597 lines
16 KiB
C
597 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Perf interface to expose Dispatch Trace Log counters.
|
|
*
|
|
* Copyright (C) 2024 Kajol Jain, IBM Corporation
|
|
*/
|
|
|
|
#ifdef CONFIG_PPC_SPLPAR
|
|
#define pr_fmt(fmt) "vpa_dtl: " fmt
|
|
|
|
#include <asm/dtl.h>
|
|
#include <linux/perf_event.h>
|
|
#include <asm/plpar_wrappers.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#define EVENT(_name, _code) enum{_name = _code}
|
|
|
|
/*
|
|
* Based on Power Architecture Platform Reference(PAPR) documentation,
|
|
* Table 14.14. Per Virtual Processor Area, below Dispatch Trace Log(DTL)
|
|
* Enable Mask used to get corresponding virtual processor dispatch
|
|
* to preempt traces:
|
|
* DTL_CEDE(0x1): Trace voluntary (OS initiated) virtual
|
|
* processor waits
|
|
* DTL_PREEMPT(0x2): Trace time slice preempts
|
|
* DTL_FAULT(0x4): Trace virtual partition memory page
|
|
faults.
|
|
* DTL_ALL(0x7): Trace all (DTL_CEDE | DTL_PREEMPT | DTL_FAULT)
|
|
*
|
|
* Event codes based on Dispatch Trace Log Enable Mask.
|
|
*/
|
|
EVENT(DTL_CEDE, 0x1);
|
|
EVENT(DTL_PREEMPT, 0x2);
|
|
EVENT(DTL_FAULT, 0x4);
|
|
EVENT(DTL_ALL, 0x7);
|
|
|
|
GENERIC_EVENT_ATTR(dtl_cede, DTL_CEDE);
|
|
GENERIC_EVENT_ATTR(dtl_preempt, DTL_PREEMPT);
|
|
GENERIC_EVENT_ATTR(dtl_fault, DTL_FAULT);
|
|
GENERIC_EVENT_ATTR(dtl_all, DTL_ALL);
|
|
|
|
PMU_FORMAT_ATTR(event, "config:0-7");
|
|
|
|
static struct attribute *events_attr[] = {
|
|
GENERIC_EVENT_PTR(DTL_CEDE),
|
|
GENERIC_EVENT_PTR(DTL_PREEMPT),
|
|
GENERIC_EVENT_PTR(DTL_FAULT),
|
|
GENERIC_EVENT_PTR(DTL_ALL),
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group event_group = {
|
|
.name = "events",
|
|
.attrs = events_attr,
|
|
};
|
|
|
|
static struct attribute *format_attrs[] = {
|
|
&format_attr_event.attr,
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group format_group = {
|
|
.name = "format",
|
|
.attrs = format_attrs,
|
|
};
|
|
|
|
static const struct attribute_group *attr_groups[] = {
|
|
&format_group,
|
|
&event_group,
|
|
NULL,
|
|
};
|
|
|
|
struct vpa_dtl {
|
|
struct dtl_entry *buf;
|
|
u64 last_idx;
|
|
};
|
|
|
|
struct vpa_pmu_ctx {
|
|
struct perf_output_handle handle;
|
|
};
|
|
|
|
struct vpa_pmu_buf {
|
|
int nr_pages;
|
|
bool snapshot;
|
|
u64 *base;
|
|
u64 size;
|
|
u64 head;
|
|
u64 head_size;
|
|
/* boot timebase and frequency needs to be saved only at once */
|
|
int boottb_freq_saved;
|
|
u64 threshold;
|
|
bool full;
|
|
};
|
|
|
|
/*
|
|
* To corelate each DTL entry with other events across CPU's,
|
|
* we need to map timebase from "struct dtl_entry" which phyp
|
|
* provides with boot timebase. This also needs timebase frequency.
|
|
* Formula is: ((timbase from DTL entry - boot time) / frequency)
|
|
*
|
|
* To match with size of "struct dtl_entry" to ease post processing,
|
|
* padded 24 bytes to the structure.
|
|
*/
|
|
struct boottb_freq {
|
|
u64 boot_tb;
|
|
u64 tb_freq;
|
|
u64 timebase;
|
|
u64 padded[3];
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct vpa_pmu_ctx, vpa_pmu_ctx);
|
|
static DEFINE_PER_CPU(struct vpa_dtl, vpa_dtl_cpu);
|
|
|
|
/* variable to capture reference count for the active dtl threads */
|
|
static int dtl_global_refc;
|
|
static spinlock_t dtl_global_lock = __SPIN_LOCK_UNLOCKED(dtl_global_lock);
|
|
|
|
/*
|
|
* Capture DTL data in AUX buffer
|
|
*/
|
|
static void vpa_dtl_capture_aux(long *n_entries, struct vpa_pmu_buf *buf,
|
|
struct vpa_dtl *dtl, int index)
|
|
{
|
|
struct dtl_entry *aux_copy_buf = (struct dtl_entry *)buf->base;
|
|
|
|
/*
|
|
* check if there is enough space to contain the
|
|
* DTL data. If not, save the data for available
|
|
* memory and set full to true.
|
|
*/
|
|
if (buf->head + *n_entries >= buf->threshold) {
|
|
*n_entries = buf->threshold - buf->head;
|
|
buf->full = 1;
|
|
}
|
|
|
|
/*
|
|
* Copy to AUX buffer from per-thread address
|
|
*/
|
|
memcpy(aux_copy_buf + buf->head, &dtl->buf[index], *n_entries * sizeof(struct dtl_entry));
|
|
|
|
if (buf->full) {
|
|
/*
|
|
* Set head of private aux to zero when buffer is full
|
|
* so that next data will be copied to beginning of the
|
|
* buffer
|
|
*/
|
|
buf->head = 0;
|
|
return;
|
|
}
|
|
|
|
buf->head += *n_entries;
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Function to dump the dispatch trace log buffer data to the
|
|
* perf data.
|
|
*
|
|
* perf_aux_output_begin: This function is called before writing
|
|
* to AUX area. This returns the pointer to aux area private structure,
|
|
* ie "struct vpa_pmu_buf" here which is set in setup_aux() function.
|
|
* The function obtains the output handle (used in perf_aux_output_end).
|
|
* when capture completes in vpa_dtl_capture_aux(), call perf_aux_output_end()
|
|
* to commit the recorded data.
|
|
*
|
|
* perf_aux_output_end: This function commits data by adjusting the
|
|
* aux_head of "struct perf_buffer". aux_tail will be moved in perf tools
|
|
* side when writing the data from aux buffer to perf.data file in disk.
|
|
*
|
|
* Here in the private aux structure, we maintain head to know where
|
|
* to copy data next time in the PMU driver. vpa_pmu_buf->head is moved to
|
|
* maintain the aux head for PMU driver. It is responsiblity of PMU
|
|
* driver to make sure data is copied between perf_aux_output_begin and
|
|
* perf_aux_output_end.
|
|
*
|
|
* After data is copied in vpa_dtl_capture_aux() function, perf_aux_output_end()
|
|
* is called to move the aux->head of "struct perf_buffer" to indicate size of
|
|
* data in aux buffer. This will post a PERF_RECORD_AUX into the perf buffer.
|
|
* Data will be written to disk only when the allocated buffer is full.
|
|
*
|
|
* By this approach, all the DTL data will be present as-is in the
|
|
* perf.data. The data will be pre-processed in perf tools side when doing
|
|
* perf report/perf script and this will avoid time taken to create samples
|
|
* in the kernel space.
|
|
*/
|
|
static void vpa_dtl_dump_sample_data(struct perf_event *event)
|
|
{
|
|
u64 cur_idx, last_idx, i;
|
|
u64 boot_tb;
|
|
struct boottb_freq boottb_freq;
|
|
|
|
/* actual number of entries read */
|
|
long n_read = 0, read_size = 0;
|
|
|
|
/* number of entries added to dtl buffer */
|
|
long n_req;
|
|
|
|
struct vpa_pmu_ctx *vpa_ctx = this_cpu_ptr(&vpa_pmu_ctx);
|
|
|
|
struct vpa_pmu_buf *aux_buf;
|
|
|
|
struct vpa_dtl *dtl = &per_cpu(vpa_dtl_cpu, event->cpu);
|
|
u64 size;
|
|
|
|
cur_idx = be64_to_cpu(lppaca_of(event->cpu).dtl_idx);
|
|
last_idx = dtl->last_idx;
|
|
|
|
if (last_idx + N_DISPATCH_LOG <= cur_idx)
|
|
last_idx = cur_idx - N_DISPATCH_LOG + 1;
|
|
|
|
n_req = cur_idx - last_idx;
|
|
|
|
/* no new entry added to the buffer, return */
|
|
if (n_req <= 0)
|
|
return;
|
|
|
|
dtl->last_idx = last_idx + n_req;
|
|
boot_tb = get_boot_tb();
|
|
|
|
i = last_idx % N_DISPATCH_LOG;
|
|
|
|
aux_buf = perf_aux_output_begin(&vpa_ctx->handle, event);
|
|
if (!aux_buf) {
|
|
pr_debug("returning. no aux\n");
|
|
return;
|
|
}
|
|
|
|
if (!aux_buf->boottb_freq_saved) {
|
|
pr_debug("Copying boot tb to aux buffer: %lld\n", boot_tb);
|
|
/* Save boot_tb to convert raw timebase to it's relative system boot time */
|
|
boottb_freq.boot_tb = boot_tb;
|
|
/* Save tb_ticks_per_sec to convert timebase to sec */
|
|
boottb_freq.tb_freq = tb_ticks_per_sec;
|
|
boottb_freq.timebase = 0;
|
|
memcpy(aux_buf->base, &boottb_freq, sizeof(boottb_freq));
|
|
aux_buf->head += 1;
|
|
aux_buf->boottb_freq_saved = 1;
|
|
n_read += 1;
|
|
}
|
|
|
|
/* read the tail of the buffer if we've wrapped */
|
|
if (i + n_req > N_DISPATCH_LOG) {
|
|
read_size = N_DISPATCH_LOG - i;
|
|
vpa_dtl_capture_aux(&read_size, aux_buf, dtl, i);
|
|
n_req -= read_size;
|
|
n_read += read_size;
|
|
i = 0;
|
|
if (aux_buf->full) {
|
|
size = (n_read * sizeof(struct dtl_entry));
|
|
if ((size + aux_buf->head_size) > aux_buf->size) {
|
|
size = aux_buf->size - aux_buf->head_size;
|
|
perf_aux_output_end(&vpa_ctx->handle, size);
|
|
aux_buf->head = 0;
|
|
aux_buf->head_size = 0;
|
|
} else {
|
|
aux_buf->head_size += (n_read * sizeof(struct dtl_entry));
|
|
perf_aux_output_end(&vpa_ctx->handle, n_read * sizeof(struct dtl_entry));
|
|
}
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/* .. and now the head */
|
|
vpa_dtl_capture_aux(&n_req, aux_buf, dtl, i);
|
|
|
|
size = ((n_req + n_read) * sizeof(struct dtl_entry));
|
|
if ((size + aux_buf->head_size) > aux_buf->size) {
|
|
size = aux_buf->size - aux_buf->head_size;
|
|
perf_aux_output_end(&vpa_ctx->handle, size);
|
|
aux_buf->head = 0;
|
|
aux_buf->head_size = 0;
|
|
} else {
|
|
aux_buf->head_size += ((n_req + n_read) * sizeof(struct dtl_entry));
|
|
/* Move the aux->head to indicate size of data in aux buffer */
|
|
perf_aux_output_end(&vpa_ctx->handle, (n_req + n_read) * sizeof(struct dtl_entry));
|
|
}
|
|
out:
|
|
aux_buf->full = 0;
|
|
}
|
|
|
|
/*
|
|
* The VPA Dispatch Trace log counters do not interrupt on overflow.
|
|
* Therefore, the kernel needs to poll the counters to avoid missing
|
|
* an overflow using hrtimer. The timer interval is based on sample_period
|
|
* count provided by user, and minimum interval is 1 millisecond.
|
|
*/
|
|
static enum hrtimer_restart vpa_dtl_hrtimer_handle(struct hrtimer *hrtimer)
|
|
{
|
|
struct perf_event *event;
|
|
u64 period;
|
|
|
|
event = container_of(hrtimer, struct perf_event, hw.hrtimer);
|
|
|
|
if (event->state != PERF_EVENT_STATE_ACTIVE)
|
|
return HRTIMER_NORESTART;
|
|
|
|
vpa_dtl_dump_sample_data(event);
|
|
period = max_t(u64, NSEC_PER_MSEC, event->hw.sample_period);
|
|
hrtimer_forward_now(hrtimer, ns_to_ktime(period));
|
|
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
static void vpa_dtl_start_hrtimer(struct perf_event *event)
|
|
{
|
|
u64 period;
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
period = max_t(u64, NSEC_PER_MSEC, hwc->sample_period);
|
|
hrtimer_start(&hwc->hrtimer, ns_to_ktime(period), HRTIMER_MODE_REL_PINNED);
|
|
}
|
|
|
|
static void vpa_dtl_stop_hrtimer(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
hrtimer_cancel(&hwc->hrtimer);
|
|
}
|
|
|
|
static void vpa_dtl_reset_global_refc(struct perf_event *event)
|
|
{
|
|
spin_lock(&dtl_global_lock);
|
|
dtl_global_refc--;
|
|
if (dtl_global_refc <= 0) {
|
|
dtl_global_refc = 0;
|
|
up_write(&dtl_access_lock);
|
|
}
|
|
spin_unlock(&dtl_global_lock);
|
|
}
|
|
|
|
static int vpa_dtl_mem_alloc(int cpu)
|
|
{
|
|
struct vpa_dtl *dtl = &per_cpu(vpa_dtl_cpu, cpu);
|
|
struct dtl_entry *buf = NULL;
|
|
|
|
/* Check for dispatch trace log buffer cache */
|
|
if (!dtl_cache)
|
|
return -ENOMEM;
|
|
|
|
buf = kmem_cache_alloc_node(dtl_cache, GFP_KERNEL | GFP_ATOMIC, cpu_to_node(cpu));
|
|
if (!buf) {
|
|
pr_warn("buffer allocation failed for cpu %d\n", cpu);
|
|
return -ENOMEM;
|
|
}
|
|
dtl->buf = buf;
|
|
return 0;
|
|
}
|
|
|
|
static int vpa_dtl_event_init(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
|
|
/* test the event attr type for PMU enumeration */
|
|
if (event->attr.type != event->pmu->type)
|
|
return -ENOENT;
|
|
|
|
if (!perfmon_capable())
|
|
return -EACCES;
|
|
|
|
/* Return if this is a counting event */
|
|
if (!is_sampling_event(event))
|
|
return -EOPNOTSUPP;
|
|
|
|
/* no branch sampling */
|
|
if (has_branch_stack(event))
|
|
return -EOPNOTSUPP;
|
|
|
|
/* Invalid eventcode */
|
|
switch (event->attr.config) {
|
|
case DTL_LOG_CEDE:
|
|
case DTL_LOG_PREEMPT:
|
|
case DTL_LOG_FAULT:
|
|
case DTL_LOG_ALL:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock(&dtl_global_lock);
|
|
|
|
/*
|
|
* To ensure there are no other conflicting dtl users
|
|
* (example: /proc/powerpc/vcpudispatch_stats or debugfs dtl),
|
|
* below code try to take the dtl_access_lock.
|
|
* The dtl_access_lock is a rwlock defined in dtl.h, which is used
|
|
* to unsure there is no conflicting dtl users.
|
|
* Based on below code, vpa_dtl pmu tries to take write access lock
|
|
* and also checks for dtl_global_refc, to make sure that the
|
|
* dtl_access_lock is taken by vpa_dtl pmu interface.
|
|
*/
|
|
if (dtl_global_refc == 0 && !down_write_trylock(&dtl_access_lock)) {
|
|
spin_unlock(&dtl_global_lock);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Allocate dtl buffer memory */
|
|
if (vpa_dtl_mem_alloc(event->cpu)) {
|
|
spin_unlock(&dtl_global_lock);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Increment the number of active vpa_dtl pmu threads. The
|
|
* dtl_global_refc is used to keep count of cpu threads that
|
|
* currently capturing dtl data using vpa_dtl pmu interface.
|
|
*/
|
|
dtl_global_refc++;
|
|
|
|
spin_unlock(&dtl_global_lock);
|
|
|
|
hrtimer_setup(&hwc->hrtimer, vpa_dtl_hrtimer_handle, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
|
|
/*
|
|
* Since hrtimers have a fixed rate, we can do a static freq->period
|
|
* mapping and avoid the whole period adjust feedback stuff.
|
|
*/
|
|
if (event->attr.freq) {
|
|
long freq = event->attr.sample_freq;
|
|
|
|
event->attr.sample_period = NSEC_PER_SEC / freq;
|
|
hwc->sample_period = event->attr.sample_period;
|
|
local64_set(&hwc->period_left, hwc->sample_period);
|
|
hwc->last_period = hwc->sample_period;
|
|
event->attr.freq = 0;
|
|
}
|
|
|
|
event->destroy = vpa_dtl_reset_global_refc;
|
|
return 0;
|
|
}
|
|
|
|
static int vpa_dtl_event_add(struct perf_event *event, int flags)
|
|
{
|
|
int ret, hwcpu;
|
|
unsigned long addr;
|
|
struct vpa_dtl *dtl = &per_cpu(vpa_dtl_cpu, event->cpu);
|
|
|
|
/*
|
|
* Register our dtl buffer with the hypervisor. The
|
|
* HV expects the buffer size to be passed in the second
|
|
* word of the buffer. Refer section '14.11.3.2. H_REGISTER_VPA'
|
|
* from PAPR for more information.
|
|
*/
|
|
((u32 *)dtl->buf)[1] = cpu_to_be32(DISPATCH_LOG_BYTES);
|
|
dtl->last_idx = 0;
|
|
|
|
hwcpu = get_hard_smp_processor_id(event->cpu);
|
|
addr = __pa(dtl->buf);
|
|
|
|
ret = register_dtl(hwcpu, addr);
|
|
if (ret) {
|
|
pr_warn("DTL registration for cpu %d (hw %d) failed with %d\n",
|
|
event->cpu, hwcpu, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* set our initial buffer indices */
|
|
lppaca_of(event->cpu).dtl_idx = 0;
|
|
|
|
/*
|
|
* Ensure that our updates to the lppaca fields have
|
|
* occurred before we actually enable the logging
|
|
*/
|
|
smp_wmb();
|
|
|
|
/* enable event logging */
|
|
lppaca_of(event->cpu).dtl_enable_mask = event->attr.config;
|
|
|
|
vpa_dtl_start_hrtimer(event);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vpa_dtl_event_del(struct perf_event *event, int flags)
|
|
{
|
|
int hwcpu = get_hard_smp_processor_id(event->cpu);
|
|
struct vpa_dtl *dtl = &per_cpu(vpa_dtl_cpu, event->cpu);
|
|
|
|
vpa_dtl_stop_hrtimer(event);
|
|
unregister_dtl(hwcpu);
|
|
kmem_cache_free(dtl_cache, dtl->buf);
|
|
dtl->buf = NULL;
|
|
lppaca_of(event->cpu).dtl_enable_mask = 0x0;
|
|
}
|
|
|
|
/*
|
|
* This function definition is empty as vpa_dtl_dump_sample_data
|
|
* is used to parse and dump the dispatch trace log data,
|
|
* to perf data.
|
|
*/
|
|
static void vpa_dtl_event_read(struct perf_event *event)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Set up pmu-private data structures for an AUX area
|
|
* **pages contains the aux buffer allocated for this event
|
|
* for the corresponding cpu. rb_alloc_aux uses "alloc_pages_node"
|
|
* and returns pointer to each page address. Map these pages to
|
|
* contiguous space using vmap and use that as base address.
|
|
*
|
|
* The aux private data structure ie, "struct vpa_pmu_buf" mainly
|
|
* saves
|
|
* - buf->base: aux buffer base address
|
|
* - buf->head: offset from base address where data will be written to.
|
|
* - buf->size: Size of allocated memory
|
|
*/
|
|
static void *vpa_dtl_setup_aux(struct perf_event *event, void **pages,
|
|
int nr_pages, bool snapshot)
|
|
{
|
|
int i, cpu = event->cpu;
|
|
struct vpa_pmu_buf *buf __free(kfree) = NULL;
|
|
struct page **pglist __free(kfree) = NULL;
|
|
|
|
/* We need at least one page for this to work. */
|
|
if (!nr_pages)
|
|
return NULL;
|
|
|
|
if (cpu == -1)
|
|
cpu = raw_smp_processor_id();
|
|
|
|
buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
|
|
if (!buf)
|
|
return NULL;
|
|
|
|
pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
|
|
if (!pglist)
|
|
return NULL;
|
|
|
|
for (i = 0; i < nr_pages; ++i)
|
|
pglist[i] = virt_to_page(pages[i]);
|
|
|
|
buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
|
|
if (!buf->base)
|
|
return NULL;
|
|
|
|
buf->nr_pages = nr_pages;
|
|
buf->snapshot = false;
|
|
|
|
buf->size = nr_pages << PAGE_SHIFT;
|
|
buf->head = 0;
|
|
buf->head_size = 0;
|
|
buf->boottb_freq_saved = 0;
|
|
buf->threshold = ((buf->size - 32) / sizeof(struct dtl_entry));
|
|
return no_free_ptr(buf);
|
|
}
|
|
|
|
/*
|
|
* free pmu-private AUX data structures
|
|
*/
|
|
static void vpa_dtl_free_aux(void *aux)
|
|
{
|
|
struct vpa_pmu_buf *buf = aux;
|
|
|
|
vunmap(buf->base);
|
|
kfree(buf);
|
|
}
|
|
|
|
static struct pmu vpa_dtl_pmu = {
|
|
.task_ctx_nr = perf_invalid_context,
|
|
|
|
.name = "vpa_dtl",
|
|
.attr_groups = attr_groups,
|
|
.event_init = vpa_dtl_event_init,
|
|
.add = vpa_dtl_event_add,
|
|
.del = vpa_dtl_event_del,
|
|
.read = vpa_dtl_event_read,
|
|
.setup_aux = vpa_dtl_setup_aux,
|
|
.free_aux = vpa_dtl_free_aux,
|
|
.capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_EXCLUSIVE,
|
|
};
|
|
|
|
static int vpa_dtl_init(void)
|
|
{
|
|
int r;
|
|
|
|
if (!firmware_has_feature(FW_FEATURE_SPLPAR)) {
|
|
pr_debug("not a shared virtualized system, not enabling\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* This driver is intended only for L1 host. */
|
|
if (is_kvm_guest()) {
|
|
pr_debug("Only supported for L1 host system\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
r = perf_pmu_register(&vpa_dtl_pmu, vpa_dtl_pmu.name, -1);
|
|
if (r)
|
|
return r;
|
|
|
|
return 0;
|
|
}
|
|
|
|
device_initcall(vpa_dtl_init);
|
|
#endif //CONFIG_PPC_SPLPAR
|