// SPDX-License-Identifier: GPL-2.0 //! Bitflag type generator. /// Common helper for declaring bitflag and bitmask types. /// /// This macro takes as input: /// - A struct declaration representing a bitmask type /// (e.g., `pub struct Permissions(u32)`). /// - An enumeration declaration representing individual bit flags /// (e.g., `pub enum Permission { ... }`). /// /// And generates: /// - The struct and enum types with appropriate `#[repr]` attributes. /// - Implementations of common bitflag operators /// ([`::core::ops::BitOr`], [`::core::ops::BitAnd`], etc.). /// - Utility methods such as `.contains()` to check flags. /// /// # Examples /// /// ``` /// use kernel::impl_flags; /// /// impl_flags!( /// /// Represents multiple permissions. /// #[derive(Debug, Clone, Default, Copy, PartialEq, Eq)] /// pub struct Permissions(u32); /// /// /// Represents a single permission. /// #[derive(Debug, Clone, Copy, PartialEq, Eq)] /// pub enum Permission { /// /// Read permission. /// Read = 1 << 0, /// /// /// Write permission. /// Write = 1 << 1, /// /// /// Execute permission. /// Execute = 1 << 2, /// } /// ); /// /// // Combine multiple permissions using the bitwise OR (`|`) operator. /// let mut read_write: Permissions = Permission::Read | Permission::Write; /// assert!(read_write.contains(Permission::Read)); /// assert!(read_write.contains(Permission::Write)); /// assert!(!read_write.contains(Permission::Execute)); /// assert!(read_write.contains_any(Permission::Read | Permission::Execute)); /// assert!(read_write.contains_all(Permission::Read | Permission::Write)); /// /// // Using the bitwise OR assignment (`|=`) operator. /// read_write |= Permission::Execute; /// assert!(read_write.contains(Permission::Execute)); /// /// // Masking a permission with the bitwise AND (`&`) operator. /// let read_only: Permissions = read_write & Permission::Read; /// assert!(read_only.contains(Permission::Read)); /// assert!(!read_only.contains(Permission::Write)); /// /// // Toggling permissions with the bitwise XOR (`^`) operator. /// let toggled: Permissions = read_only ^ Permission::Read; /// assert!(!toggled.contains(Permission::Read)); /// /// // Inverting permissions with the bitwise NOT (`!`) operator. /// let negated = !read_only; /// assert!(negated.contains(Permission::Write)); /// assert!(!negated.contains(Permission::Read)); /// ``` #[macro_export] macro_rules! impl_flags { ( $(#[$outer_flags:meta])* $vis_flags:vis struct $flags:ident($ty:ty); $(#[$outer_flag:meta])* $vis_flag:vis enum $flag:ident { $( $(#[$inner_flag:meta])* $name:ident = $value:expr ),+ $( , )? } ) => { $(#[$outer_flags])* #[repr(transparent)] $vis_flags struct $flags($ty); $(#[$outer_flag])* #[repr($ty)] $vis_flag enum $flag { $( $(#[$inner_flag])* $name = $value ),+ } impl ::core::convert::From<$flag> for $flags { #[inline] fn from(value: $flag) -> Self { Self(value as $ty) } } impl ::core::convert::From<$flags> for $ty { #[inline] fn from(value: $flags) -> Self { value.0 } } impl ::core::ops::BitOr for $flags { type Output = Self; #[inline] fn bitor(self, rhs: Self) -> Self::Output { Self(self.0 | rhs.0) } } impl ::core::ops::BitOrAssign for $flags { #[inline] fn bitor_assign(&mut self, rhs: Self) { *self = *self | rhs; } } impl ::core::ops::BitOr<$flag> for $flags { type Output = Self; #[inline] fn bitor(self, rhs: $flag) -> Self::Output { self | Self::from(rhs) } } impl ::core::ops::BitOrAssign<$flag> for $flags { #[inline] fn bitor_assign(&mut self, rhs: $flag) { *self = *self | rhs; } } impl ::core::ops::BitAnd for $flags { type Output = Self; #[inline] fn bitand(self, rhs: Self) -> Self::Output { Self(self.0 & rhs.0) } } impl ::core::ops::BitAndAssign for $flags { #[inline] fn bitand_assign(&mut self, rhs: Self) { *self = *self & rhs; } } impl ::core::ops::BitAnd<$flag> for $flags { type Output = Self; #[inline] fn bitand(self, rhs: $flag) -> Self::Output { self & Self::from(rhs) } } impl ::core::ops::BitAndAssign<$flag> for $flags { #[inline] fn bitand_assign(&mut self, rhs: $flag) { *self = *self & rhs; } } impl ::core::ops::BitXor for $flags { type Output = Self; #[inline] fn bitxor(self, rhs: Self) -> Self::Output { Self((self.0 ^ rhs.0) & Self::all_bits()) } } impl ::core::ops::BitXorAssign for $flags { #[inline] fn bitxor_assign(&mut self, rhs: Self) { *self = *self ^ rhs; } } impl ::core::ops::BitXor<$flag> for $flags { type Output = Self; #[inline] fn bitxor(self, rhs: $flag) -> Self::Output { self ^ Self::from(rhs) } } impl ::core::ops::BitXorAssign<$flag> for $flags { #[inline] fn bitxor_assign(&mut self, rhs: $flag) { *self = *self ^ rhs; } } impl ::core::ops::Not for $flags { type Output = Self; #[inline] fn not(self) -> Self::Output { Self((!self.0) & Self::all_bits()) } } impl ::core::ops::BitOr for $flag { type Output = $flags; #[inline] fn bitor(self, rhs: Self) -> Self::Output { $flags(self as $ty | rhs as $ty) } } impl ::core::ops::BitAnd for $flag { type Output = $flags; #[inline] fn bitand(self, rhs: Self) -> Self::Output { $flags(self as $ty & rhs as $ty) } } impl ::core::ops::BitXor for $flag { type Output = $flags; #[inline] fn bitxor(self, rhs: Self) -> Self::Output { $flags((self as $ty ^ rhs as $ty) & $flags::all_bits()) } } impl ::core::ops::Not for $flag { type Output = $flags; #[inline] fn not(self) -> Self::Output { $flags((!(self as $ty)) & $flags::all_bits()) } } impl $flags { /// Returns an empty instance where no flags are set. #[inline] pub const fn empty() -> Self { Self(0) } /// Returns a mask containing all valid flag bits. #[inline] pub const fn all_bits() -> $ty { 0 $( | $value )+ } /// Checks if a specific flag is set. #[inline] pub fn contains(self, flag: $flag) -> bool { (self.0 & flag as $ty) == flag as $ty } /// Checks if at least one of the provided flags is set. #[inline] pub fn contains_any(self, flags: $flags) -> bool { (self.0 & flags.0) != 0 } /// Checks if all of the provided flags are set. #[inline] pub fn contains_all(self, flags: $flags) -> bool { (self.0 & flags.0) == flags.0 } } }; }