   incorrectly used for calculating the delta of an event.
 
 - There's a temp buffer used for printing the event that was using the event
   data size for allocation when it needed to use the size of the entire event
   (meta-data and payload data)
 
 - For hardening, use "%.*s" for printing the trace_marker output, to limit the
   amount that is printed by the size of the event. This was discovered by
   development that added a bug that truncated the '\0' and caused a crash.
 
 - Fix a use-after-free bug in the use of the histogram files when an instance
   is being removed.
 
 - Remove a useless update in the rb_try_to_discard of the write_stamp. The
   before_stamp was already changed to force the next event to add an absolute
   timestamp that the write_stamp is not used. But the write_stamp is modified
   again using an unneeded 64-bit cmpxchg.
 
 - Fix several races in the 32-bit implementation of the rb_time_cmpxchg() that
   does a 64-bit cmpxchg.
 
 - While looking at fixing the 64-bit cmpxchg, I noticed that because the ring
   buffer uses normal cmpxchg, and this can be done in NMI context, there's some
   architectures that do not have a working cmpxchg in NMI context. For these
   architectures, fail recording events that happen in NMI context.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZX0nChQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qlOMAQD3iegTcceQl9lAsroa3tb3xdweC1GP
 51MsX5athxSyoQEAutI/2pBCtLFXgTLMHAMd5F23EM1U9rha7W0myrnvKQY=
 =d3bS
 -----END PGP SIGNATURE-----

Merge tag 'trace-v6.7-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull tracing fixes from Steven Rostedt:

 - Fix eventfs to check creating new files for events with names greater
   than NAME_MAX. The eventfs lookup needs to check the return result of
   simple_lookup().

 - Fix the ring buffer to check the proper max data size. Events must be
   able to fit on the ring buffer sub-buffer, if it cannot, then it
   fails to be written and the logic to add the event is avoided. The
   code to check if an event can fit failed to add the possible absolute
   timestamp which may make the event not be able to fit. This causes
   the ring buffer to go into an infinite loop trying to find a
   sub-buffer that would fit the event. Luckily, there's a check that
   will bail out if it looped over a 1000 times and it also warns.

   The real fix is not to add the absolute timestamp to an event that is
   starting at the beginning of a sub-buffer because it uses the
   sub-buffer timestamp.

   By avoiding the timestamp at the start of the sub-buffer allows
   events that pass the first check to always find a sub-buffer that it
   can fit on.

 - Have large events that do not fit on a trace_seq to print "LINE TOO
   BIG" like it does for the trace_pipe instead of what it does now
   which is to silently drop the output.

 - Fix a memory leak of forgetting to free the spare page that is saved
   by a trace instance.

 - Update the size of the snapshot buffer when the main buffer is
   updated if the snapshot buffer is allocated.

 - Fix ring buffer timestamp logic by removing all the places that tried
   to put the before_stamp back to the write stamp so that the next
   event doesn't add an absolute timestamp. But each of these updates
   added a race where by making the two timestamp equal, it was
   validating the write_stamp so that it can be incorrectly used for
   calculating the delta of an event.

 - There's a temp buffer used for printing the event that was using the
   event data size for allocation when it needed to use the size of the
   entire event (meta-data and payload data)

 - For hardening, use "%.*s" for printing the trace_marker output, to
   limit the amount that is printed by the size of the event. This was
   discovered by development that added a bug that truncated the '\0'
   and caused a crash.

 - Fix a use-after-free bug in the use of the histogram files when an
   instance is being removed.

 - Remove a useless update in the rb_try_to_discard of the write_stamp.
   The before_stamp was already changed to force the next event to add
   an absolute timestamp that the write_stamp is not used. But the
   write_stamp is modified again using an unneeded 64-bit cmpxchg.

 - Fix several races in the 32-bit implementation of the
   rb_time_cmpxchg() that does a 64-bit cmpxchg.

 - While looking at fixing the 64-bit cmpxchg, I noticed that because
   the ring buffer uses normal cmpxchg, and this can be done in NMI
   context, there's some architectures that do not have a working
   cmpxchg in NMI context. For these architectures, fail recording
   events that happen in NMI context.

* tag 'trace-v6.7-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  ring-buffer: Do not record in NMI if the arch does not support cmpxchg in NMI
  ring-buffer: Have rb_time_cmpxchg() set the msb counter too
  ring-buffer: Fix 32-bit rb_time_read() race with rb_time_cmpxchg()
  ring-buffer: Fix a race in rb_time_cmpxchg() for 32 bit archs
  ring-buffer: Remove useless update to write_stamp in rb_try_to_discard()
  ring-buffer: Do not try to put back write_stamp
  tracing: Fix uaf issue when open the hist or hist_debug file
  tracing: Add size check when printing trace_marker output
  ring-buffer: Have saved event hold the entire event
  ring-buffer: Do not update before stamp when switching sub-buffers
  tracing: Update snapshot buffer on resize if it is allocated
  ring-buffer: Fix memory leak of free page
  eventfs: Fix events beyond NAME_MAX blocking tasks
  tracing: Have large events show up as '[LINE TOO BIG]' instead of nothing
  ring-buffer: Fix writing to the buffer with max_data_size
2023-12-16 10:40:51 -08:00
Hou Tao d6d1e6c17c bpf: Limit the number of kprobes when attaching program to multiple kprobes
An abnormally big cnt may also be assigned to kprobe_multi.cnt when
attaching multiple kprobes. It will trigger the following warning in
kvmalloc_node():

	if (unlikely(size > INT_MAX)) {
	    WARN_ON_ONCE(!(flags & __GFP_NOWARN));
	    return NULL;
	}

Fix the warning by limiting the maximal number of kprobes in
bpf_kprobe_multi_link_attach(). If the number of kprobes is greater than
MAX_KPROBE_MULTI_CNT, the attachment will fail and return -E2BIG.

Fixes: 0dcac27254 ("bpf: Add multi kprobe link")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231215100708.2265609-3-houtao@huaweicloud.com
2023-12-15 22:54:55 +01:00
Hou Tao 8b2efe51ba bpf: Limit the number of uprobes when attaching program to multiple uprobes
An abnormally big cnt may be passed to link_create.uprobe_multi.cnt,
and it will trigger the following warning in kvmalloc_node():

	if (unlikely(size > INT_MAX)) {
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
		return NULL;
	}

Fix the warning by limiting the maximal number of uprobes in
bpf_uprobe_multi_link_attach(). If the number of uprobes is greater than
MAX_UPROBE_MULTI_CNT, the attachment will return -E2BIG.

Fixes: 89ae89f53d ("bpf: Add multi uprobe link")
Reported-by: Xingwei Lee <xrivendell7@gmail.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Closes: https://lore.kernel.org/bpf/CABOYnLwwJY=yFAGie59LFsUsBAgHfroVqbzZ5edAXbFE3YiNVA@mail.gmail.com
Link: https://lore.kernel.org/bpf/20231215100708.2265609-2-houtao@huaweicloud.com
2023-12-15 22:54:46 +01:00
Steven Rostedt (Google) 712292308a ring-buffer: Do not record in NMI if the arch does not support cmpxchg in NMI
As the ring buffer recording requires cmpxchg() to work, if the
architecture does not support cmpxchg in NMI, then do not do any recording
within an NMI.

Link: https://lore.kernel.org/linux-trace-kernel/20231213175403.6fc18540@gandalf.local.home

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-15 08:54:26 -05:00
Steven Rostedt (Google) 0aa0e5289c ring-buffer: Have rb_time_cmpxchg() set the msb counter too
The rb_time_cmpxchg() on 32-bit architectures requires setting three
32-bit words to represent the 64-bit timestamp, with some salt for
synchronization. Those are: msb, top, and bottom

The issue is, the rb_time_cmpxchg() did not properly salt the msb portion,
and the msb that was written was stale.

Link: https://lore.kernel.org/linux-trace-kernel/20231215084114.20899342@rorschach.local.home

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: f03f2abce4 ("ring-buffer: Have 32 bit time stamps use all 64 bits")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-15 08:43:35 -05:00
Mathieu Desnoyers dec890089b ring-buffer: Fix 32-bit rb_time_read() race with rb_time_cmpxchg()
The following race can cause rb_time_read() to observe a corrupted time
stamp:

rb_time_cmpxchg()
[...]
        if (!rb_time_read_cmpxchg(&t->msb, msb, msb2))
                return false;
        if (!rb_time_read_cmpxchg(&t->top, top, top2))
                return false;
<interrupted before updating bottom>
__rb_time_read()
[...]
        do {
                c = local_read(&t->cnt);
                top = local_read(&t->top);
                bottom = local_read(&t->bottom);
                msb = local_read(&t->msb);
        } while (c != local_read(&t->cnt));

        *cnt = rb_time_cnt(top);

        /* If top and msb counts don't match, this interrupted a write */
        if (*cnt != rb_time_cnt(msb))
                return false;
          ^ this check fails to catch that "bottom" is still not updated.

So the old "bottom" value is returned, which is wrong.

Fix this by checking that all three of msb, top, and bottom 2-bit cnt
values match.

The reason to favor checking all three fields over requiring a specific
update order for both rb_time_set() and rb_time_cmpxchg() is because
checking all three fields is more robust to handle partial failures of
rb_time_cmpxchg() when interrupted by nested rb_time_set().

Link: https://lore.kernel.org/lkml/20231211201324.652870-1-mathieu.desnoyers@efficios.com/
Link: https://lore.kernel.org/linux-trace-kernel/20231212193049.680122-1-mathieu.desnoyers@efficios.com

Fixes: f458a14534 ("ring-buffer: Test last update in 32bit version of __rb_time_read()")
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-15 08:39:34 -05:00
Steven Rostedt (Google) fff88fa0fb ring-buffer: Fix a race in rb_time_cmpxchg() for 32 bit archs
Mathieu Desnoyers pointed out an issue in the rb_time_cmpxchg() for 32 bit
architectures. That is:

 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
 {
	unsigned long cnt, top, bottom, msb;
	unsigned long cnt2, top2, bottom2, msb2;
	u64 val;

	/* The cmpxchg always fails if it interrupted an update */
	 if (!__rb_time_read(t, &val, &cnt2))
		 return false;

	 if (val != expect)
		 return false;

<<<< interrupted here!

	 cnt = local_read(&t->cnt);

The problem is that the synchronization counter in the rb_time_t is read
*after* the value of the timestamp is read. That means if an interrupt
were to come in between the value being read and the counter being read,
it can change the value and the counter and the interrupted process would
be clueless about it!

The counter needs to be read first and then the value. That way it is easy
to tell if the value is stale or not. If the counter hasn't been updated,
then the value is still good.

Link: https://lore.kernel.org/linux-trace-kernel/20231211201324.652870-1-mathieu.desnoyers@efficios.com/
Link: https://lore.kernel.org/linux-trace-kernel/20231212115301.7a9c9a64@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Fixes: 10464b4aa6 ("ring-buffer: Add rb_time_t 64 bit operations for speeding up 32 bit")
Reported-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-15 08:39:34 -05:00
Steven Rostedt (Google) 083e9f65bd ring-buffer: Remove useless update to write_stamp in rb_try_to_discard()
When filtering is enabled, a temporary buffer is created to place the
content of the trace event output so that the filter logic can decide
from the trace event output if the trace event should be filtered out or
not. If it is to be filtered out, the content in the temporary buffer is
simply discarded, otherwise it is written into the trace buffer.

But if an interrupt were to come in while a previous event was using that
temporary buffer, the event written by the interrupt would actually go
into the ring buffer itself to prevent corrupting the data on the
temporary buffer. If the event is to be filtered out, the event in the
ring buffer is discarded, or if it fails to discard because another event
were to have already come in, it is turned into padding.

The update to the write_stamp in the rb_try_to_discard() happens after a
fix was made to force the next event after the discard to use an absolute
timestamp by setting the before_stamp to zero so it does not match the
write_stamp (which causes an event to use the absolute timestamp).

But there's an effort in rb_try_to_discard() to put back the write_stamp
to what it was before the event was added. But this is useless and
wasteful because nothing is going to be using that write_stamp for
calculations as it still will not match the before_stamp.

Remove this useless update, and in doing so, we remove another
cmpxchg64()!

Also update the comments to reflect this change as well as remove some
extra white space in another comment.

Link: https://lore.kernel.org/linux-trace-kernel/20231215081810.1f4f38fe@rorschach.local.home

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Vincent Donnefort   <vdonnefort@google.com>
Fixes: b2dd797543 ("ring-buffer: Force absolute timestamp on discard of event")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-15 08:38:11 -05:00
Steven Rostedt (Google) dd93942570 ring-buffer: Do not try to put back write_stamp
If an update to an event is interrupted by another event between the time
the initial event allocated its buffer and where it wrote to the
write_stamp, the code try to reset the write stamp back to the what it had
just overwritten. It knows that it was overwritten via checking the
before_stamp, and if it didn't match what it wrote to the before_stamp
before it allocated its space, it knows it was overwritten.

To put back the write_stamp, it uses the before_stamp it read. The problem
here is that by writing the before_stamp to the write_stamp it makes the
two equal again, which means that the write_stamp can be considered valid
as the last timestamp written to the ring buffer. But this is not
necessarily true. The event that interrupted the event could have been
interrupted in a way that it was interrupted as well, and can end up
leaving with an invalid write_stamp. But if this happens and returns to
this context that uses the before_stamp to update the write_stamp again,
it can possibly incorrectly make it valid, causing later events to have in
correct time stamps.

As it is OK to leave this function with an invalid write_stamp (one that
doesn't match the before_stamp), there's no reason to try to make it valid
again in this case. If this race happens, then just leave with the invalid
write_stamp and the next event to come along will just add a absolute
timestamp and validate everything again.

Bonus points: This gets rid of another cmpxchg64!

Link: https://lore.kernel.org/linux-trace-kernel/20231214222921.193037a7@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Vincent Donnefort <vdonnefort@google.com>
Fixes: a389d86f7f ("ring-buffer: Have nested events still record running time stamp")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-15 08:38:05 -05:00
Jakub Kicinski 8f674972d6 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Cross-merge networking fixes after downstream PR.

Conflicts:

drivers/net/ethernet/intel/iavf/iavf_ethtool.c
  3a0b5a2929 ("iavf: Introduce new state machines for flow director")
  95260816b4 ("iavf: use iavf_schedule_aq_request() helper")
https://lore.kernel.org/all/84e12519-04dc-bd80-bc34-8cf50d7898ce@intel.com/

drivers/net/ethernet/broadcom/bnxt/bnxt.c
  c13e268c07 ("bnxt_en: Fix HWTSTAMP_FILTER_ALL packet timestamp logic")
  c2f8063309 ("bnxt_en: Refactor RX VLAN acceleration logic.")
  a7445d6980 ("bnxt_en: Add support for new RX and TPA_START completion types for P7")
  1c7fd6ee2f ("bnxt_en: Rename some macros for the P5 chips")
https://lore.kernel.org/all/20231211110022.27926ad9@canb.auug.org.au/

drivers/net/ethernet/broadcom/bnxt/bnxt_ptp.c
  bd6781c18c ("bnxt_en: Fix wrong return value check in bnxt_close_nic()")
  84793a4995 ("bnxt_en: Skip nic close/open when configuring tstamp filters")
https://lore.kernel.org/all/20231214113041.3a0c003c@canb.auug.org.au/

drivers/net/ethernet/mellanox/mlx5/core/fw_reset.c
  3d7a3f2612 ("net/mlx5: Nack sync reset request when HotPlug is enabled")
  cecf44ea1a ("net/mlx5: Allow sync reset flow when BF MGT interface device is present")
https://lore.kernel.org/all/20231211110328.76c925af@canb.auug.org.au/

No adjacent changes.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-12-14 17:14:41 -08:00
Zheng Yejian 1cc111b9cd tracing: Fix uaf issue when open the hist or hist_debug file
KASAN report following issue. The root cause is when opening 'hist'
file of an instance and accessing 'trace_event_file' in hist_show(),
but 'trace_event_file' has been freed due to the instance being removed.
'hist_debug' file has the same problem. To fix it, call
tracing_{open,release}_file_tr() in file_operations callback to have
the ref count and avoid 'trace_event_file' being freed.

  BUG: KASAN: slab-use-after-free in hist_show+0x11e0/0x1278
  Read of size 8 at addr ffff242541e336b8 by task head/190

  CPU: 4 PID: 190 Comm: head Not tainted 6.7.0-rc5-g26aff849438c #133
  Hardware name: linux,dummy-virt (DT)
  Call trace:
   dump_backtrace+0x98/0xf8
   show_stack+0x1c/0x30
   dump_stack_lvl+0x44/0x58
   print_report+0xf0/0x5a0
   kasan_report+0x80/0xc0
   __asan_report_load8_noabort+0x1c/0x28
   hist_show+0x11e0/0x1278
   seq_read_iter+0x344/0xd78
   seq_read+0x128/0x1c0
   vfs_read+0x198/0x6c8
   ksys_read+0xf4/0x1e0
   __arm64_sys_read+0x70/0xa8
   invoke_syscall+0x70/0x260
   el0_svc_common.constprop.0+0xb0/0x280
   do_el0_svc+0x44/0x60
   el0_svc+0x34/0x68
   el0t_64_sync_handler+0xb8/0xc0
   el0t_64_sync+0x168/0x170

  Allocated by task 188:
   kasan_save_stack+0x28/0x50
   kasan_set_track+0x28/0x38
   kasan_save_alloc_info+0x20/0x30
   __kasan_slab_alloc+0x6c/0x80
   kmem_cache_alloc+0x15c/0x4a8
   trace_create_new_event+0x84/0x348
   __trace_add_new_event+0x18/0x88
   event_trace_add_tracer+0xc4/0x1a0
   trace_array_create_dir+0x6c/0x100
   trace_array_create+0x2e8/0x568
   instance_mkdir+0x48/0x80
   tracefs_syscall_mkdir+0x90/0xe8
   vfs_mkdir+0x3c4/0x610
   do_mkdirat+0x144/0x200
   __arm64_sys_mkdirat+0x8c/0xc0
   invoke_syscall+0x70/0x260
   el0_svc_common.constprop.0+0xb0/0x280
   do_el0_svc+0x44/0x60
   el0_svc+0x34/0x68
   el0t_64_sync_handler+0xb8/0xc0
   el0t_64_sync+0x168/0x170

  Freed by task 191:
   kasan_save_stack+0x28/0x50
   kasan_set_track+0x28/0x38
   kasan_save_free_info+0x34/0x58
   __kasan_slab_free+0xe4/0x158
   kmem_cache_free+0x19c/0x508
   event_file_put+0xa0/0x120
   remove_event_file_dir+0x180/0x320
   event_trace_del_tracer+0xb0/0x180
   __remove_instance+0x224/0x508
   instance_rmdir+0x44/0x78
   tracefs_syscall_rmdir+0xbc/0x140
   vfs_rmdir+0x1cc/0x4c8
   do_rmdir+0x220/0x2b8
   __arm64_sys_unlinkat+0xc0/0x100
   invoke_syscall+0x70/0x260
   el0_svc_common.constprop.0+0xb0/0x280
   do_el0_svc+0x44/0x60
   el0_svc+0x34/0x68
   el0t_64_sync_handler+0xb8/0xc0
   el0t_64_sync+0x168/0x170

Link: https://lore.kernel.org/linux-trace-kernel/20231214012153.676155-1-zhengyejian1@huawei.com

Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Zheng Yejian <zhengyejian1@huawei.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-13 23:29:59 -05:00
Steven Rostedt (Google) 60be76eeab tracing: Add size check when printing trace_marker output
If for some reason the trace_marker write does not have a nul byte for the
string, it will overflow the print:

  trace_seq_printf(s, ": %s", field->buf);

The field->buf could be missing the nul byte. To prevent overflow, add the
max size that the buf can be by using the event size and the field
location.

  int max = iter->ent_size - offsetof(struct print_entry, buf);

  trace_seq_printf(s, ": %*.s", max, field->buf);

Link: https://lore.kernel.org/linux-trace-kernel/20231212084444.4619b8ce@gandalf.local.home

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-12 22:07:22 -05:00
Steven Rostedt (Google) b049525855 ring-buffer: Have saved event hold the entire event
For the ring buffer iterator (non-consuming read), the event needs to be
copied into the iterator buffer to make sure that a writer does not
overwrite it while the user is reading it. If a write happens during the
copy, the buffer is simply discarded.

But the temp buffer itself was not big enough. The allocation of the
buffer was only BUF_MAX_DATA_SIZE, which is the maximum data size that can
be passed into the ring buffer and saved. But the temp buffer needs to
hold the meta data as well. That would be BUF_PAGE_SIZE and not
BUF_MAX_DATA_SIZE.

Link: https://lore.kernel.org/linux-trace-kernel/20231212072558.61f76493@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 785888c544 ("ring-buffer: Have rb_iter_head_event() handle concurrent writer")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-12 20:56:10 -05:00
Steven Rostedt (Google) 9e45e39dc2 ring-buffer: Do not update before stamp when switching sub-buffers
The ring buffer timestamps are synchronized by two timestamp placeholders.
One is the "before_stamp" and the other is the "write_stamp" (sometimes
referred to as the "after stamp" but only in the comments. These two
stamps are key to knowing how to handle nested events coming in with a
lockless system.

When moving across sub-buffers, the before stamp is updated but the write
stamp is not. There's an effort to put back the before stamp to something
that seems logical in case there's nested events. But as the current event
is about to cross sub-buffers, and so will any new nested event that happens,
updating the before stamp is useless, and could even introduce new race
conditions.

The first event on a sub-buffer simply uses the sub-buffer's timestamp
and keeps a "delta" of zero. The "before_stamp" and "write_stamp" are not
used in the algorithm in this case. There's no reason to try to fix the
before_stamp when this happens.

As a bonus, it removes a cmpxchg() when crossing sub-buffers!

Link: https://lore.kernel.org/linux-trace-kernel/20231211114420.36dde01b@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: a389d86f7f ("ring-buffer: Have nested events still record running time stamp")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-12 20:55:45 -05:00
Steven Rostedt (Google) d06aff1cb1 tracing: Update snapshot buffer on resize if it is allocated
The snapshot buffer is to mimic the main buffer so that when a snapshot is
needed, the snapshot and main buffer are swapped. When the snapshot buffer
is allocated, it is set to the minimal size that the ring buffer may be at
and still functional. When it is allocated it becomes the same size as the
main ring buffer, and when the main ring buffer changes in size, it should
do.

Currently, the resize only updates the snapshot buffer if it's used by the
current tracer (ie. the preemptirqsoff tracer). But it needs to be updated
anytime it is allocated.

When changing the size of the main buffer, instead of looking to see if
the current tracer is utilizing the snapshot buffer, just check if it is
allocated to know if it should be updated or not.

Also fix typo in comment just above the code change.

Link: https://lore.kernel.org/linux-trace-kernel/20231210225447.48476a6a@rorschach.local.home

Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: ad909e21bb ("tracing: Add internal tracing_snapshot() functions")
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-12 19:00:38 -05:00
Steven Rostedt (Google) 17d8017581 ring-buffer: Fix memory leak of free page
Reading the ring buffer does a swap of a sub-buffer within the ring buffer
with a empty sub-buffer. This allows the reader to have full access to the
content of the sub-buffer that was swapped out without having to worry
about contention with the writer.

The readers call ring_buffer_alloc_read_page() to allocate a page that
will be used to swap with the ring buffer. When the code is finished with
the reader page, it calls ring_buffer_free_read_page(). Instead of freeing
the page, it stores it as a spare. Then next call to
ring_buffer_alloc_read_page() will return this spare instead of calling
into the memory management system to allocate a new page.

Unfortunately, on freeing of the ring buffer, this spare page is not
freed, and causes a memory leak.

Link: https://lore.kernel.org/linux-trace-kernel/20231210221250.7b9cc83c@rorschach.local.home

Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 73a757e631 ("ring-buffer: Return reader page back into existing ring buffer")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-12 19:00:37 -05:00
Steven Rostedt (Google) b55b0a0d7c tracing: Have large events show up as '[LINE TOO BIG]' instead of nothing
If a large event was added to the ring buffer that is larger than what the
trace_seq can handle, it just drops the output:

 ~# cat /sys/kernel/tracing/trace
 # tracer: nop
 #
 # entries-in-buffer/entries-written: 2/2   #P:8
 #
 #                                _-----=> irqs-off/BH-disabled
 #                               / _----=> need-resched
 #                              | / _---=> hardirq/softirq
 #                              || / _--=> preempt-depth
 #                              ||| / _-=> migrate-disable
 #                              |||| /     delay
 #           TASK-PID     CPU#  |||||  TIMESTAMP  FUNCTION
 #              | |         |   |||||     |         |
            <...>-859     [001] .....   141.118951: tracing_mark_write           <...>-859     [001] .....   141.148201: tracing_mark_write: 78901234

Instead, catch this case and add some context:

 ~# cat /sys/kernel/tracing/trace
 # tracer: nop
 #
 # entries-in-buffer/entries-written: 2/2   #P:8
 #
 #                                _-----=> irqs-off/BH-disabled
 #                               / _----=> need-resched
 #                              | / _---=> hardirq/softirq
 #                              || / _--=> preempt-depth
 #                              ||| / _-=> migrate-disable
 #                              |||| /     delay
 #           TASK-PID     CPU#  |||||  TIMESTAMP  FUNCTION
 #              | |         |   |||||     |         |
            <...>-852     [001] .....   121.550551: tracing_mark_write[LINE TOO BIG]
            <...>-852     [001] .....   121.550581: tracing_mark_write: 78901234

This now emulates the same output as trace_pipe.

Link: https://lore.kernel.org/linux-trace-kernel/20231209171058.78c1a026@gandalf.local.home

Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-12 19:00:36 -05:00
Steven Rostedt (Google) b3ae7b67b8 ring-buffer: Fix writing to the buffer with max_data_size
The maximum ring buffer data size is the maximum size of data that can be
recorded on the ring buffer. Events must be smaller than the sub buffer
data size minus any meta data. This size is checked before trying to
allocate from the ring buffer because the allocation assumes that the size
will fit on the sub buffer.

The maximum size was calculated as the size of a sub buffer page (which is
currently PAGE_SIZE minus the sub buffer header) minus the size of the
meta data of an individual event. But it missed the possible adding of a
time stamp for events that are added long enough apart that the event meta
data can't hold the time delta.

When an event is added that is greater than the current BUF_MAX_DATA_SIZE
minus the size of a time stamp, but still less than or equal to
BUF_MAX_DATA_SIZE, the ring buffer would go into an infinite loop, looking
for a page that can hold the event. Luckily, there's a check for this loop
and after 1000 iterations and a warning is emitted and the ring buffer is
disabled. But this should never happen.

This can happen when a large event is added first, or after a long period
where an absolute timestamp is prefixed to the event, increasing its size
by 8 bytes. This passes the check and then goes into the algorithm that
causes the infinite loop.

For events that are the first event on the sub-buffer, it does not need to
add a timestamp, because the sub-buffer itself contains an absolute
timestamp, and adding one is redundant.

The fix is to check if the event is to be the first event on the
sub-buffer, and if it is, then do not add a timestamp.

This also fixes 32 bit adding a timestamp when a read of before_stamp or
write_stamp is interrupted. There's still no need to add that timestamp if
the event is going to be the first event on the sub buffer.

Also, if the buffer has "time_stamp_abs" set, then also check if the
length plus the timestamp is greater than the BUF_MAX_DATA_SIZE.

Link: https://lore.kernel.org/all/20231212104549.58863438@gandalf.local.home/
Link: https://lore.kernel.org/linux-trace-kernel/20231212071837.5fdd6c13@gandalf.local.home
Link: https://lore.kernel.org/linux-trace-kernel/20231212111617.39e02849@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: a4543a2fa9 ("ring-buffer: Get timestamp after event is allocated")
Fixes: 58fbc3c632 ("ring-buffer: Consolidate add_timestamp to remove some branches")
Reported-by: Kent Overstreet <kent.overstreet@linux.dev> # (on IRC)
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-12 19:00:19 -05:00
Linus Torvalds 17894c2a7a tracing fixes for v6.7-rc4:
- Snapshot buffer issues
 
   1. When instances started allowing latency tracers, it uses
      a snapshot buffer (another buffer that is not written to
      but swapped with the main buffer that is). The snapshot buffer
      needs to be the same size as the main buffer. But when the
      snapshot buffers were added to instances, the code to make
      the snapshot equal to the main buffer still was only doing it
      for the main buffer and not the instances.
 
   2. Need to stop the current tracer when resizing the buffers.
      Otherwise there can be a race if the tracer decides to make
      a snapshot between resizing the main buffer and the snapshot
      buffer.
 
   3. When a tracer is "stopped" in disables both the main buffer
      and the snapshot buffer. This needs to be done for instances
      and not only the main buffer, now that instances also have
      a snapshot buffer.
 
 - Buffered event for filtering issues
 
   When filtering is enabled, because events can be dropped often,
   it is quicker to copy the event into a temp buffer and write that
   into the main buffer if it is not filtered or just drop the event
   if it is, than to write the event into the ring buffer and then
   try to discard it. This temp buffer is allocated and needs special
   synchronization to do so. But there were some issues with that:
 
   1. When disabling the filter and freeing the buffer, a call to all
      CPUs is required to stop each per_cpu usage. But the code
      called smp_call_function_many() which does not include the
      current CPU. If the task is migrated to another CPU when it
      enables the CPUs via smp_call_function_many(), it will not enable
      the one it is currently on and this causes issues later on.
      Use on_each_cpu_mask() instead, which includes the current CPU.
 
    2. When the allocation of the buffered event fails, it can give
       a warning. But the buffered event is just an optimization
       (it's still OK to write to the ring buffer and free it).
       Do not WARN in this case.
 
    3. The freeing of the buffer event requires synchronization.
       First a counter is decremented to zero so that no new uses
       of it will happen. Then it sets the buffered event to NULL,
       and finally it frees the buffered event. There's a synchronize_rcu()
       between the counter decrement and the setting the variable to
       NULL, but only a smp_wmb() between that and the freeing of the
       buffer. It is theoretically possible that a user missed seeing
       the decrement, but will use the buffer after it is free. Another
       synchronize_rcu() is needed in place of that smp_wmb().
 
 - ring buffer timestamps on 32 bit machines
 
   The ring buffer timestamp on 32 bit machines has to break the 64 bit
   number into multiple values as cmpxchg is required on it, and a
   64 bit cmpxchg on 32 bit architectures is very slow. The code use
   to just use two 32 bit values and make it a 60 bit timestamp where
   the other 4 bits were used as counters for synchronization. It later
   came known that the timestamp on 32 bit still need all 64 bits in
   some cases. So 3 words were created to handle the 64 bits. But issues
   arised with this:
 
    1. The synchronization logic still only compared the counter
       with the first two, but not with the third number, so the
       synchronization could fail unknowingly.
 
    2. A check on discard of an event could race if an event happened
       between the discard and updating one of the counters. The
       counter needs to be updated (forcing an absolute timestamp
       and not to use a delta) before the actual discard happens.
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZXIP5hQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qmJxAQDXBZwBUFQjWqZHLJn0S9aaz5FggkeR
 RmlsOMND0PXcjwD+N6U905i553ehu3SSyOP+5svoi0hyCB2qhj3ZF0LzZQU=
 =us1V
 -----END PGP SIGNATURE-----

Merge tag 'trace-v6.7-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace

Pull tracing fixes from Steven Rostedt:

 - Snapshot buffer issues:

   1. When instances started allowing latency tracers, it uses a
      snapshot buffer (another buffer that is not written to but swapped
      with the main buffer that is). The snapshot buffer needs to be the
      same size as the main buffer. But when the snapshot buffers were
      added to instances, the code to make the snapshot equal to the
      main buffer still was only doing it for the main buffer and not
      the instances.

   2. Need to stop the current tracer when resizing the buffers.
      Otherwise there can be a race if the tracer decides to make a
      snapshot between resizing the main buffer and the snapshot buffer.

   3. When a tracer is "stopped" in disables both the main buffer and
      the snapshot buffer. This needs to be done for instances and not
      only the main buffer, now that instances also have a snapshot
      buffer.

 - Buffered event for filtering issues:

   When filtering is enabled, because events can be dropped often, it is
   quicker to copy the event into a temp buffer and write that into the
   main buffer if it is not filtered or just drop the event if it is,
   than to write the event into the ring buffer and then try to discard
   it. This temp buffer is allocated and needs special synchronization
   to do so. But there were some issues with that:

   1. When disabling the filter and freeing the buffer, a call to all
      CPUs is required to stop each per_cpu usage. But the code called
      smp_call_function_many() which does not include the current CPU.
      If the task is migrated to another CPU when it enables the CPUs
      via smp_call_function_many(), it will not enable the one it is
      currently on and this causes issues later on. Use
      on_each_cpu_mask() instead, which includes the current CPU.

    2.When the allocation of the buffered event fails, it can give a
      warning. But the buffered event is just an optimization (it's
      still OK to write to the ring buffer and free it). Do not WARN in
      this case.

    3.The freeing of the buffer event requires synchronization. First a
      counter is decremented to zero so that no new uses of it will
      happen. Then it sets the buffered event to NULL, and finally it
      frees the buffered event. There's a synchronize_rcu() between the
      counter decrement and the setting the variable to NULL, but only a
      smp_wmb() between that and the freeing of the buffer. It is
      theoretically possible that a user missed seeing the decrement,
      but will use the buffer after it is free. Another
      synchronize_rcu() is needed in place of that smp_wmb().

 - ring buffer timestamps on 32 bit machines

   The ring buffer timestamp on 32 bit machines has to break the 64 bit
   number into multiple values as cmpxchg is required on it, and a 64
   bit cmpxchg on 32 bit architectures is very slow. The code use to
   just use two 32 bit values and make it a 60 bit timestamp where the
   other 4 bits were used as counters for synchronization. It later came
   known that the timestamp on 32 bit still need all 64 bits in some
   cases. So 3 words were created to handle the 64 bits. But issues
   arised with this:

    1. The synchronization logic still only compared the counter with
       the first two, but not with the third number, so the
       synchronization could fail unknowingly.

    2. A check on discard of an event could race if an event happened
       between the discard and updating one of the counters. The counter
       needs to be updated (forcing an absolute timestamp and not to use
       a delta) before the actual discard happens.

* tag 'trace-v6.7-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
  ring-buffer: Test last update in 32bit version of __rb_time_read()
  ring-buffer: Force absolute timestamp on discard of event
  tracing: Fix a possible race when disabling buffered events
  tracing: Fix a warning when allocating buffered events fails
  tracing: Fix incomplete locking when disabling buffered events
  tracing: Disable snapshot buffer when stopping instance tracers
  tracing: Stop current tracer when resizing buffer
  tracing: Always update snapshot buffer size
2023-12-08 08:44:43 -08:00
Jakub Kicinski 2483e7f04c Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Cross-merge networking fixes after downstream PR.

Conflicts:

drivers/net/ethernet/stmicro/stmmac/dwmac5.c
drivers/net/ethernet/stmicro/stmmac/dwmac5.h
drivers/net/ethernet/stmicro/stmmac/dwxgmac2_core.c
drivers/net/ethernet/stmicro/stmmac/hwif.h
  37e4b8df27 ("net: stmmac: fix FPE events losing")
  c3f3b97238 ("net: stmmac: Refactor EST implementation")
https://lore.kernel.org/all/20231206110306.01e91114@canb.auug.org.au/

Adjacent changes:

net/ipv4/tcp_ao.c
  9396c4ee93 ("net/tcp: Don't store TCP-AO maclen on reqsk")
  7b0f570f87 ("tcp: Move TCP-AO bits from cookie_v[46]_check() to tcp_ao_syncookie().")

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-12-07 17:53:17 -08:00
Steven Rostedt (Google) f458a14534 ring-buffer: Test last update in 32bit version of __rb_time_read()
Since 64 bit cmpxchg() is very expensive on 32bit architectures, the
timestamp used by the ring buffer does some interesting tricks to be able
to still have an atomic 64 bit number. It originally just used 60 bits and
broke it up into two 32 bit words where the extra 2 bits were used for
synchronization. But this was not enough for all use cases, and all 64
bits were required.

The 32bit version of the ring buffer timestamp was then broken up into 3
32bit words using the same counter trick. But one update was not done. The
check to see if the read operation was done without interruption only
checked the first two words and not last one (like it had before this
update). Fix it by making sure all three updates happen without
interruption by comparing the initial counter with the last updated
counter.

Link: https://lore.kernel.org/linux-trace-kernel/20231206100050.3100b7bb@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: f03f2abce4 ("ring-buffer: Have 32 bit time stamps use all 64 bits")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-06 15:01:49 -05:00
Steven Rostedt (Google) b2dd797543 ring-buffer: Force absolute timestamp on discard of event
There's a race where if an event is discarded from the ring buffer and an
interrupt were to happen at that time and insert an event, the time stamp
is still used from the discarded event as an offset. This can screw up the
timings.

If the event is going to be discarded, set the "before_stamp" to zero.
When a new event comes in, it compares the "before_stamp" with the
"write_stamp" and if they are not equal, it will insert an absolute
timestamp. This will prevent the timings from getting out of sync due to
the discarded event.

Link: https://lore.kernel.org/linux-trace-kernel/20231206100244.5130f9b3@gandalf.local.home

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: 6f6be606e7 ("ring-buffer: Force before_stamp and write_stamp to be different on discard")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-06 15:00:59 -05:00
Andrii Nakryiko 4cbb270e11 bpf: take into account BPF token when fetching helper protos
Instead of performing unconditional system-wide bpf_capable() and
perfmon_capable() calls inside bpf_base_func_proto() function (and other
similar ones) to determine eligibility of a given BPF helper for a given
program, use previously recorded BPF token during BPF_PROG_LOAD command
handling to inform the decision.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231130185229.2688956-8-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-06 10:02:59 -08:00
Petr Pavlu c0591b1ccc tracing: Fix a possible race when disabling buffered events
Function trace_buffered_event_disable() is responsible for freeing pages
backing buffered events and this process can run concurrently with
trace_event_buffer_lock_reserve().

The following race is currently possible:

* Function trace_buffered_event_disable() is called on CPU 0. It
  increments trace_buffered_event_cnt on each CPU and waits via
  synchronize_rcu() for each user of trace_buffered_event to complete.

* After synchronize_rcu() is finished, function
  trace_buffered_event_disable() has the exclusive access to
  trace_buffered_event. All counters trace_buffered_event_cnt are at 1
  and all pointers trace_buffered_event are still valid.

* At this point, on a different CPU 1, the execution reaches
  trace_event_buffer_lock_reserve(). The function calls
  preempt_disable_notrace() and only now enters an RCU read-side
  critical section. The function proceeds and reads a still valid
  pointer from trace_buffered_event[CPU1] into the local variable
  "entry". However, it doesn't yet read trace_buffered_event_cnt[CPU1]
  which happens later.

* Function trace_buffered_event_disable() continues. It frees
  trace_buffered_event[CPU1] and decrements
  trace_buffered_event_cnt[CPU1] back to 0.

* Function trace_event_buffer_lock_reserve() continues. It reads and
  increments trace_buffered_event_cnt[CPU1] from 0 to 1. This makes it
  believe that it can use the "entry" that it already obtained but the
  pointer is now invalid and any access results in a use-after-free.

Fix the problem by making a second synchronize_rcu() call after all
trace_buffered_event values are set to NULL. This waits on all potential
users in trace_event_buffer_lock_reserve() that still read a previous
pointer from trace_buffered_event.

Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-4-petr.pavlu@suse.com

Cc: stable@vger.kernel.org
Fixes: 0fc1b09ff1 ("tracing: Use temp buffer when filtering events")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-05 17:17:00 -05:00
Petr Pavlu 34209fe83e tracing: Fix a warning when allocating buffered events fails
Function trace_buffered_event_disable() produces an unexpected warning
when the previous call to trace_buffered_event_enable() fails to
allocate pages for buffered events.

The situation can occur as follows:

* The counter trace_buffered_event_ref is at 0.

* The soft mode gets enabled for some event and
  trace_buffered_event_enable() is called. The function increments
  trace_buffered_event_ref to 1 and starts allocating event pages.

* The allocation fails for some page and trace_buffered_event_disable()
  is called for cleanup.

* Function trace_buffered_event_disable() decrements
  trace_buffered_event_ref back to 0, recognizes that it was the last
  use of buffered events and frees all allocated pages.

* The control goes back to trace_buffered_event_enable() which returns.
  The caller of trace_buffered_event_enable() has no information that
  the function actually failed.

* Some time later, the soft mode is disabled for the same event.
  Function trace_buffered_event_disable() is called. It warns on
  "WARN_ON_ONCE(!trace_buffered_event_ref)" and returns.

Buffered events are just an optimization and can handle failures. Make
trace_buffered_event_enable() exit on the first failure and left any
cleanup later to when trace_buffered_event_disable() is called.

Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-3-petr.pavlu@suse.com

Fixes: 0fc1b09ff1 ("tracing: Use temp buffer when filtering events")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-05 17:16:48 -05:00
Petr Pavlu 7fed14f7ac tracing: Fix incomplete locking when disabling buffered events
The following warning appears when using buffered events:

[  203.556451] WARNING: CPU: 53 PID: 10220 at kernel/trace/ring_buffer.c:3912 ring_buffer_discard_commit+0x2eb/0x420
[...]
[  203.670690] CPU: 53 PID: 10220 Comm: stress-ng-sysin Tainted: G            E      6.7.0-rc2-default #4 56e6d0fcf5581e6e51eaaecbdaec2a2338c80f3a
[  203.670704] Hardware name: Intel Corp. GROVEPORT/GROVEPORT, BIOS GVPRCRB1.86B.0016.D04.1705030402 05/03/2017
[  203.670709] RIP: 0010:ring_buffer_discard_commit+0x2eb/0x420
[  203.735721] Code: 4c 8b 4a 50 48 8b 42 48 49 39 c1 0f 84 b3 00 00 00 49 83 e8 01 75 b1 48 8b 42 10 f0 ff 40 08 0f 0b e9 fc fe ff ff f0 ff 47 08 <0f> 0b e9 77 fd ff ff 48 8b 42 10 f0 ff 40 08 0f 0b e9 f5 fe ff ff
[  203.735734] RSP: 0018:ffffb4ae4f7b7d80 EFLAGS: 00010202
[  203.735745] RAX: 0000000000000000 RBX: ffffb4ae4f7b7de0 RCX: ffff8ac10662c000
[  203.735754] RDX: ffff8ac0c750be00 RSI: ffff8ac10662c000 RDI: ffff8ac0c004d400
[  203.781832] RBP: ffff8ac0c039cea0 R08: 0000000000000000 R09: 0000000000000000
[  203.781839] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000000
[  203.781842] R13: ffff8ac10662c000 R14: ffff8ac0c004d400 R15: ffff8ac10662c008
[  203.781846] FS:  00007f4cd8a67740(0000) GS:ffff8ad798880000(0000) knlGS:0000000000000000
[  203.781851] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  203.781855] CR2: 0000559766a74028 CR3: 00000001804c4000 CR4: 00000000001506f0
[  203.781862] Call Trace:
[  203.781870]  <TASK>
[  203.851949]  trace_event_buffer_commit+0x1ea/0x250
[  203.851967]  trace_event_raw_event_sys_enter+0x83/0xe0
[  203.851983]  syscall_trace_enter.isra.0+0x182/0x1a0
[  203.851990]  do_syscall_64+0x3a/0xe0
[  203.852075]  entry_SYSCALL_64_after_hwframe+0x6e/0x76
[  203.852090] RIP: 0033:0x7f4cd870fa77
[  203.982920] Code: 00 b8 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 90 b8 89 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d e9 43 0e 00 f7 d8 64 89 01 48
[  203.982932] RSP: 002b:00007fff99717dd8 EFLAGS: 00000246 ORIG_RAX: 0000000000000089
[  203.982942] RAX: ffffffffffffffda RBX: 0000558ea1d7b6f0 RCX: 00007f4cd870fa77
[  203.982948] RDX: 0000000000000000 RSI: 00007fff99717de0 RDI: 0000558ea1d7b6f0
[  203.982957] RBP: 00007fff99717de0 R08: 00007fff997180e0 R09: 00007fff997180e0
[  203.982962] R10: 00007fff997180e0 R11: 0000000000000246 R12: 00007fff99717f40
[  204.049239] R13: 00007fff99718590 R14: 0000558e9f2127a8 R15: 00007fff997180b0
[  204.049256]  </TASK>

For instance, it can be triggered by running these two commands in
parallel:

 $ while true; do
    echo hist:key=id.syscall:val=hitcount > \
      /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger;
  done
 $ stress-ng --sysinfo $(nproc)

The warning indicates that the current ring_buffer_per_cpu is not in the
committing state. It happens because the active ring_buffer_event
doesn't actually come from the ring_buffer_per_cpu but is allocated from
trace_buffered_event.

The bug is in function trace_buffered_event_disable() where the
following normally happens:

* The code invokes disable_trace_buffered_event() via
  smp_call_function_many() and follows it by synchronize_rcu(). This
  increments the per-CPU variable trace_buffered_event_cnt on each
  target CPU and grants trace_buffered_event_disable() the exclusive
  access to the per-CPU variable trace_buffered_event.

* Maintenance is performed on trace_buffered_event, all per-CPU event
  buffers get freed.

* The code invokes enable_trace_buffered_event() via
  smp_call_function_many(). This decrements trace_buffered_event_cnt and
  releases the access to trace_buffered_event.

A problem is that smp_call_function_many() runs a given function on all
target CPUs except on the current one. The following can then occur:

* Task X executing trace_buffered_event_disable() runs on CPU 0.

* The control reaches synchronize_rcu() and the task gets rescheduled on
  another CPU 1.

* The RCU synchronization finishes. At this point,
  trace_buffered_event_disable() has the exclusive access to all
  trace_buffered_event variables except trace_buffered_event[CPU0]
  because trace_buffered_event_cnt[CPU0] is never incremented and if the
  buffer is currently unused, remains set to 0.

* A different task Y is scheduled on CPU 0 and hits a trace event. The
  code in trace_event_buffer_lock_reserve() sees that
  trace_buffered_event_cnt[CPU0] is set to 0 and decides the use the
  buffer provided by trace_buffered_event[CPU0].

* Task X continues its execution in trace_buffered_event_disable(). The
  code incorrectly frees the event buffer pointed by
  trace_buffered_event[CPU0] and resets the variable to NULL.

* Task Y writes event data to the now freed buffer and later detects the
  created inconsistency.

The issue is observable since commit dea499781a ("tracing: Fix warning
in trace_buffered_event_disable()") which moved the call of
trace_buffered_event_disable() in __ftrace_event_enable_disable()
earlier, prior to invoking call->class->reg(.. TRACE_REG_UNREGISTER ..).
The underlying problem in trace_buffered_event_disable() is however
present since the original implementation in commit 0fc1b09ff1
("tracing: Use temp buffer when filtering events").

Fix the problem by replacing the two smp_call_function_many() calls with
on_each_cpu_mask() which invokes a given callback on all CPUs.

Link: https://lore.kernel.org/all/20231127151248.7232-2-petr.pavlu@suse.com/
Link: https://lkml.kernel.org/r/20231205161736.19663-2-petr.pavlu@suse.com

Cc: stable@vger.kernel.org
Fixes: 0fc1b09ff1 ("tracing: Use temp buffer when filtering events")
Fixes: dea499781a ("tracing: Fix warning in trace_buffered_event_disable()")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-05 17:13:51 -05:00
Steven Rostedt (Google) b538bf7d0e tracing: Disable snapshot buffer when stopping instance tracers
It use to be that only the top level instance had a snapshot buffer (for
latency tracers like wakeup and irqsoff). When stopping a tracer in an
instance would not disable the snapshot buffer. This could have some
unintended consequences if the irqsoff tracer is enabled.

Consolidate the tracing_start/stop() with tracing_start/stop_tr() so that
all instances behave the same. The tracing_start/stop() functions will
just call their respective tracing_start/stop_tr() with the global_array
passed in.

Link: https://lkml.kernel.org/r/20231205220011.041220035@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 6d9b3fa5e7 ("tracing: Move tracing_max_latency into trace_array")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-05 17:06:12 -05:00
Steven Rostedt (Google) d78ab79270 tracing: Stop current tracer when resizing buffer
When the ring buffer is being resized, it can cause side effects to the
running tracer. For instance, there's a race with irqsoff tracer that
swaps individual per cpu buffers between the main buffer and the snapshot
buffer. The resize operation modifies the main buffer and then the
snapshot buffer. If a swap happens in between those two operations it will
break the tracer.

Simply stop the running tracer before resizing the buffers and enable it
again when finished.

Link: https://lkml.kernel.org/r/20231205220010.748996423@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 3928a8a2d9 ("ftrace: make work with new ring buffer")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-05 17:06:12 -05:00
Steven Rostedt (Google) 7be76461f3 tracing: Always update snapshot buffer size
It use to be that only the top level instance had a snapshot buffer (for
latency tracers like wakeup and irqsoff). The update of the ring buffer
size would check if the instance was the top level and if so, it would
also update the snapshot buffer as it needs to be the same as the main
buffer.

Now that lower level instances also has a snapshot buffer, they too need
to update their snapshot buffer sizes when the main buffer is changed,
otherwise the following can be triggered:

 # cd /sys/kernel/tracing
 # echo 1500 > buffer_size_kb
 # mkdir instances/foo
 # echo irqsoff > instances/foo/current_tracer
 # echo 1000 > instances/foo/buffer_size_kb

Produces:

 WARNING: CPU: 2 PID: 856 at kernel/trace/trace.c:1938 update_max_tr_single.part.0+0x27d/0x320

Which is:

	ret = ring_buffer_swap_cpu(tr->max_buffer.buffer, tr->array_buffer.buffer, cpu);

	if (ret == -EBUSY) {
		[..]
	}

	WARN_ON_ONCE(ret && ret != -EAGAIN && ret != -EBUSY);  <== here

That's because ring_buffer_swap_cpu() has:

	int ret = -EINVAL;

	[..]

	/* At least make sure the two buffers are somewhat the same */
	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
		goto out;

	[..]
 out:
	return ret;
 }

Instead, update all instances' snapshot buffer sizes when their main
buffer size is updated.

Link: https://lkml.kernel.org/r/20231205220010.454662151@goodmis.org

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 6d9b3fa5e7 ("tracing: Move tracing_max_latency into trace_array")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
2023-12-05 17:06:12 -05:00
Song Liu ac9c05e0e4 bpf: Add kfunc bpf_get_file_xattr
It is common practice for security solutions to store tags/labels in
xattrs. To implement similar functionalities in BPF LSM, add new kfunc
bpf_get_file_xattr().

The first use case of bpf_get_file_xattr() is to implement file
verifications with asymmetric keys. Specificially, security applications
could use fsverity for file hashes and use xattr to store file signatures.
(kfunc for fsverity hash will be added in a separate commit.)

Currently, only xattrs with "user." prefix can be read with kfunc
bpf_get_file_xattr(). As use cases evolve, we may add a dedicated prefix
for bpf_get_file_xattr().

To avoid recursion, bpf_get_file_xattr can be only called from LSM hooks.

Signed-off-by: Song Liu <song@kernel.org>
Acked-by: Christian Brauner <brauner@kernel.org>
Acked-by: KP Singh <kpsingh@kernel.org>
Link: https://lore.kernel.org/r/20231129234417.856536-2-song@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-12-01 16:21:03 -08:00
Masami Hiramatsu (Google) a1461f1fd6 rethook: Use __rcu pointer for rethook::handler
Since the rethook::handler is an RCU-maganged pointer so that it will
notice readers the rethook is stopped (unregistered) or not, it should
be an __rcu pointer and use appropriate functions to be accessed. This
will use appropriate memory barrier when accessing it. OTOH,
rethook::data is never changed, so we don't need to check it in
get_kretprobe().

NOTE: To avoid sparse warning, rethook::handler is defined by a raw
function pointer type with __rcu instead of rethook_handler_t.

Link: https://lore.kernel.org/all/170126066201.398836.837498688669005979.stgit@devnote2/

Fixes: 54ecbe6f1e ("rethook: Add a generic return hook")
Cc: stable@vger.kernel.org
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202311241808.rv9ceuAh-lkp@intel.com/
Tested-by: JP Kobryn <inwardvessel@gmail.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2023-12-01 14:53:56 +09:00
Jiri Olsa e56fdbfb06 bpf: Add link_info support for uprobe multi link
Adding support to get uprobe_link details through bpf_link_info
interface.

Adding new struct uprobe_multi to struct bpf_link_info to carry
the uprobe_multi link details.

The uprobe_multi.count is passed from user space to denote size
of array fields (offsets/ref_ctr_offsets/cookies). The actual
array size is stored back to uprobe_multi.count (allowing user
to find out the actual array size) and array fields are populated
up to the user passed size.

All the non-array fields (path/count/flags/pid) are always set.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/bpf/20231125193130.834322-4-jolsa@kernel.org
2023-11-28 21:50:09 -08:00
Jiri Olsa 4930b7f53a bpf: Store ref_ctr_offsets values in bpf_uprobe array
We will need to return ref_ctr_offsets values through link_info
interface in following change, so we need to keep them around.

Storing ref_ctr_offsets values directly into bpf_uprobe array.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/bpf/20231125193130.834322-3-jolsa@kernel.org
2023-11-28 21:50:09 -08:00
Jakub Kicinski 53475287da bpf-next-for-netdev
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZV0kjgAKCRDbK58LschI
 gy0EAP9XwncW2OhO72DpITluFzvWPgB0N97OANKBXjzKJrRAlQD/aUe9nlvBQuad
 WsbMKLeC4wvI2X/4PEIR4ukbuZ3ypAA=
 =LMVg
 -----END PGP SIGNATURE-----

Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next

Daniel Borkmann says:

====================
pull-request: bpf-next 2023-11-21

We've added 85 non-merge commits during the last 12 day(s) which contain
a total of 63 files changed, 4464 insertions(+), 1484 deletions(-).

The main changes are:

1) Huge batch of verifier changes to improve BPF register bounds logic
   and range support along with a large test suite, and verifier log
   improvements, all from Andrii Nakryiko.

2) Add a new kfunc which acquires the associated cgroup of a task within
   a specific cgroup v1 hierarchy where the latter is identified by its id,
   from Yafang Shao.

3) Extend verifier to allow bpf_refcount_acquire() of a map value field
   obtained via direct load which is a use-case needed in sched_ext,
   from Dave Marchevsky.

4) Fix bpf_get_task_stack() helper to add the correct crosstask check
   for the get_perf_callchain(), from Jordan Rome.

5) Fix BPF task_iter internals where lockless usage of next_thread()
   was wrong. The rework also simplifies the code, from Oleg Nesterov.

6) Fix uninitialized tail padding via LIBBPF_OPTS_RESET, and another
   fix for certain BPF UAPI structs to fix verifier failures seen
   in bpf_dynptr usage, from Yonghong Song.

7) Add BPF selftest fixes for map_percpu_stats flakes due to per-CPU BPF
   memory allocator not being able to allocate per-CPU pointer successfully,
   from Hou Tao.

8) Add prep work around dynptr and string handling for kfuncs which
   is later going to be used by file verification via BPF LSM and fsverity,
   from Song Liu.

9) Improve BPF selftests to update multiple prog_tests to use ASSERT_*
   macros, from Yuran Pereira.

10) Optimize LPM trie lookup to check prefixlen before walking the trie,
    from Florian Lehner.

11) Consolidate virtio/9p configs from BPF selftests in config.vm file
    given they are needed consistently across archs, from Manu Bretelle.

12) Small BPF verifier refactor to remove register_is_const(),
    from Shung-Hsi Yu.

* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (85 commits)
  selftests/bpf: Replaces the usage of CHECK calls for ASSERTs in vmlinux
  selftests/bpf: Replaces the usage of CHECK calls for ASSERTs in bpf_obj_id
  selftests/bpf: Replaces the usage of CHECK calls for ASSERTs in bind_perm
  selftests/bpf: Replaces the usage of CHECK calls for ASSERTs in bpf_tcp_ca
  selftests/bpf: reduce verboseness of reg_bounds selftest logs
  bpf: bpf_iter_task_next: use next_task(kit->task) rather than next_task(kit->pos)
  bpf: bpf_iter_task_next: use __next_thread() rather than next_thread()
  bpf: task_group_seq_get_next: use __next_thread() rather than next_thread()
  bpf: emit frameno for PTR_TO_STACK regs if it differs from current one
  bpf: smarter verifier log number printing logic
  bpf: omit default off=0 and imm=0 in register state log
  bpf: emit map name in register state if applicable and available
  bpf: print spilled register state in stack slot
  bpf: extract register state printing
  bpf: move verifier state printing code to kernel/bpf/log.c
  bpf: move verbose_linfo() into kernel/bpf/log.c
  bpf: rename BPF_F_TEST_SANITY_STRICT to BPF_F_TEST_REG_INVARIANTS
  bpf: Remove test for MOVSX32 with offset=32
  selftests/bpf: add iter test requiring range x range logic
  veristat: add ability to set BPF_F_TEST_SANITY_STRICT flag with -r flag
  ...
====================

Link: https://lore.kernel.org/r/20231122000500.28126-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-11-21 17:53:20 -08:00
Yujie Liu f032c53bea tracing/kprobes: Fix the order of argument descriptions
The order of descriptions should be consistent with the argument list of
the function, so "kretprobe" should be the second one.

int __kprobe_event_gen_cmd_start(struct dynevent_cmd *cmd, bool kretprobe,
                                 const char *name, const char *loc, ...)

Link: https://lore.kernel.org/all/20231031041305.3363712-1-yujie.liu@intel.com/

Fixes: 2a588dd1d5 ("tracing: Add kprobe event command generation functions")
Suggested-by: Mukesh Ojha <quic_mojha@quicinc.com>
Signed-off-by: Yujie Liu <yujie.liu@intel.com>
Reviewed-by: Mukesh Ojha <quic_mojha@quicinc.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2023-11-11 08:00:43 +09:00
Masami Hiramatsu (Google) ce51e6153f tracing: fprobe-event: Fix to check tracepoint event and return
Fix to check the tracepoint event is not valid with $retval.
The commit 08c9306fc2 ("tracing/fprobe-event: Assume fprobe is
a return event by $retval") introduced automatic return probe
conversion with $retval. But since tracepoint event does not
support return probe, $retval is not acceptable.

Without this fix, ftracetest, tprobe_syntax_errors.tc fails;

[22] Tracepoint probe event parser error log check      [FAIL]
 ----
 # tail 22-tprobe_syntax_errors.tc-log.mRKroL
 + ftrace_errlog_check trace_fprobe t kfree ^$retval dynamic_events
 + printf %s t kfree
 + wc -c
 + pos=8
 + printf %s t kfree ^$retval
 + tr -d ^
 + command=t kfree $retval
 + echo Test command: t kfree $retval
 Test command: t kfree $retval
 + echo
 ----

So 't kfree $retval' should fail (tracepoint doesn't support
return probe) but passed it.

Link: https://lore.kernel.org/all/169944555933.45057.12831706585287704173.stgit@devnote2/

Fixes: 08c9306fc2 ("tracing/fprobe-event: Assume fprobe is a return event by $retval")
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
2023-11-10 20:06:12 +09:00