mirror-linux/drivers/platform/x86/asus-armoury.c

1162 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Asus Armoury (WMI) attributes driver.
*
* This driver uses the fw_attributes class to expose various WMI functions
* that are present in many gaming and some non-gaming ASUS laptops.
*
* These typically don't fit anywhere else in the sysfs such as under LED class,
* hwmon or others, and are set in Windows using the ASUS Armoury Crate tool.
*
* Copyright(C) 2024 Luke Jones <luke@ljones.dev>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/acpi.h>
#include <linux/array_size.h>
#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/dmi.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/kmod.h>
#include <linux/kobject.h>
#include <linux/kstrtox.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/platform_data/x86/asus-wmi.h>
#include <linux/printk.h>
#include <linux/power_supply.h>
#include <linux/sysfs.h>
#include "asus-armoury.h"
#include "firmware_attributes_class.h"
#define ASUS_NB_WMI_EVENT_GUID "0B3CBB35-E3C2-45ED-91C2-4C5A6D195D1C"
#define ASUS_MINI_LED_MODE_MASK GENMASK(1, 0)
/* Standard modes for devices with only on/off */
#define ASUS_MINI_LED_OFF 0x00
#define ASUS_MINI_LED_ON 0x01
/* Like "on" but the effect is more vibrant or brighter */
#define ASUS_MINI_LED_STRONG_MODE 0x02
/* New modes for devices with 3 mini-led mode types */
#define ASUS_MINI_LED_2024_WEAK 0x00
#define ASUS_MINI_LED_2024_STRONG 0x01
#define ASUS_MINI_LED_2024_OFF 0x02
/* Power tunable attribute name defines */
#define ATTR_PPT_PL1_SPL "ppt_pl1_spl"
#define ATTR_PPT_PL2_SPPT "ppt_pl2_sppt"
#define ATTR_PPT_PL3_FPPT "ppt_pl3_fppt"
#define ATTR_PPT_APU_SPPT "ppt_apu_sppt"
#define ATTR_PPT_PLATFORM_SPPT "ppt_platform_sppt"
#define ATTR_NV_DYNAMIC_BOOST "nv_dynamic_boost"
#define ATTR_NV_TEMP_TARGET "nv_temp_target"
#define ATTR_NV_BASE_TGP "nv_base_tgp"
#define ATTR_NV_TGP "nv_tgp"
#define ASUS_ROG_TUNABLE_DC 0
#define ASUS_ROG_TUNABLE_AC 1
struct rog_tunables {
const struct power_limits *power_limits;
u32 ppt_pl1_spl; // cpu
u32 ppt_pl2_sppt; // cpu
u32 ppt_pl3_fppt; // cpu
u32 ppt_apu_sppt; // plat
u32 ppt_platform_sppt; // plat
u32 nv_dynamic_boost;
u32 nv_temp_target;
u32 nv_tgp;
};
struct asus_armoury_priv {
struct device *fw_attr_dev;
struct kset *fw_attr_kset;
/*
* Mutex to protect eGPU activation/deactivation
* sequences and dGPU connection status:
* do not allow concurrent changes or changes
* before a reboot if dGPU got disabled.
*/
struct mutex egpu_mutex;
/* Index 0 for DC, 1 for AC */
struct rog_tunables *rog_tunables[2];
u32 mini_led_dev_id;
u32 gpu_mux_dev_id;
};
static struct asus_armoury_priv asus_armoury = {
.egpu_mutex = __MUTEX_INITIALIZER(asus_armoury.egpu_mutex),
};
struct fw_attrs_group {
bool pending_reboot;
};
static struct fw_attrs_group fw_attrs = {
.pending_reboot = false,
};
struct asus_attr_group {
const struct attribute_group *attr_group;
u32 wmi_devid;
};
static void asus_set_reboot_and_signal_event(void)
{
fw_attrs.pending_reboot = true;
kobject_uevent(&asus_armoury.fw_attr_dev->kobj, KOBJ_CHANGE);
}
static ssize_t pending_reboot_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
{
return sysfs_emit(buf, "%d\n", fw_attrs.pending_reboot);
}
static struct kobj_attribute pending_reboot = __ATTR_RO(pending_reboot);
static bool asus_bios_requires_reboot(struct kobj_attribute *attr)
{
return !strcmp(attr->attr.name, "gpu_mux_mode") ||
!strcmp(attr->attr.name, "panel_hd_mode");
}
/**
* armoury_has_devstate() - Check presence of the WMI function state.
*
* @dev_id: The WMI method ID to check for presence.
*
* Returns: true iif method is supported.
*/
static bool armoury_has_devstate(u32 dev_id)
{
u32 retval;
int status;
status = asus_wmi_evaluate_method(ASUS_WMI_METHODID_DSTS, dev_id, 0, &retval);
pr_debug("%s called (0x%08x), retval: 0x%08x\n", __func__, dev_id, retval);
return status == 0 && (retval & ASUS_WMI_DSTS_PRESENCE_BIT);
}
/**
* armoury_get_devstate() - Get the WMI function state.
* @attr: NULL or the kobj_attribute associated to called WMI function.
* @dev_id: The WMI method ID to call.
* @retval:
* * non-NULL pointer to where to store the value returned from WMI
* * with the function presence bit cleared.
*
* Intended usage is from sysfs attribute checking associated WMI function.
*
* Returns:
* * %-ENODEV - method ID is unsupported.
* * %0 - successful and retval is filled.
* * %other - error from WMI call.
*/
static int armoury_get_devstate(struct kobj_attribute *attr, u32 *retval, u32 dev_id)
{
int err;
err = asus_wmi_get_devstate_dsts(dev_id, retval);
if (err) {
if (attr)
pr_err("Failed to get %s: %d\n", attr->attr.name, err);
else
pr_err("Failed to get devstate for 0x%x: %d\n", dev_id, err);
return err;
}
/*
* asus_wmi_get_devstate_dsts will populate retval with WMI return, but
* the true value is expressed when ASUS_WMI_DSTS_PRESENCE_BIT is clear.
*/
*retval &= ~ASUS_WMI_DSTS_PRESENCE_BIT;
return 0;
}
/**
* armoury_set_devstate() - Set the WMI function state.
* @attr: The kobj_attribute associated to called WMI function.
* @dev_id: The WMI method ID to call.
* @value: The new value to be set.
* @retval: Where to store the value returned from WMI or NULL.
*
* Intended usage is from sysfs attribute setting associated WMI function.
* Before calling the presence of the function should be checked.
*
* Every WMI write MUST go through this function to enforce safety checks.
*
* Results !1 is usually considered a fail by ASUS, but some WMI methods
* (like eGPU or CPU cores) do use > 1 to return a status code or similar:
* in these cases caller is interested in the actual return value
* and should perform relevant checks.
*
* Returns:
* * %-EINVAL - attempt to set a dangerous or unsupported value.
* * %-EIO - WMI function returned an error.
* * %0 - successful and retval is filled.
* * %other - error from WMI call.
*/
static int armoury_set_devstate(struct kobj_attribute *attr,
u32 value, u32 *retval, u32 dev_id)
{
u32 result;
int err;
/*
* Prevent developers from bricking devices or issuing dangerous
* commands that can be difficult or impossible to recover from.
*/
switch (dev_id) {
case ASUS_WMI_DEVID_APU_MEM:
/*
* A hard reset might suffice to save the device,
* but there is no value in sending these commands.
*/
if (value == 0x100 || value == 0x101) {
pr_err("Refusing to set APU memory to unsafe value: 0x%x\n", value);
return -EINVAL;
}
break;
default:
/* No problems are known for this dev_id */
break;
}
err = asus_wmi_set_devstate(dev_id, value, retval ? retval : &result);
if (err) {
if (attr)
pr_err("Failed to set %s: %d\n", attr->attr.name, err);
else
pr_err("Failed to set devstate for 0x%x: %d\n", dev_id, err);
return err;
}
/*
* If retval == NULL caller is uninterested in return value:
* perform the most common result check here.
*/
if ((retval == NULL) && (result == 0)) {
pr_err("Failed to set %s: (result): 0x%x\n", attr->attr.name, result);
return -EIO;
}
return 0;
}
static int armoury_attr_enum_list(char *buf, size_t enum_values)
{
size_t i;
int len = 0;
for (i = 0; i < enum_values; i++) {
if (i == 0)
len += sysfs_emit_at(buf, len, "%zu", i);
else
len += sysfs_emit_at(buf, len, ";%zu", i);
}
len += sysfs_emit_at(buf, len, "\n");
return len;
}
ssize_t armoury_attr_uint_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count, u32 min, u32 max,
u32 *store_value, u32 wmi_dev)
{
u32 value;
int err;
err = kstrtou32(buf, 10, &value);
if (err)
return err;
if (value < min || value > max)
return -EINVAL;
err = armoury_set_devstate(attr, value, NULL, wmi_dev);
if (err)
return err;
if (store_value != NULL)
*store_value = value;
sysfs_notify(kobj, NULL, attr->attr.name);
if (asus_bios_requires_reboot(attr))
asus_set_reboot_and_signal_event();
return count;
}
ssize_t armoury_attr_uint_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf, u32 wmi_dev)
{
u32 result;
int err;
err = armoury_get_devstate(attr, &result, wmi_dev);
if (err)
return err;
return sysfs_emit(buf, "%u\n", result);
}
static ssize_t enum_type_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "enumeration\n");
}
static ssize_t int_type_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
return sysfs_emit(buf, "integer\n");
}
/* Mini-LED mode **************************************************************/
/* Values map for mini-led modes on 2023 and earlier models. */
static u32 mini_led_mode1_map[] = {
[0] = ASUS_MINI_LED_OFF,
[1] = ASUS_MINI_LED_ON,
};
/* Values map for mini-led modes on 2024 and later models. */
static u32 mini_led_mode2_map[] = {
[0] = ASUS_MINI_LED_2024_OFF,
[1] = ASUS_MINI_LED_2024_WEAK,
[2] = ASUS_MINI_LED_2024_STRONG,
};
static ssize_t mini_led_mode_current_value_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
u32 *mini_led_mode_map;
size_t mini_led_mode_map_size;
u32 i, mode;
int err;
switch (asus_armoury.mini_led_dev_id) {
case ASUS_WMI_DEVID_MINI_LED_MODE:
mini_led_mode_map = mini_led_mode1_map;
mini_led_mode_map_size = ARRAY_SIZE(mini_led_mode1_map);
break;
case ASUS_WMI_DEVID_MINI_LED_MODE2:
mini_led_mode_map = mini_led_mode2_map;
mini_led_mode_map_size = ARRAY_SIZE(mini_led_mode2_map);
break;
default:
pr_err("Unrecognized mini-LED device: %u\n", asus_armoury.mini_led_dev_id);
return -ENODEV;
}
err = armoury_get_devstate(attr, &mode, asus_armoury.mini_led_dev_id);
if (err)
return err;
mode = FIELD_GET(ASUS_MINI_LED_MODE_MASK, 0);
for (i = 0; i < mini_led_mode_map_size; i++)
if (mode == mini_led_mode_map[i])
return sysfs_emit(buf, "%u\n", i);
pr_warn("Unrecognized mini-LED mode: %u", mode);
return -EINVAL;
}
static ssize_t mini_led_mode_current_value_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
u32 *mini_led_mode_map;
size_t mini_led_mode_map_size;
u32 mode;
int err;
err = kstrtou32(buf, 10, &mode);
if (err)
return err;
switch (asus_armoury.mini_led_dev_id) {
case ASUS_WMI_DEVID_MINI_LED_MODE:
mini_led_mode_map = mini_led_mode1_map;
mini_led_mode_map_size = ARRAY_SIZE(mini_led_mode1_map);
break;
case ASUS_WMI_DEVID_MINI_LED_MODE2:
mini_led_mode_map = mini_led_mode2_map;
mini_led_mode_map_size = ARRAY_SIZE(mini_led_mode2_map);
break;
default:
pr_err("Unrecognized mini-LED devid: %u\n", asus_armoury.mini_led_dev_id);
return -EINVAL;
}
if (mode >= mini_led_mode_map_size) {
pr_warn("mini-LED mode unrecognized device: %u\n", mode);
return -ENODEV;
}
return armoury_attr_uint_store(kobj, attr, buf, count,
0, mini_led_mode_map[mode],
NULL, asus_armoury.mini_led_dev_id);
}
static ssize_t mini_led_mode_possible_values_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
switch (asus_armoury.mini_led_dev_id) {
case ASUS_WMI_DEVID_MINI_LED_MODE:
return armoury_attr_enum_list(buf, ARRAY_SIZE(mini_led_mode1_map));
case ASUS_WMI_DEVID_MINI_LED_MODE2:
return armoury_attr_enum_list(buf, ARRAY_SIZE(mini_led_mode2_map));
default:
return -ENODEV;
}
}
ASUS_ATTR_GROUP_ENUM(mini_led_mode, "mini_led_mode", "Set the mini-LED backlight mode");
static ssize_t gpu_mux_mode_current_value_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count)
{
int result, err;
bool optimus;
err = kstrtobool(buf, &optimus);
if (err)
return err;
if (armoury_has_devstate(ASUS_WMI_DEVID_DGPU)) {
err = armoury_get_devstate(NULL, &result, ASUS_WMI_DEVID_DGPU);
if (err)
return err;
if (result && !optimus) {
pr_warn("Cannot switch MUX to dGPU mode when dGPU is disabled: %02X\n",
result);
return -ENODEV;
}
}
if (armoury_has_devstate(ASUS_WMI_DEVID_EGPU)) {
err = armoury_get_devstate(NULL, &result, ASUS_WMI_DEVID_EGPU);
if (err)
return err;
if (result && !optimus) {
pr_warn("Cannot switch MUX to dGPU mode when eGPU is enabled\n");
return -EBUSY;
}
}
err = armoury_set_devstate(attr, optimus ? 1 : 0, NULL, asus_armoury.gpu_mux_dev_id);
if (err)
return err;
sysfs_notify(kobj, NULL, attr->attr.name);
asus_set_reboot_and_signal_event();
return count;
}
ASUS_WMI_SHOW_INT(gpu_mux_mode_current_value, asus_armoury.gpu_mux_dev_id);
ASUS_ATTR_GROUP_BOOL(gpu_mux_mode, "gpu_mux_mode", "Set the GPU display MUX mode");
static ssize_t dgpu_disable_current_value_store(struct kobject *kobj,
struct kobj_attribute *attr, const char *buf,
size_t count)
{
int result, err;
bool disable;
err = kstrtobool(buf, &disable);
if (err)
return err;
if (asus_armoury.gpu_mux_dev_id) {
err = armoury_get_devstate(NULL, &result, asus_armoury.gpu_mux_dev_id);
if (err)
return err;
if (!result && disable) {
pr_warn("Cannot disable dGPU when the MUX is in dGPU mode\n");
return -EBUSY;
}
}
scoped_guard(mutex, &asus_armoury.egpu_mutex) {
err = armoury_set_devstate(attr, disable ? 1 : 0, NULL, ASUS_WMI_DEVID_DGPU);
if (err)
return err;
}
sysfs_notify(kobj, NULL, attr->attr.name);
return count;
}
ASUS_WMI_SHOW_INT(dgpu_disable_current_value, ASUS_WMI_DEVID_DGPU);
ASUS_ATTR_GROUP_BOOL(dgpu_disable, "dgpu_disable", "Disable the dGPU");
/* Values map for eGPU activation requests. */
static u32 egpu_status_map[] = {
[0] = 0x00000000U,
[1] = 0x00000001U,
[2] = 0x00000101U,
[3] = 0x00000201U,
};
/*
* armoury_pci_rescan() - Performs a PCI rescan
*
* Bring up any GPU that has been hotplugged in the system.
*/
static void armoury_pci_rescan(void)
{
struct pci_bus *b = NULL;
pci_lock_rescan_remove();
while ((b = pci_find_next_bus(b)) != NULL)
pci_rescan_bus(b);
pci_unlock_rescan_remove();
}
/*
* The ACPI call to enable the eGPU might also disable the internal dGPU,
* but this is not always the case and on certain models enabling the eGPU
* when the dGPU is either still active or has been disabled without rebooting
* will make both GPUs malfunction and the kernel will detect many
* PCI AER unrecoverable errors.
*/
static ssize_t egpu_enable_current_value_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
int err;
u32 requested, enable, result;
err = kstrtou32(buf, 10, &requested);
if (err)
return err;
if (requested >= ARRAY_SIZE(egpu_status_map))
return -EINVAL;
enable = egpu_status_map[requested];
scoped_guard(mutex, &asus_armoury.egpu_mutex) {
/* Ensure the eGPU is connected before attempting to activate it. */
if (enable) {
err = armoury_get_devstate(NULL, &result, ASUS_WMI_DEVID_EGPU_CONNECTED);
if (err) {
pr_warn("Failed to get eGPU connection status: %d\n", err);
return err;
}
if (!result) {
pr_warn("Cannot activate eGPU while undetected\n");
return -ENOENT;
}
}
if (asus_armoury.gpu_mux_dev_id) {
err = armoury_get_devstate(NULL, &result, asus_armoury.gpu_mux_dev_id);
if (err)
return err;
if (!result && enable) {
pr_warn("Cannot enable eGPU when the MUX is in dGPU mode\n");
return -ENODEV;
}
}
err = armoury_set_devstate(attr, enable, &result, ASUS_WMI_DEVID_EGPU);
if (err) {
pr_err("Failed to set %s: %d\n", attr->attr.name, err);
return err;
}
/*
* ACPI returns value 0x01 on success and 0x02 on a partial activation:
* performing a pci rescan will bring up the device in pci-e 3.0 speed,
* after a reboot the device will work at full speed.
*/
switch (result) {
case 0x01:
/*
* When a GPU is in use it does not get disconnected even if
* the ACPI call returns a success.
*/
if (!enable) {
err = armoury_get_devstate(attr, &result, ASUS_WMI_DEVID_EGPU);
if (err) {
pr_warn("Failed to ensure eGPU is deactivated: %d\n", err);
return err;
}
if (result != 0)
return -EBUSY;
}
pr_debug("Success changing the eGPU status\n");
break;
case 0x02:
pr_info("Success changing the eGPU status, a reboot is strongly advised\n");
asus_set_reboot_and_signal_event();
break;
default:
pr_err("Failed to change the eGPU status: wmi result is 0x%x\n", result);
return -EIO;
}
}
/*
* Perform a PCI rescan: on every tested model this is necessary
* to make the eGPU visible on the bus without rebooting.
*/
armoury_pci_rescan();
sysfs_notify(kobj, NULL, attr->attr.name);
return count;
}
static ssize_t egpu_enable_current_value_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
int i, err;
u32 status;
scoped_guard(mutex, &asus_armoury.egpu_mutex) {
err = armoury_get_devstate(attr, &status, ASUS_WMI_DEVID_EGPU);
if (err)
return err;
}
for (i = 0; i < ARRAY_SIZE(egpu_status_map); i++) {
if (egpu_status_map[i] == status)
return sysfs_emit(buf, "%u\n", i);
}
return -EIO;
}
static ssize_t egpu_enable_possible_values_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
return armoury_attr_enum_list(buf, ARRAY_SIZE(egpu_status_map));
}
ASUS_ATTR_GROUP_ENUM(egpu_enable, "egpu_enable", "Enable the eGPU (also disables dGPU)");
/* Device memory available to APU */
/*
* Values map for APU reserved memory (index + 1 number of GB).
* Some looks out of order, but are actually correct.
*/
static u32 apu_mem_map[] = {
[0] = 0x000, /* called "AUTO" on the BIOS, is the minimum available */
[1] = 0x102,
[2] = 0x103,
[3] = 0x104,
[4] = 0x105,
[5] = 0x107,
[6] = 0x108,
[7] = 0x109,
[8] = 0x106,
};
static ssize_t apu_mem_current_value_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
int err;
u32 mem;
err = armoury_get_devstate(attr, &mem, ASUS_WMI_DEVID_APU_MEM);
if (err)
return err;
/* After 0x000 is set, a read will return 0x100 */
if (mem == 0x100)
return sysfs_emit(buf, "0\n");
for (unsigned int i = 0; i < ARRAY_SIZE(apu_mem_map); i++) {
if (apu_mem_map[i] == mem)
return sysfs_emit(buf, "%u\n", i);
}
pr_warn("Unrecognised value for APU mem 0x%08x\n", mem);
return -EIO;
}
static ssize_t apu_mem_current_value_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
int result, err;
u32 requested, mem;
result = kstrtou32(buf, 10, &requested);
if (result)
return result;
if (requested >= ARRAY_SIZE(apu_mem_map))
return -EINVAL;
mem = apu_mem_map[requested];
err = armoury_set_devstate(attr, mem, NULL, ASUS_WMI_DEVID_APU_MEM);
if (err) {
pr_warn("Failed to set apu_mem 0x%x: %d\n", mem, err);
return err;
}
pr_info("APU memory changed to %uGB, reboot required\n", requested + 1);
sysfs_notify(kobj, NULL, attr->attr.name);
asus_set_reboot_and_signal_event();
return count;
}
static ssize_t apu_mem_possible_values_show(struct kobject *kobj, struct kobj_attribute *attr,
char *buf)
{
return armoury_attr_enum_list(buf, ARRAY_SIZE(apu_mem_map));
}
ASUS_ATTR_GROUP_ENUM(apu_mem, "apu_mem", "Set available system RAM (in GB) for the APU to use");
/* Define helper to access the current power mode tunable values */
static inline struct rog_tunables *get_current_tunables(void)
{
if (power_supply_is_system_supplied())
return asus_armoury.rog_tunables[ASUS_ROG_TUNABLE_AC];
return asus_armoury.rog_tunables[ASUS_ROG_TUNABLE_DC];
}
/* Simple attribute creation */
ASUS_ATTR_GROUP_ENUM_INT_RO(charge_mode, "charge_mode", ASUS_WMI_DEVID_CHARGE_MODE, "0;1;2\n",
"Show the current mode of charging");
ASUS_ATTR_GROUP_BOOL_RW(boot_sound, "boot_sound", ASUS_WMI_DEVID_BOOT_SOUND,
"Set the boot POST sound");
ASUS_ATTR_GROUP_BOOL_RW(mcu_powersave, "mcu_powersave", ASUS_WMI_DEVID_MCU_POWERSAVE,
"Set MCU powersaving mode");
ASUS_ATTR_GROUP_BOOL_RW(panel_od, "panel_overdrive", ASUS_WMI_DEVID_PANEL_OD,
"Set the panel refresh overdrive");
ASUS_ATTR_GROUP_BOOL_RW(panel_hd_mode, "panel_hd_mode", ASUS_WMI_DEVID_PANEL_HD,
"Set the panel HD mode to UHD<0> or FHD<1>");
ASUS_ATTR_GROUP_BOOL_RW(screen_auto_brightness, "screen_auto_brightness",
ASUS_WMI_DEVID_SCREEN_AUTO_BRIGHTNESS,
"Set the panel brightness to Off<0> or On<1>");
ASUS_ATTR_GROUP_BOOL_RO(egpu_connected, "egpu_connected", ASUS_WMI_DEVID_EGPU_CONNECTED,
"Show the eGPU connection status");
ASUS_ATTR_GROUP_ROG_TUNABLE(ppt_pl1_spl, ATTR_PPT_PL1_SPL, ASUS_WMI_DEVID_PPT_PL1_SPL,
"Set the CPU slow package limit");
ASUS_ATTR_GROUP_ROG_TUNABLE(ppt_pl2_sppt, ATTR_PPT_PL2_SPPT, ASUS_WMI_DEVID_PPT_PL2_SPPT,
"Set the CPU fast package limit");
ASUS_ATTR_GROUP_ROG_TUNABLE(ppt_pl3_fppt, ATTR_PPT_PL3_FPPT, ASUS_WMI_DEVID_PPT_PL3_FPPT,
"Set the CPU fastest package limit");
ASUS_ATTR_GROUP_ROG_TUNABLE(ppt_apu_sppt, ATTR_PPT_APU_SPPT, ASUS_WMI_DEVID_PPT_APU_SPPT,
"Set the APU package limit");
ASUS_ATTR_GROUP_ROG_TUNABLE(ppt_platform_sppt, ATTR_PPT_PLATFORM_SPPT, ASUS_WMI_DEVID_PPT_PLAT_SPPT,
"Set the platform package limit");
ASUS_ATTR_GROUP_ROG_TUNABLE(nv_dynamic_boost, ATTR_NV_DYNAMIC_BOOST, ASUS_WMI_DEVID_NV_DYN_BOOST,
"Set the Nvidia dynamic boost limit");
ASUS_ATTR_GROUP_ROG_TUNABLE(nv_temp_target, ATTR_NV_TEMP_TARGET, ASUS_WMI_DEVID_NV_THERM_TARGET,
"Set the Nvidia max thermal limit");
ASUS_ATTR_GROUP_ROG_TUNABLE(nv_tgp, "nv_tgp", ASUS_WMI_DEVID_DGPU_SET_TGP,
"Set the additional TGP on top of the base TGP");
ASUS_ATTR_GROUP_INT_VALUE_ONLY_RO(nv_base_tgp, ATTR_NV_BASE_TGP, ASUS_WMI_DEVID_DGPU_BASE_TGP,
"Read the base TGP value");
/* If an attribute does not require any special case handling add it here */
static const struct asus_attr_group armoury_attr_groups[] = {
{ &egpu_connected_attr_group, ASUS_WMI_DEVID_EGPU_CONNECTED },
{ &egpu_enable_attr_group, ASUS_WMI_DEVID_EGPU },
{ &dgpu_disable_attr_group, ASUS_WMI_DEVID_DGPU },
{ &apu_mem_attr_group, ASUS_WMI_DEVID_APU_MEM },
{ &ppt_pl1_spl_attr_group, ASUS_WMI_DEVID_PPT_PL1_SPL },
{ &ppt_pl2_sppt_attr_group, ASUS_WMI_DEVID_PPT_PL2_SPPT },
{ &ppt_pl3_fppt_attr_group, ASUS_WMI_DEVID_PPT_PL3_FPPT },
{ &ppt_apu_sppt_attr_group, ASUS_WMI_DEVID_PPT_APU_SPPT },
{ &ppt_platform_sppt_attr_group, ASUS_WMI_DEVID_PPT_PLAT_SPPT },
{ &nv_dynamic_boost_attr_group, ASUS_WMI_DEVID_NV_DYN_BOOST },
{ &nv_temp_target_attr_group, ASUS_WMI_DEVID_NV_THERM_TARGET },
{ &nv_base_tgp_attr_group, ASUS_WMI_DEVID_DGPU_BASE_TGP },
{ &nv_tgp_attr_group, ASUS_WMI_DEVID_DGPU_SET_TGP },
{ &charge_mode_attr_group, ASUS_WMI_DEVID_CHARGE_MODE },
{ &boot_sound_attr_group, ASUS_WMI_DEVID_BOOT_SOUND },
{ &mcu_powersave_attr_group, ASUS_WMI_DEVID_MCU_POWERSAVE },
{ &panel_od_attr_group, ASUS_WMI_DEVID_PANEL_OD },
{ &panel_hd_mode_attr_group, ASUS_WMI_DEVID_PANEL_HD },
{ &screen_auto_brightness_attr_group, ASUS_WMI_DEVID_SCREEN_AUTO_BRIGHTNESS },
};
/**
* is_power_tunable_attr - Determines if an attribute is a power-related tunable
* @name: The name of the attribute to check
*
* This function checks if the given attribute name is related to power tuning.
*
* Return: true if the attribute is a power-related tunable, false otherwise
*/
static bool is_power_tunable_attr(const char *name)
{
static const char * const power_tunable_attrs[] = {
ATTR_PPT_PL1_SPL, ATTR_PPT_PL2_SPPT,
ATTR_PPT_PL3_FPPT, ATTR_PPT_APU_SPPT,
ATTR_PPT_PLATFORM_SPPT, ATTR_NV_DYNAMIC_BOOST,
ATTR_NV_TEMP_TARGET, ATTR_NV_BASE_TGP,
ATTR_NV_TGP
};
for (unsigned int i = 0; i < ARRAY_SIZE(power_tunable_attrs); i++) {
if (!strcmp(name, power_tunable_attrs[i]))
return true;
}
return false;
}
/**
* has_valid_limit - Checks if a power-related attribute has a valid limit value
* @name: The name of the attribute to check
* @limits: Pointer to the power_limits structure containing limit values
*
* This function checks if a power-related attribute has a valid limit value.
* It returns false if limits is NULL or if the corresponding limit value is zero.
*
* Return: true if the attribute has a valid limit value, false otherwise
*/
static bool has_valid_limit(const char *name, const struct power_limits *limits)
{
u32 limit_value = 0;
if (!limits)
return false;
if (!strcmp(name, ATTR_PPT_PL1_SPL))
limit_value = limits->ppt_pl1_spl_max;
else if (!strcmp(name, ATTR_PPT_PL2_SPPT))
limit_value = limits->ppt_pl2_sppt_max;
else if (!strcmp(name, ATTR_PPT_PL3_FPPT))
limit_value = limits->ppt_pl3_fppt_max;
else if (!strcmp(name, ATTR_PPT_APU_SPPT))
limit_value = limits->ppt_apu_sppt_max;
else if (!strcmp(name, ATTR_PPT_PLATFORM_SPPT))
limit_value = limits->ppt_platform_sppt_max;
else if (!strcmp(name, ATTR_NV_DYNAMIC_BOOST))
limit_value = limits->nv_dynamic_boost_max;
else if (!strcmp(name, ATTR_NV_TEMP_TARGET))
limit_value = limits->nv_temp_target_max;
else if (!strcmp(name, ATTR_NV_BASE_TGP) ||
!strcmp(name, ATTR_NV_TGP))
limit_value = limits->nv_tgp_max;
return limit_value > 0;
}
static int asus_fw_attr_add(void)
{
const struct rog_tunables *const ac_rog_tunables =
asus_armoury.rog_tunables[ASUS_ROG_TUNABLE_AC];
const struct power_limits *limits;
bool should_create;
const char *name;
int err, i;
asus_armoury.fw_attr_dev = device_create(&firmware_attributes_class, NULL, MKDEV(0, 0),
NULL, "%s", DRIVER_NAME);
if (IS_ERR(asus_armoury.fw_attr_dev)) {
err = PTR_ERR(asus_armoury.fw_attr_dev);
goto fail_class_get;
}
asus_armoury.fw_attr_kset = kset_create_and_add("attributes", NULL,
&asus_armoury.fw_attr_dev->kobj);
if (!asus_armoury.fw_attr_kset) {
err = -ENOMEM;
goto err_destroy_classdev;
}
err = sysfs_create_file(&asus_armoury.fw_attr_kset->kobj, &pending_reboot.attr);
if (err) {
pr_err("Failed to create sysfs level attributes\n");
goto err_destroy_kset;
}
asus_armoury.mini_led_dev_id = 0;
if (armoury_has_devstate(ASUS_WMI_DEVID_MINI_LED_MODE))
asus_armoury.mini_led_dev_id = ASUS_WMI_DEVID_MINI_LED_MODE;
else if (armoury_has_devstate(ASUS_WMI_DEVID_MINI_LED_MODE2))
asus_armoury.mini_led_dev_id = ASUS_WMI_DEVID_MINI_LED_MODE2;
if (asus_armoury.mini_led_dev_id) {
err = sysfs_create_group(&asus_armoury.fw_attr_kset->kobj,
&mini_led_mode_attr_group);
if (err) {
pr_err("Failed to create sysfs-group for mini_led\n");
goto err_remove_file;
}
}
asus_armoury.gpu_mux_dev_id = 0;
if (armoury_has_devstate(ASUS_WMI_DEVID_GPU_MUX))
asus_armoury.gpu_mux_dev_id = ASUS_WMI_DEVID_GPU_MUX;
else if (armoury_has_devstate(ASUS_WMI_DEVID_GPU_MUX_VIVO))
asus_armoury.gpu_mux_dev_id = ASUS_WMI_DEVID_GPU_MUX_VIVO;
if (asus_armoury.gpu_mux_dev_id) {
err = sysfs_create_group(&asus_armoury.fw_attr_kset->kobj,
&gpu_mux_mode_attr_group);
if (err) {
pr_err("Failed to create sysfs-group for gpu_mux\n");
goto err_remove_mini_led_group;
}
}
for (i = 0; i < ARRAY_SIZE(armoury_attr_groups); i++) {
if (!armoury_has_devstate(armoury_attr_groups[i].wmi_devid))
continue;
/* Always create by default, unless PPT is not present */
should_create = true;
name = armoury_attr_groups[i].attr_group->name;
/* Check if this is a power-related tunable requiring limits */
if (ac_rog_tunables && ac_rog_tunables->power_limits &&
is_power_tunable_attr(name)) {
limits = ac_rog_tunables->power_limits;
/* Check only AC: if not present then DC won't be either */
should_create = has_valid_limit(name, limits);
if (!should_create)
pr_debug("Missing max value for tunable %s\n", name);
}
if (should_create) {
err = sysfs_create_group(&asus_armoury.fw_attr_kset->kobj,
armoury_attr_groups[i].attr_group);
if (err) {
pr_err("Failed to create sysfs-group for %s\n",
armoury_attr_groups[i].attr_group->name);
goto err_remove_groups;
}
}
}
return 0;
err_remove_groups:
while (i--) {
if (armoury_has_devstate(armoury_attr_groups[i].wmi_devid))
sysfs_remove_group(&asus_armoury.fw_attr_kset->kobj,
armoury_attr_groups[i].attr_group);
}
if (asus_armoury.gpu_mux_dev_id)
sysfs_remove_group(&asus_armoury.fw_attr_kset->kobj, &gpu_mux_mode_attr_group);
err_remove_mini_led_group:
if (asus_armoury.mini_led_dev_id)
sysfs_remove_group(&asus_armoury.fw_attr_kset->kobj, &mini_led_mode_attr_group);
err_remove_file:
sysfs_remove_file(&asus_armoury.fw_attr_kset->kobj, &pending_reboot.attr);
err_destroy_kset:
kset_unregister(asus_armoury.fw_attr_kset);
err_destroy_classdev:
fail_class_get:
device_destroy(&firmware_attributes_class, MKDEV(0, 0));
return err;
}
/* Init / exit ****************************************************************/
/* Set up the min/max and defaults for ROG tunables */
static void init_rog_tunables(void)
{
const struct power_limits *ac_limits, *dc_limits;
struct rog_tunables *ac_rog_tunables = NULL, *dc_rog_tunables = NULL;
const struct power_data *power_data;
const struct dmi_system_id *dmi_id;
/* Match the system against the power_limits table */
dmi_id = dmi_first_match(power_limits);
if (!dmi_id) {
pr_warn("No matching power limits found for this system\n");
return;
}
/* Get the power data for this system */
power_data = dmi_id->driver_data;
if (!power_data) {
pr_info("No power data available for this system\n");
return;
}
/* Initialize AC power tunables */
ac_limits = power_data->ac_data;
if (ac_limits) {
ac_rog_tunables = kzalloc(sizeof(*asus_armoury.rog_tunables[ASUS_ROG_TUNABLE_AC]),
GFP_KERNEL);
if (!ac_rog_tunables)
goto err_nomem;
asus_armoury.rog_tunables[ASUS_ROG_TUNABLE_AC] = ac_rog_tunables;
ac_rog_tunables->power_limits = ac_limits;
/* Set initial AC values */
ac_rog_tunables->ppt_pl1_spl =
ac_limits->ppt_pl1_spl_def ?
ac_limits->ppt_pl1_spl_def :
ac_limits->ppt_pl1_spl_max;
ac_rog_tunables->ppt_pl2_sppt =
ac_limits->ppt_pl2_sppt_def ?
ac_limits->ppt_pl2_sppt_def :
ac_limits->ppt_pl2_sppt_max;
ac_rog_tunables->ppt_pl3_fppt =
ac_limits->ppt_pl3_fppt_def ?
ac_limits->ppt_pl3_fppt_def :
ac_limits->ppt_pl3_fppt_max;
ac_rog_tunables->ppt_apu_sppt =
ac_limits->ppt_apu_sppt_def ?
ac_limits->ppt_apu_sppt_def :
ac_limits->ppt_apu_sppt_max;
ac_rog_tunables->ppt_platform_sppt =
ac_limits->ppt_platform_sppt_def ?
ac_limits->ppt_platform_sppt_def :
ac_limits->ppt_platform_sppt_max;
ac_rog_tunables->nv_dynamic_boost =
ac_limits->nv_dynamic_boost_max;
ac_rog_tunables->nv_temp_target =
ac_limits->nv_temp_target_max;
ac_rog_tunables->nv_tgp = ac_limits->nv_tgp_max;
pr_debug("AC power limits initialized for %s\n", dmi_id->matches[0].substr);
} else {
pr_debug("No AC PPT limits defined\n");
}
/* Initialize DC power tunables */
dc_limits = power_data->dc_data;
if (dc_limits) {
dc_rog_tunables = kzalloc(sizeof(*asus_armoury.rog_tunables[ASUS_ROG_TUNABLE_DC]),
GFP_KERNEL);
if (!dc_rog_tunables) {
kfree(ac_rog_tunables);
goto err_nomem;
}
asus_armoury.rog_tunables[ASUS_ROG_TUNABLE_DC] = dc_rog_tunables;
dc_rog_tunables->power_limits = dc_limits;
/* Set initial DC values */
dc_rog_tunables->ppt_pl1_spl =
dc_limits->ppt_pl1_spl_def ?
dc_limits->ppt_pl1_spl_def :
dc_limits->ppt_pl1_spl_max;
dc_rog_tunables->ppt_pl2_sppt =
dc_limits->ppt_pl2_sppt_def ?
dc_limits->ppt_pl2_sppt_def :
dc_limits->ppt_pl2_sppt_max;
dc_rog_tunables->ppt_pl3_fppt =
dc_limits->ppt_pl3_fppt_def ?
dc_limits->ppt_pl3_fppt_def :
dc_limits->ppt_pl3_fppt_max;
dc_rog_tunables->ppt_apu_sppt =
dc_limits->ppt_apu_sppt_def ?
dc_limits->ppt_apu_sppt_def :
dc_limits->ppt_apu_sppt_max;
dc_rog_tunables->ppt_platform_sppt =
dc_limits->ppt_platform_sppt_def ?
dc_limits->ppt_platform_sppt_def :
dc_limits->ppt_platform_sppt_max;
dc_rog_tunables->nv_dynamic_boost =
dc_limits->nv_dynamic_boost_max;
dc_rog_tunables->nv_temp_target =
dc_limits->nv_temp_target_max;
dc_rog_tunables->nv_tgp = dc_limits->nv_tgp_max;
pr_debug("DC power limits initialized for %s\n", dmi_id->matches[0].substr);
} else {
pr_debug("No DC PPT limits defined\n");
}
return;
err_nomem:
pr_err("Failed to allocate memory for tunables\n");
}
static int __init asus_fw_init(void)
{
char *wmi_uid;
wmi_uid = wmi_get_acpi_device_uid(ASUS_WMI_MGMT_GUID);
if (!wmi_uid)
return -ENODEV;
/*
* if equal to "ASUSWMI" then it's DCTS that can't be used for this
* driver, DSTS is required.
*/
if (!strcmp(wmi_uid, ASUS_ACPI_UID_ASUSWMI))
return -ENODEV;
init_rog_tunables();
/* Must always be last step to ensure data is available */
return asus_fw_attr_add();
}
static void __exit asus_fw_exit(void)
{
int i;
for (i = ARRAY_SIZE(armoury_attr_groups) - 1; i >= 0; i--) {
if (armoury_has_devstate(armoury_attr_groups[i].wmi_devid))
sysfs_remove_group(&asus_armoury.fw_attr_kset->kobj,
armoury_attr_groups[i].attr_group);
}
if (asus_armoury.gpu_mux_dev_id)
sysfs_remove_group(&asus_armoury.fw_attr_kset->kobj, &gpu_mux_mode_attr_group);
if (asus_armoury.mini_led_dev_id)
sysfs_remove_group(&asus_armoury.fw_attr_kset->kobj, &mini_led_mode_attr_group);
sysfs_remove_file(&asus_armoury.fw_attr_kset->kobj, &pending_reboot.attr);
kset_unregister(asus_armoury.fw_attr_kset);
device_destroy(&firmware_attributes_class, MKDEV(0, 0));
kfree(asus_armoury.rog_tunables[ASUS_ROG_TUNABLE_AC]);
kfree(asus_armoury.rog_tunables[ASUS_ROG_TUNABLE_DC]);
}
module_init(asus_fw_init);
module_exit(asus_fw_exit);
MODULE_IMPORT_NS("ASUS_WMI");
MODULE_AUTHOR("Luke Jones <luke@ljones.dev>");
MODULE_DESCRIPTION("ASUS BIOS Configuration Driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("wmi:" ASUS_NB_WMI_EVENT_GUID);