763 lines
21 KiB
C
763 lines
21 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* AMD Encrypted Register State Support
|
|
*
|
|
* Author: Joerg Roedel <jroedel@suse.de>
|
|
*
|
|
* This file is not compiled stand-alone. It contains code shared
|
|
* between the pre-decompression boot code and the running Linux kernel
|
|
* and is included directly into both code-bases.
|
|
*/
|
|
|
|
#include <asm/setup_data.h>
|
|
|
|
#ifndef __BOOT_COMPRESSED
|
|
#define has_cpuflag(f) boot_cpu_has(f)
|
|
#else
|
|
#undef WARN
|
|
#define WARN(condition, format...) (!!(condition))
|
|
#endif
|
|
|
|
/* Copy of the SNP firmware's CPUID page. */
|
|
static struct snp_cpuid_table cpuid_table_copy __ro_after_init;
|
|
|
|
/*
|
|
* These will be initialized based on CPUID table so that non-present
|
|
* all-zero leaves (for sparse tables) can be differentiated from
|
|
* invalid/out-of-range leaves. This is needed since all-zero leaves
|
|
* still need to be post-processed.
|
|
*/
|
|
static u32 cpuid_std_range_max __ro_after_init;
|
|
static u32 cpuid_hyp_range_max __ro_after_init;
|
|
static u32 cpuid_ext_range_max __ro_after_init;
|
|
|
|
bool sev_snp_needs_sfw;
|
|
|
|
void __noreturn
|
|
sev_es_terminate(unsigned int set, unsigned int reason)
|
|
{
|
|
u64 val = GHCB_MSR_TERM_REQ;
|
|
|
|
/* Tell the hypervisor what went wrong. */
|
|
val |= GHCB_SEV_TERM_REASON(set, reason);
|
|
|
|
/* Request Guest Termination from Hypervisor */
|
|
sev_es_wr_ghcb_msr(val);
|
|
VMGEXIT();
|
|
|
|
while (true)
|
|
asm volatile("hlt\n" : : : "memory");
|
|
}
|
|
|
|
/*
|
|
* The hypervisor features are available from GHCB version 2 onward.
|
|
*/
|
|
u64 __init get_hv_features(void)
|
|
{
|
|
u64 val;
|
|
|
|
if (ghcb_version < 2)
|
|
return 0;
|
|
|
|
sev_es_wr_ghcb_msr(GHCB_MSR_HV_FT_REQ);
|
|
VMGEXIT();
|
|
|
|
val = sev_es_rd_ghcb_msr();
|
|
if (GHCB_RESP_CODE(val) != GHCB_MSR_HV_FT_RESP)
|
|
return 0;
|
|
|
|
return GHCB_MSR_HV_FT_RESP_VAL(val);
|
|
}
|
|
|
|
int svsm_process_result_codes(struct svsm_call *call)
|
|
{
|
|
switch (call->rax_out) {
|
|
case SVSM_SUCCESS:
|
|
return 0;
|
|
case SVSM_ERR_INCOMPLETE:
|
|
case SVSM_ERR_BUSY:
|
|
return -EAGAIN;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Issue a VMGEXIT to call the SVSM:
|
|
* - Load the SVSM register state (RAX, RCX, RDX, R8 and R9)
|
|
* - Set the CA call pending field to 1
|
|
* - Issue VMGEXIT
|
|
* - Save the SVSM return register state (RAX, RCX, RDX, R8 and R9)
|
|
* - Perform atomic exchange of the CA call pending field
|
|
*
|
|
* - See the "Secure VM Service Module for SEV-SNP Guests" specification for
|
|
* details on the calling convention.
|
|
* - The calling convention loosely follows the Microsoft X64 calling
|
|
* convention by putting arguments in RCX, RDX, R8 and R9.
|
|
* - RAX specifies the SVSM protocol/callid as input and the return code
|
|
* as output.
|
|
*/
|
|
void svsm_issue_call(struct svsm_call *call, u8 *pending)
|
|
{
|
|
register unsigned long rax asm("rax") = call->rax;
|
|
register unsigned long rcx asm("rcx") = call->rcx;
|
|
register unsigned long rdx asm("rdx") = call->rdx;
|
|
register unsigned long r8 asm("r8") = call->r8;
|
|
register unsigned long r9 asm("r9") = call->r9;
|
|
|
|
call->caa->call_pending = 1;
|
|
|
|
asm volatile("rep; vmmcall\n\t"
|
|
: "+r" (rax), "+r" (rcx), "+r" (rdx), "+r" (r8), "+r" (r9)
|
|
: : "memory");
|
|
|
|
*pending = xchg(&call->caa->call_pending, *pending);
|
|
|
|
call->rax_out = rax;
|
|
call->rcx_out = rcx;
|
|
call->rdx_out = rdx;
|
|
call->r8_out = r8;
|
|
call->r9_out = r9;
|
|
}
|
|
|
|
int svsm_perform_msr_protocol(struct svsm_call *call)
|
|
{
|
|
u8 pending = 0;
|
|
u64 val, resp;
|
|
|
|
/*
|
|
* When using the MSR protocol, be sure to save and restore
|
|
* the current MSR value.
|
|
*/
|
|
val = sev_es_rd_ghcb_msr();
|
|
|
|
sev_es_wr_ghcb_msr(GHCB_MSR_VMPL_REQ_LEVEL(0));
|
|
|
|
svsm_issue_call(call, &pending);
|
|
|
|
resp = sev_es_rd_ghcb_msr();
|
|
|
|
sev_es_wr_ghcb_msr(val);
|
|
|
|
if (pending)
|
|
return -EINVAL;
|
|
|
|
if (GHCB_RESP_CODE(resp) != GHCB_MSR_VMPL_RESP)
|
|
return -EINVAL;
|
|
|
|
if (GHCB_MSR_VMPL_RESP_VAL(resp))
|
|
return -EINVAL;
|
|
|
|
return svsm_process_result_codes(call);
|
|
}
|
|
|
|
static int __sev_cpuid_hv(u32 fn, int reg_idx, u32 *reg)
|
|
{
|
|
u64 val;
|
|
|
|
sev_es_wr_ghcb_msr(GHCB_CPUID_REQ(fn, reg_idx));
|
|
VMGEXIT();
|
|
val = sev_es_rd_ghcb_msr();
|
|
if (GHCB_RESP_CODE(val) != GHCB_MSR_CPUID_RESP)
|
|
return -EIO;
|
|
|
|
*reg = (val >> 32);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __sev_cpuid_hv_msr(struct cpuid_leaf *leaf)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* MSR protocol does not support fetching non-zero subfunctions, but is
|
|
* sufficient to handle current early-boot cases. Should that change,
|
|
* make sure to report an error rather than ignoring the index and
|
|
* grabbing random values. If this issue arises in the future, handling
|
|
* can be added here to use GHCB-page protocol for cases that occur late
|
|
* enough in boot that GHCB page is available.
|
|
*/
|
|
if (cpuid_function_is_indexed(leaf->fn) && leaf->subfn)
|
|
return -EINVAL;
|
|
|
|
ret = __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EAX, &leaf->eax);
|
|
ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EBX, &leaf->ebx);
|
|
ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_ECX, &leaf->ecx);
|
|
ret = ret ? : __sev_cpuid_hv(leaf->fn, GHCB_CPUID_REQ_EDX, &leaf->edx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* This may be called early while still running on the initial identity
|
|
* mapping. Use RIP-relative addressing to obtain the correct address
|
|
* while running with the initial identity mapping as well as the
|
|
* switch-over to kernel virtual addresses later.
|
|
*/
|
|
const struct snp_cpuid_table *snp_cpuid_get_table(void)
|
|
{
|
|
return rip_rel_ptr(&cpuid_table_copy);
|
|
}
|
|
|
|
/*
|
|
* The SNP Firmware ABI, Revision 0.9, Section 7.1, details the use of
|
|
* XCR0_IN and XSS_IN to encode multiple versions of 0xD subfunctions 0
|
|
* and 1 based on the corresponding features enabled by a particular
|
|
* combination of XCR0 and XSS registers so that a guest can look up the
|
|
* version corresponding to the features currently enabled in its XCR0/XSS
|
|
* registers. The only values that differ between these versions/table
|
|
* entries is the enabled XSAVE area size advertised via EBX.
|
|
*
|
|
* While hypervisors may choose to make use of this support, it is more
|
|
* robust/secure for a guest to simply find the entry corresponding to the
|
|
* base/legacy XSAVE area size (XCR0=1 or XCR0=3), and then calculate the
|
|
* XSAVE area size using subfunctions 2 through 64, as documented in APM
|
|
* Volume 3, Rev 3.31, Appendix E.3.8, which is what is done here.
|
|
*
|
|
* Since base/legacy XSAVE area size is documented as 0x240, use that value
|
|
* directly rather than relying on the base size in the CPUID table.
|
|
*
|
|
* Return: XSAVE area size on success, 0 otherwise.
|
|
*/
|
|
static u32 snp_cpuid_calc_xsave_size(u64 xfeatures_en, bool compacted)
|
|
{
|
|
const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
|
|
u64 xfeatures_found = 0;
|
|
u32 xsave_size = 0x240;
|
|
int i;
|
|
|
|
for (i = 0; i < cpuid_table->count; i++) {
|
|
const struct snp_cpuid_fn *e = &cpuid_table->fn[i];
|
|
|
|
if (!(e->eax_in == 0xD && e->ecx_in > 1 && e->ecx_in < 64))
|
|
continue;
|
|
if (!(xfeatures_en & (BIT_ULL(e->ecx_in))))
|
|
continue;
|
|
if (xfeatures_found & (BIT_ULL(e->ecx_in)))
|
|
continue;
|
|
|
|
xfeatures_found |= (BIT_ULL(e->ecx_in));
|
|
|
|
if (compacted)
|
|
xsave_size += e->eax;
|
|
else
|
|
xsave_size = max(xsave_size, e->eax + e->ebx);
|
|
}
|
|
|
|
/*
|
|
* Either the guest set unsupported XCR0/XSS bits, or the corresponding
|
|
* entries in the CPUID table were not present. This is not a valid
|
|
* state to be in.
|
|
*/
|
|
if (xfeatures_found != (xfeatures_en & GENMASK_ULL(63, 2)))
|
|
return 0;
|
|
|
|
return xsave_size;
|
|
}
|
|
|
|
static bool
|
|
snp_cpuid_get_validated_func(struct cpuid_leaf *leaf)
|
|
{
|
|
const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
|
|
int i;
|
|
|
|
for (i = 0; i < cpuid_table->count; i++) {
|
|
const struct snp_cpuid_fn *e = &cpuid_table->fn[i];
|
|
|
|
if (e->eax_in != leaf->fn)
|
|
continue;
|
|
|
|
if (cpuid_function_is_indexed(leaf->fn) && e->ecx_in != leaf->subfn)
|
|
continue;
|
|
|
|
/*
|
|
* For 0xD subfunctions 0 and 1, only use the entry corresponding
|
|
* to the base/legacy XSAVE area size (XCR0=1 or XCR0=3, XSS=0).
|
|
* See the comments above snp_cpuid_calc_xsave_size() for more
|
|
* details.
|
|
*/
|
|
if (e->eax_in == 0xD && (e->ecx_in == 0 || e->ecx_in == 1))
|
|
if (!(e->xcr0_in == 1 || e->xcr0_in == 3) || e->xss_in)
|
|
continue;
|
|
|
|
leaf->eax = e->eax;
|
|
leaf->ebx = e->ebx;
|
|
leaf->ecx = e->ecx;
|
|
leaf->edx = e->edx;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void snp_cpuid_hv_msr(void *ctx, struct cpuid_leaf *leaf)
|
|
{
|
|
if (__sev_cpuid_hv_msr(leaf))
|
|
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID_HV);
|
|
}
|
|
|
|
static int
|
|
snp_cpuid_postprocess(void (*cpuid_fn)(void *ctx, struct cpuid_leaf *leaf),
|
|
void *ctx, struct cpuid_leaf *leaf)
|
|
{
|
|
struct cpuid_leaf leaf_hv = *leaf;
|
|
|
|
switch (leaf->fn) {
|
|
case 0x1:
|
|
cpuid_fn(ctx, &leaf_hv);
|
|
|
|
/* initial APIC ID */
|
|
leaf->ebx = (leaf_hv.ebx & GENMASK(31, 24)) | (leaf->ebx & GENMASK(23, 0));
|
|
/* APIC enabled bit */
|
|
leaf->edx = (leaf_hv.edx & BIT(9)) | (leaf->edx & ~BIT(9));
|
|
|
|
/* OSXSAVE enabled bit */
|
|
if (native_read_cr4() & X86_CR4_OSXSAVE)
|
|
leaf->ecx |= BIT(27);
|
|
break;
|
|
case 0x7:
|
|
/* OSPKE enabled bit */
|
|
leaf->ecx &= ~BIT(4);
|
|
if (native_read_cr4() & X86_CR4_PKE)
|
|
leaf->ecx |= BIT(4);
|
|
break;
|
|
case 0xB:
|
|
leaf_hv.subfn = 0;
|
|
cpuid_fn(ctx, &leaf_hv);
|
|
|
|
/* extended APIC ID */
|
|
leaf->edx = leaf_hv.edx;
|
|
break;
|
|
case 0xD: {
|
|
bool compacted = false;
|
|
u64 xcr0 = 1, xss = 0;
|
|
u32 xsave_size;
|
|
|
|
if (leaf->subfn != 0 && leaf->subfn != 1)
|
|
return 0;
|
|
|
|
if (native_read_cr4() & X86_CR4_OSXSAVE)
|
|
xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
|
|
if (leaf->subfn == 1) {
|
|
/* Get XSS value if XSAVES is enabled. */
|
|
if (leaf->eax & BIT(3)) {
|
|
unsigned long lo, hi;
|
|
|
|
asm volatile("rdmsr" : "=a" (lo), "=d" (hi)
|
|
: "c" (MSR_IA32_XSS));
|
|
xss = (hi << 32) | lo;
|
|
}
|
|
|
|
/*
|
|
* The PPR and APM aren't clear on what size should be
|
|
* encoded in 0xD:0x1:EBX when compaction is not enabled
|
|
* by either XSAVEC (feature bit 1) or XSAVES (feature
|
|
* bit 3) since SNP-capable hardware has these feature
|
|
* bits fixed as 1. KVM sets it to 0 in this case, but
|
|
* to avoid this becoming an issue it's safer to simply
|
|
* treat this as unsupported for SNP guests.
|
|
*/
|
|
if (!(leaf->eax & (BIT(1) | BIT(3))))
|
|
return -EINVAL;
|
|
|
|
compacted = true;
|
|
}
|
|
|
|
xsave_size = snp_cpuid_calc_xsave_size(xcr0 | xss, compacted);
|
|
if (!xsave_size)
|
|
return -EINVAL;
|
|
|
|
leaf->ebx = xsave_size;
|
|
}
|
|
break;
|
|
case 0x8000001E:
|
|
cpuid_fn(ctx, &leaf_hv);
|
|
|
|
/* extended APIC ID */
|
|
leaf->eax = leaf_hv.eax;
|
|
/* compute ID */
|
|
leaf->ebx = (leaf->ebx & GENMASK(31, 8)) | (leaf_hv.ebx & GENMASK(7, 0));
|
|
/* node ID */
|
|
leaf->ecx = (leaf->ecx & GENMASK(31, 8)) | (leaf_hv.ecx & GENMASK(7, 0));
|
|
break;
|
|
default:
|
|
/* No fix-ups needed, use values as-is. */
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns -EOPNOTSUPP if feature not enabled. Any other non-zero return value
|
|
* should be treated as fatal by caller.
|
|
*/
|
|
int snp_cpuid(void (*cpuid_fn)(void *ctx, struct cpuid_leaf *leaf),
|
|
void *ctx, struct cpuid_leaf *leaf)
|
|
{
|
|
const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
|
|
|
|
if (!cpuid_table->count)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (!snp_cpuid_get_validated_func(leaf)) {
|
|
/*
|
|
* Some hypervisors will avoid keeping track of CPUID entries
|
|
* where all values are zero, since they can be handled the
|
|
* same as out-of-range values (all-zero). This is useful here
|
|
* as well as it allows virtually all guest configurations to
|
|
* work using a single SNP CPUID table.
|
|
*
|
|
* To allow for this, there is a need to distinguish between
|
|
* out-of-range entries and in-range zero entries, since the
|
|
* CPUID table entries are only a template that may need to be
|
|
* augmented with additional values for things like
|
|
* CPU-specific information during post-processing. So if it's
|
|
* not in the table, set the values to zero. Then, if they are
|
|
* within a valid CPUID range, proceed with post-processing
|
|
* using zeros as the initial values. Otherwise, skip
|
|
* post-processing and just return zeros immediately.
|
|
*/
|
|
leaf->eax = leaf->ebx = leaf->ecx = leaf->edx = 0;
|
|
|
|
/* Skip post-processing for out-of-range zero leafs. */
|
|
if (!(leaf->fn <= cpuid_std_range_max ||
|
|
(leaf->fn >= 0x40000000 && leaf->fn <= cpuid_hyp_range_max) ||
|
|
(leaf->fn >= 0x80000000 && leaf->fn <= cpuid_ext_range_max)))
|
|
return 0;
|
|
}
|
|
|
|
return snp_cpuid_postprocess(cpuid_fn, ctx, leaf);
|
|
}
|
|
|
|
/*
|
|
* Boot VC Handler - This is the first VC handler during boot, there is no GHCB
|
|
* page yet, so it only supports the MSR based communication with the
|
|
* hypervisor and only the CPUID exit-code.
|
|
*/
|
|
void do_vc_no_ghcb(struct pt_regs *regs, unsigned long exit_code)
|
|
{
|
|
unsigned int subfn = lower_bits(regs->cx, 32);
|
|
unsigned int fn = lower_bits(regs->ax, 32);
|
|
u16 opcode = *(unsigned short *)regs->ip;
|
|
struct cpuid_leaf leaf;
|
|
int ret;
|
|
|
|
/* Only CPUID is supported via MSR protocol */
|
|
if (exit_code != SVM_EXIT_CPUID)
|
|
goto fail;
|
|
|
|
/* Is it really a CPUID insn? */
|
|
if (opcode != 0xa20f)
|
|
goto fail;
|
|
|
|
leaf.fn = fn;
|
|
leaf.subfn = subfn;
|
|
|
|
/*
|
|
* If SNP is active, then snp_cpuid() uses the CPUID table to obtain the
|
|
* CPUID values (with possible HV interaction during post-processing of
|
|
* the values). But if SNP is not active (no CPUID table present), then
|
|
* snp_cpuid() returns -EOPNOTSUPP so that an SEV-ES guest can call the
|
|
* HV to obtain the CPUID information.
|
|
*/
|
|
ret = snp_cpuid(snp_cpuid_hv_msr, NULL, &leaf);
|
|
if (!ret)
|
|
goto cpuid_done;
|
|
|
|
if (ret != -EOPNOTSUPP)
|
|
goto fail;
|
|
|
|
/*
|
|
* This is reached by a SEV-ES guest and needs to invoke the HV for
|
|
* the CPUID data.
|
|
*/
|
|
if (__sev_cpuid_hv_msr(&leaf))
|
|
goto fail;
|
|
|
|
cpuid_done:
|
|
regs->ax = leaf.eax;
|
|
regs->bx = leaf.ebx;
|
|
regs->cx = leaf.ecx;
|
|
regs->dx = leaf.edx;
|
|
|
|
/*
|
|
* This is a VC handler and the #VC is only raised when SEV-ES is
|
|
* active, which means SEV must be active too. Do sanity checks on the
|
|
* CPUID results to make sure the hypervisor does not trick the kernel
|
|
* into the no-sev path. This could map sensitive data unencrypted and
|
|
* make it accessible to the hypervisor.
|
|
*
|
|
* In particular, check for:
|
|
* - Availability of CPUID leaf 0x8000001f
|
|
* - SEV CPUID bit.
|
|
*
|
|
* The hypervisor might still report the wrong C-bit position, but this
|
|
* can't be checked here.
|
|
*/
|
|
|
|
if (fn == 0x80000000 && (regs->ax < 0x8000001f))
|
|
/* SEV leaf check */
|
|
goto fail;
|
|
else if ((fn == 0x8000001f && !(regs->ax & BIT(1))))
|
|
/* SEV bit */
|
|
goto fail;
|
|
|
|
/* Skip over the CPUID two-byte opcode */
|
|
regs->ip += 2;
|
|
|
|
return;
|
|
|
|
fail:
|
|
/* Terminate the guest */
|
|
sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
|
|
}
|
|
|
|
struct cc_setup_data {
|
|
struct setup_data header;
|
|
u32 cc_blob_address;
|
|
};
|
|
|
|
/*
|
|
* Search for a Confidential Computing blob passed in as a setup_data entry
|
|
* via the Linux Boot Protocol.
|
|
*/
|
|
static __init
|
|
struct cc_blob_sev_info *find_cc_blob_setup_data(struct boot_params *bp)
|
|
{
|
|
struct cc_setup_data *sd = NULL;
|
|
struct setup_data *hdr;
|
|
|
|
hdr = (struct setup_data *)bp->hdr.setup_data;
|
|
|
|
while (hdr) {
|
|
if (hdr->type == SETUP_CC_BLOB) {
|
|
sd = (struct cc_setup_data *)hdr;
|
|
return (struct cc_blob_sev_info *)(unsigned long)sd->cc_blob_address;
|
|
}
|
|
hdr = (struct setup_data *)hdr->next;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Initialize the kernel's copy of the SNP CPUID table, and set up the
|
|
* pointer that will be used to access it.
|
|
*
|
|
* Maintaining a direct mapping of the SNP CPUID table used by firmware would
|
|
* be possible as an alternative, but the approach is brittle since the
|
|
* mapping needs to be updated in sync with all the changes to virtual memory
|
|
* layout and related mapping facilities throughout the boot process.
|
|
*/
|
|
static void __init setup_cpuid_table(const struct cc_blob_sev_info *cc_info)
|
|
{
|
|
const struct snp_cpuid_table *cpuid_table_fw, *cpuid_table;
|
|
int i;
|
|
|
|
if (!cc_info || !cc_info->cpuid_phys || cc_info->cpuid_len < PAGE_SIZE)
|
|
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID);
|
|
|
|
cpuid_table_fw = (const struct snp_cpuid_table *)cc_info->cpuid_phys;
|
|
if (!cpuid_table_fw->count || cpuid_table_fw->count > SNP_CPUID_COUNT_MAX)
|
|
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_CPUID);
|
|
|
|
cpuid_table = snp_cpuid_get_table();
|
|
memcpy((void *)cpuid_table, cpuid_table_fw, sizeof(*cpuid_table));
|
|
|
|
/* Initialize CPUID ranges for range-checking. */
|
|
for (i = 0; i < cpuid_table->count; i++) {
|
|
const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
|
|
|
|
if (fn->eax_in == 0x0)
|
|
cpuid_std_range_max = fn->eax;
|
|
else if (fn->eax_in == 0x40000000)
|
|
cpuid_hyp_range_max = fn->eax;
|
|
else if (fn->eax_in == 0x80000000)
|
|
cpuid_ext_range_max = fn->eax;
|
|
}
|
|
}
|
|
|
|
static int svsm_call_msr_protocol(struct svsm_call *call)
|
|
{
|
|
int ret;
|
|
|
|
do {
|
|
ret = svsm_perform_msr_protocol(call);
|
|
} while (ret == -EAGAIN);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void svsm_pval_4k_page(unsigned long paddr, bool validate,
|
|
struct svsm_ca *caa, u64 caa_pa)
|
|
{
|
|
struct svsm_pvalidate_call *pc;
|
|
struct svsm_call call = {};
|
|
unsigned long flags;
|
|
u64 pc_pa;
|
|
|
|
/*
|
|
* This can be called very early in the boot, use native functions in
|
|
* order to avoid paravirt issues.
|
|
*/
|
|
flags = native_local_irq_save();
|
|
|
|
call.caa = caa;
|
|
|
|
pc = (struct svsm_pvalidate_call *)call.caa->svsm_buffer;
|
|
pc_pa = caa_pa + offsetof(struct svsm_ca, svsm_buffer);
|
|
|
|
pc->num_entries = 1;
|
|
pc->cur_index = 0;
|
|
pc->entry[0].page_size = RMP_PG_SIZE_4K;
|
|
pc->entry[0].action = validate;
|
|
pc->entry[0].ignore_cf = 0;
|
|
pc->entry[0].rsvd = 0;
|
|
pc->entry[0].pfn = paddr >> PAGE_SHIFT;
|
|
|
|
/* Protocol 0, Call ID 1 */
|
|
call.rax = SVSM_CORE_CALL(SVSM_CORE_PVALIDATE);
|
|
call.rcx = pc_pa;
|
|
|
|
/*
|
|
* Use the MSR protocol exclusively, so that this code is usable in
|
|
* startup code where VA/PA translations of the GHCB page's address may
|
|
* be problematic.
|
|
*/
|
|
if (svsm_call_msr_protocol(&call))
|
|
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
|
|
|
|
native_local_irq_restore(flags);
|
|
}
|
|
|
|
static void pvalidate_4k_page(unsigned long vaddr, unsigned long paddr,
|
|
bool validate, struct svsm_ca *caa, u64 caa_pa)
|
|
{
|
|
int ret;
|
|
|
|
if (snp_vmpl) {
|
|
svsm_pval_4k_page(paddr, validate, caa, caa_pa);
|
|
} else {
|
|
ret = pvalidate(vaddr, RMP_PG_SIZE_4K, validate);
|
|
if (ret)
|
|
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
|
|
}
|
|
|
|
/*
|
|
* If validating memory (making it private) and affected by the
|
|
* cache-coherency vulnerability, perform the cache eviction mitigation.
|
|
*/
|
|
if (validate && sev_snp_needs_sfw)
|
|
sev_evict_cache((void *)vaddr, 1);
|
|
}
|
|
|
|
static void __page_state_change(unsigned long vaddr, unsigned long paddr,
|
|
const struct psc_desc *desc)
|
|
{
|
|
u64 val, msr;
|
|
|
|
/*
|
|
* If private -> shared then invalidate the page before requesting the
|
|
* state change in the RMP table.
|
|
*/
|
|
if (desc->op == SNP_PAGE_STATE_SHARED)
|
|
pvalidate_4k_page(vaddr, paddr, false, desc->ca, desc->caa_pa);
|
|
|
|
/* Save the current GHCB MSR value */
|
|
msr = sev_es_rd_ghcb_msr();
|
|
|
|
/* Issue VMGEXIT to change the page state in RMP table. */
|
|
sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, desc->op));
|
|
VMGEXIT();
|
|
|
|
/* Read the response of the VMGEXIT. */
|
|
val = sev_es_rd_ghcb_msr();
|
|
if ((GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP) || GHCB_MSR_PSC_RESP_VAL(val))
|
|
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
|
|
|
|
/* Restore the GHCB MSR value */
|
|
sev_es_wr_ghcb_msr(msr);
|
|
|
|
/*
|
|
* Now that page state is changed in the RMP table, validate it so that it is
|
|
* consistent with the RMP entry.
|
|
*/
|
|
if (desc->op == SNP_PAGE_STATE_PRIVATE)
|
|
pvalidate_4k_page(vaddr, paddr, true, desc->ca, desc->caa_pa);
|
|
}
|
|
|
|
/*
|
|
* Maintain the GPA of the SVSM Calling Area (CA) in order to utilize the SVSM
|
|
* services needed when not running in VMPL0.
|
|
*/
|
|
static bool __init svsm_setup_ca(const struct cc_blob_sev_info *cc_info,
|
|
void *page)
|
|
{
|
|
struct snp_secrets_page *secrets_page;
|
|
struct snp_cpuid_table *cpuid_table;
|
|
unsigned int i;
|
|
u64 caa;
|
|
|
|
BUILD_BUG_ON(sizeof(*secrets_page) != PAGE_SIZE);
|
|
|
|
/*
|
|
* Check if running at VMPL0.
|
|
*
|
|
* Use RMPADJUST (see the rmpadjust() function for a description of what
|
|
* the instruction does) to update the VMPL1 permissions of a page. If
|
|
* the guest is running at VMPL0, this will succeed and implies there is
|
|
* no SVSM. If the guest is running at any other VMPL, this will fail.
|
|
* Linux SNP guests only ever run at a single VMPL level so permission mask
|
|
* changes of a lesser-privileged VMPL are a don't-care.
|
|
*
|
|
* Use a rip-relative reference to obtain the proper address, since this
|
|
* routine is running identity mapped when called, both by the decompressor
|
|
* code and the early kernel code.
|
|
*/
|
|
if (!rmpadjust((unsigned long)page, RMP_PG_SIZE_4K, 1))
|
|
return false;
|
|
|
|
/*
|
|
* Not running at VMPL0, ensure everything has been properly supplied
|
|
* for running under an SVSM.
|
|
*/
|
|
if (!cc_info || !cc_info->secrets_phys || cc_info->secrets_len != PAGE_SIZE)
|
|
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SECRETS_PAGE);
|
|
|
|
secrets_page = (struct snp_secrets_page *)cc_info->secrets_phys;
|
|
if (!secrets_page->svsm_size)
|
|
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_NO_SVSM);
|
|
|
|
if (!secrets_page->svsm_guest_vmpl)
|
|
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SVSM_VMPL0);
|
|
|
|
snp_vmpl = secrets_page->svsm_guest_vmpl;
|
|
|
|
caa = secrets_page->svsm_caa;
|
|
|
|
/*
|
|
* An open-coded PAGE_ALIGNED() in order to avoid including
|
|
* kernel-proper headers into the decompressor.
|
|
*/
|
|
if (caa & (PAGE_SIZE - 1))
|
|
sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_SVSM_CAA);
|
|
|
|
boot_svsm_caa_pa = caa;
|
|
|
|
/* Advertise the SVSM presence via CPUID. */
|
|
cpuid_table = (struct snp_cpuid_table *)snp_cpuid_get_table();
|
|
for (i = 0; i < cpuid_table->count; i++) {
|
|
struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
|
|
|
|
if (fn->eax_in == 0x8000001f)
|
|
fn->eax |= BIT(28);
|
|
}
|
|
|
|
return true;
|
|
}
|