mirror-linux/drivers/platform/x86/uniwill/uniwill-acpi.c

1913 lines
47 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Linux driver for Uniwill notebooks.
*
* Special thanks go to Pőcze Barnabás, Christoffer Sandberg and Werner Sembach
* for supporting the development of this driver either through prior work or
* by answering questions regarding the underlying ACPI and WMI interfaces.
*
* Copyright (C) 2025 Armin Wolf <W_Armin@gmx.de>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/acpi.h>
#include <linux/array_size.h>
#include <linux/bits.h>
#include <linux/bitfield.h>
#include <linux/cleanup.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/device/driver.h>
#include <linux/dmi.h>
#include <linux/errno.h>
#include <linux/fixp-arith.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/init.h>
#include <linux/input.h>
#include <linux/input/sparse-keymap.h>
#include <linux/kernel.h>
#include <linux/kstrtox.h>
#include <linux/leds.h>
#include <linux/led-class-multicolor.h>
#include <linux/limits.h>
#include <linux/list.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/notifier.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/printk.h>
#include <linux/regmap.h>
#include <linux/string.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/units.h>
#include <acpi/battery.h>
#include "uniwill-wmi.h"
#define EC_ADDR_BAT_POWER_UNIT_1 0x0400
#define EC_ADDR_BAT_POWER_UNIT_2 0x0401
#define EC_ADDR_BAT_DESIGN_CAPACITY_1 0x0402
#define EC_ADDR_BAT_DESIGN_CAPACITY_2 0x0403
#define EC_ADDR_BAT_FULL_CAPACITY_1 0x0404
#define EC_ADDR_BAT_FULL_CAPACITY_2 0x0405
#define EC_ADDR_BAT_DESIGN_VOLTAGE_1 0x0408
#define EC_ADDR_BAT_DESIGN_VOLTAGE_2 0x0409
#define EC_ADDR_BAT_STATUS_1 0x0432
#define BAT_DISCHARGING BIT(0)
#define EC_ADDR_BAT_STATUS_2 0x0433
#define EC_ADDR_BAT_CURRENT_1 0x0434
#define EC_ADDR_BAT_CURRENT_2 0x0435
#define EC_ADDR_BAT_REMAIN_CAPACITY_1 0x0436
#define EC_ADDR_BAT_REMAIN_CAPACITY_2 0x0437
#define EC_ADDR_BAT_VOLTAGE_1 0x0438
#define EC_ADDR_BAT_VOLTAGE_2 0x0439
#define EC_ADDR_CPU_TEMP 0x043E
#define EC_ADDR_GPU_TEMP 0x044F
#define EC_ADDR_MAIN_FAN_RPM_1 0x0464
#define EC_ADDR_MAIN_FAN_RPM_2 0x0465
#define EC_ADDR_SECOND_FAN_RPM_1 0x046C
#define EC_ADDR_SECOND_FAN_RPM_2 0x046D
#define EC_ADDR_DEVICE_STATUS 0x047B
#define WIFI_STATUS_ON BIT(7)
/* BIT(5) is also unset depending on the rfkill state (bluetooth?) */
#define EC_ADDR_BAT_ALERT 0x0494
#define EC_ADDR_BAT_CYCLE_COUNT_1 0x04A6
#define EC_ADDR_BAT_CYCLE_COUNT_2 0x04A7
#define EC_ADDR_PROJECT_ID 0x0740
#define EC_ADDR_AP_OEM 0x0741
#define ENABLE_MANUAL_CTRL BIT(0)
#define ITE_KBD_EFFECT_REACTIVE BIT(3)
#define FAN_ABNORMAL BIT(5)
#define EC_ADDR_SUPPORT_5 0x0742
#define FAN_TURBO_SUPPORTED BIT(4)
#define FAN_SUPPORT BIT(5)
#define EC_ADDR_CTGP_DB_CTRL 0x0743
#define CTGP_DB_GENERAL_ENABLE BIT(0)
#define CTGP_DB_DB_ENABLE BIT(1)
#define CTGP_DB_CTGP_ENABLE BIT(2)
#define EC_ADDR_CTGP_OFFSET 0x0744
#define EC_ADDR_TPP_OFFSET 0x0745
#define EC_ADDR_MAX_TGP 0x0746
#define EC_ADDR_LIGHTBAR_AC_CTRL 0x0748
#define LIGHTBAR_APP_EXISTS BIT(0)
#define LIGHTBAR_POWER_SAVE BIT(1)
#define LIGHTBAR_S0_OFF BIT(2)
#define LIGHTBAR_S3_OFF BIT(3) // Breathing animation when suspended
#define LIGHTBAR_WELCOME BIT(7) // Rainbow animation
#define EC_ADDR_LIGHTBAR_AC_RED 0x0749
#define EC_ADDR_LIGHTBAR_AC_GREEN 0x074A
#define EC_ADDR_LIGHTBAR_AC_BLUE 0x074B
#define EC_ADDR_BIOS_OEM 0x074E
#define FN_LOCK_STATUS BIT(4)
#define EC_ADDR_MANUAL_FAN_CTRL 0x0751
#define FAN_LEVEL_MASK GENMASK(2, 0)
#define FAN_MODE_TURBO BIT(4)
#define FAN_MODE_HIGH BIT(5)
#define FAN_MODE_BOOST BIT(6)
#define FAN_MODE_USER BIT(7)
#define EC_ADDR_PWM_1 0x075B
#define EC_ADDR_PWM_2 0x075C
/* Unreliable */
#define EC_ADDR_SUPPORT_1 0x0765
#define AIRPLANE_MODE BIT(0)
#define GPS_SWITCH BIT(1)
#define OVERCLOCK BIT(2)
#define MACRO_KEY BIT(3)
#define SHORTCUT_KEY BIT(4)
#define SUPER_KEY_LOCK BIT(5)
#define LIGHTBAR BIT(6)
#define FAN_BOOST BIT(7)
#define EC_ADDR_SUPPORT_2 0x0766
#define SILENT_MODE BIT(0)
#define USB_CHARGING BIT(1)
#define RGB_KEYBOARD BIT(2)
#define CHINA_MODE BIT(5)
#define MY_BATTERY BIT(6)
#define EC_ADDR_TRIGGER 0x0767
#define TRIGGER_SUPER_KEY_LOCK BIT(0)
#define TRIGGER_LIGHTBAR BIT(1)
#define TRIGGER_FAN_BOOST BIT(2)
#define TRIGGER_SILENT_MODE BIT(3)
#define TRIGGER_USB_CHARGING BIT(4)
#define RGB_APPLY_COLOR BIT(5)
#define RGB_LOGO_EFFECT BIT(6)
#define RGB_RAINBOW_EFFECT BIT(7)
#define EC_ADDR_SWITCH_STATUS 0x0768
#define SUPER_KEY_LOCK_STATUS BIT(0)
#define LIGHTBAR_STATUS BIT(1)
#define FAN_BOOST_STATUS BIT(2)
#define MACRO_KEY_STATUS BIT(3)
#define MY_BAT_POWER_BAT_STATUS BIT(4)
#define EC_ADDR_RGB_RED 0x0769
#define EC_ADDR_RGB_GREEN 0x076A
#define EC_ADDR_RGB_BLUE 0x076B
#define EC_ADDR_ROMID_START 0x0770
#define ROMID_LENGTH 14
#define EC_ADDR_ROMID_EXTRA_1 0x077E
#define EC_ADDR_ROMID_EXTRA_2 0x077F
#define EC_ADDR_BIOS_OEM_2 0x0782
#define FAN_V2_NEW BIT(0)
#define FAN_QKEY BIT(1)
#define FAN_TABLE_OFFICE_MODE BIT(2)
#define FAN_V3 BIT(3)
#define DEFAULT_MODE BIT(4)
#define EC_ADDR_PL1_SETTING 0x0783
#define EC_ADDR_PL2_SETTING 0x0784
#define EC_ADDR_PL4_SETTING 0x0785
#define EC_ADDR_FAN_DEFAULT 0x0786
#define FAN_CURVE_LENGTH 5
#define EC_ADDR_KBD_STATUS 0x078C
#define KBD_WHITE_ONLY BIT(0) // ~single color
#define KBD_SINGLE_COLOR_OFF BIT(1)
#define KBD_TURBO_LEVEL_MASK GENMASK(3, 2)
#define KBD_APPLY BIT(4)
#define KBD_BRIGHTNESS GENMASK(7, 5)
#define EC_ADDR_FAN_CTRL 0x078E
#define FAN3P5 BIT(1)
#define CHARGING_PROFILE BIT(3)
#define UNIVERSAL_FAN_CTRL BIT(6)
#define EC_ADDR_BIOS_OEM_3 0x07A3
#define FAN_REDUCED_DURY_CYCLE BIT(5)
#define FAN_ALWAYS_ON BIT(6)
#define EC_ADDR_BIOS_BYTE 0x07A4
#define FN_LOCK_SWITCH BIT(3)
#define EC_ADDR_OEM_3 0x07A5
#define POWER_LED_MASK GENMASK(1, 0)
#define POWER_LED_LEFT 0x00
#define POWER_LED_BOTH 0x01
#define POWER_LED_NONE 0x02
#define FAN_QUIET BIT(2)
#define OVERBOOST BIT(4)
#define HIGH_POWER BIT(7)
#define EC_ADDR_OEM_4 0x07A6
#define OVERBOOST_DYN_TEMP_OFF BIT(1)
#define TOUCHPAD_TOGGLE_OFF BIT(6)
#define EC_ADDR_CHARGE_CTRL 0x07B9
#define CHARGE_CTRL_MASK GENMASK(6, 0)
#define CHARGE_CTRL_REACHED BIT(7)
#define EC_ADDR_UNIVERSAL_FAN_CTRL 0x07C5
#define SPLIT_TABLES BIT(7)
#define EC_ADDR_AP_OEM_6 0x07C6
#define ENABLE_UNIVERSAL_FAN_CTRL BIT(2)
#define BATTERY_CHARGE_FULL_OVER_24H BIT(3)
#define BATTERY_ERM_STATUS_REACHED BIT(4)
#define EC_ADDR_CHARGE_PRIO 0x07CC
#define CHARGING_PERFORMANCE BIT(7)
/* Same bits as EC_ADDR_LIGHTBAR_AC_CTRL except LIGHTBAR_S3_OFF */
#define EC_ADDR_LIGHTBAR_BAT_CTRL 0x07E2
#define EC_ADDR_LIGHTBAR_BAT_RED 0x07E3
#define EC_ADDR_LIGHTBAR_BAT_GREEN 0x07E4
#define EC_ADDR_LIGHTBAR_BAT_BLUE 0x07E5
#define EC_ADDR_CPU_TEMP_END_TABLE 0x0F00
#define EC_ADDR_CPU_TEMP_START_TABLE 0x0F10
#define EC_ADDR_CPU_FAN_SPEED_TABLE 0x0F20
#define EC_ADDR_GPU_TEMP_END_TABLE 0x0F30
#define EC_ADDR_GPU_TEMP_START_TABLE 0x0F40
#define EC_ADDR_GPU_FAN_SPEED_TABLE 0x0F50
/*
* Those two registers technically allow for manual fan control,
* but are unstable on some models and are likely not meant to
* be used by applications as they are only accessible when using
* the WMI interface.
*/
#define EC_ADDR_PWM_1_WRITEABLE 0x1804
#define EC_ADDR_PWM_2_WRITEABLE 0x1809
#define DRIVER_NAME "uniwill"
/*
* The OEM software always sleeps up to 6 ms after reading/writing EC
* registers, so we emulate this behaviour for maximum compatibility.
*/
#define UNIWILL_EC_DELAY_US 6000
#define PWM_MAX 200
#define FAN_TABLE_LENGTH 16
#define LED_CHANNELS 3
#define LED_MAX_BRIGHTNESS 200
#define UNIWILL_FEATURE_FN_LOCK_TOGGLE BIT(0)
#define UNIWILL_FEATURE_SUPER_KEY_TOGGLE BIT(1)
#define UNIWILL_FEATURE_TOUCHPAD_TOGGLE BIT(2)
#define UNIWILL_FEATURE_LIGHTBAR BIT(3)
#define UNIWILL_FEATURE_BATTERY BIT(4)
#define UNIWILL_FEATURE_HWMON BIT(5)
struct uniwill_data {
struct device *dev;
acpi_handle handle;
struct regmap *regmap;
struct acpi_battery_hook hook;
unsigned int last_charge_ctrl;
struct mutex battery_lock; /* Protects the list of currently registered batteries */
unsigned int last_switch_status;
struct mutex super_key_lock; /* Protects the toggling of the super key lock state */
struct list_head batteries;
struct mutex led_lock; /* Protects writes to the lightbar registers */
struct led_classdev_mc led_mc_cdev;
struct mc_subled led_mc_subled_info[LED_CHANNELS];
struct mutex input_lock; /* Protects input sequence during notify */
struct input_dev *input_device;
struct notifier_block nb;
};
struct uniwill_battery_entry {
struct list_head head;
struct power_supply *battery;
};
static bool force;
module_param_unsafe(force, bool, 0);
MODULE_PARM_DESC(force, "Force loading without checking for supported devices\n");
/* Feature bitmask since the associated registers are not reliable */
static unsigned int supported_features;
static const char * const uniwill_temp_labels[] = {
"CPU",
"GPU",
};
static const char * const uniwill_fan_labels[] = {
"Main",
"Secondary",
};
static const struct key_entry uniwill_keymap[] = {
/* Reported via keyboard controller */
{ KE_IGNORE, UNIWILL_OSD_CAPSLOCK, { KEY_CAPSLOCK }},
{ KE_IGNORE, UNIWILL_OSD_NUMLOCK, { KEY_NUMLOCK }},
/* Reported when the user locks/unlocks the super key */
{ KE_IGNORE, UNIWILL_OSD_SUPER_KEY_LOCK_ENABLE, { KEY_UNKNOWN }},
{ KE_IGNORE, UNIWILL_OSD_SUPER_KEY_LOCK_DISABLE, { KEY_UNKNOWN }},
/* Optional, might not be reported by all devices */
{ KE_IGNORE, UNIWILL_OSD_SUPER_KEY_LOCK_CHANGED, { KEY_UNKNOWN }},
/* Reported in manual mode when toggling the airplane mode status */
{ KE_KEY, UNIWILL_OSD_RFKILL, { KEY_RFKILL }},
{ KE_IGNORE, UNIWILL_OSD_RADIOON, { KEY_UNKNOWN }},
{ KE_IGNORE, UNIWILL_OSD_RADIOOFF, { KEY_UNKNOWN }},
/* Reported when user wants to cycle the platform profile */
{ KE_KEY, UNIWILL_OSD_PERFORMANCE_MODE_TOGGLE, { KEY_F14 }},
/* Reported when the user wants to adjust the brightness of the keyboard */
{ KE_KEY, UNIWILL_OSD_KBDILLUMDOWN, { KEY_KBDILLUMDOWN }},
{ KE_KEY, UNIWILL_OSD_KBDILLUMUP, { KEY_KBDILLUMUP }},
/* Reported when the user wants to toggle the microphone mute status */
{ KE_KEY, UNIWILL_OSD_MIC_MUTE, { KEY_MICMUTE }},
/* Reported when the user wants to toggle the mute status */
{ KE_IGNORE, UNIWILL_OSD_MUTE, { KEY_MUTE }},
/* Reported when the user locks/unlocks the Fn key */
{ KE_IGNORE, UNIWILL_OSD_FN_LOCK, { KEY_FN_ESC }},
/* Reported when the user wants to toggle the brightness of the keyboard */
{ KE_KEY, UNIWILL_OSD_KBDILLUMTOGGLE, { KEY_KBDILLUMTOGGLE }},
{ KE_KEY, UNIWILL_OSD_KB_LED_LEVEL0, { KEY_KBDILLUMTOGGLE }},
{ KE_KEY, UNIWILL_OSD_KB_LED_LEVEL1, { KEY_KBDILLUMTOGGLE }},
{ KE_KEY, UNIWILL_OSD_KB_LED_LEVEL2, { KEY_KBDILLUMTOGGLE }},
{ KE_KEY, UNIWILL_OSD_KB_LED_LEVEL3, { KEY_KBDILLUMTOGGLE }},
{ KE_KEY, UNIWILL_OSD_KB_LED_LEVEL4, { KEY_KBDILLUMTOGGLE }},
/* FIXME: find out the exact meaning of those events */
{ KE_IGNORE, UNIWILL_OSD_BAT_CHARGE_FULL_24_H, { KEY_UNKNOWN }},
{ KE_IGNORE, UNIWILL_OSD_BAT_ERM_UPDATE, { KEY_UNKNOWN }},
/* Reported when the user wants to toggle the benchmark mode status */
{ KE_IGNORE, UNIWILL_OSD_BENCHMARK_MODE_TOGGLE, { KEY_UNKNOWN }},
/* Reported when the user wants to toggle the webcam */
{ KE_IGNORE, UNIWILL_OSD_WEBCAM_TOGGLE, { KEY_UNKNOWN }},
{ KE_END }
};
static int uniwill_ec_reg_write(void *context, unsigned int reg, unsigned int val)
{
union acpi_object params[2] = {
{
.integer = {
.type = ACPI_TYPE_INTEGER,
.value = reg,
},
},
{
.integer = {
.type = ACPI_TYPE_INTEGER,
.value = val,
},
},
};
struct uniwill_data *data = context;
struct acpi_object_list input = {
.count = ARRAY_SIZE(params),
.pointer = params,
};
acpi_status status;
status = acpi_evaluate_object(data->handle, "ECRW", &input, NULL);
if (ACPI_FAILURE(status))
return -EIO;
usleep_range(UNIWILL_EC_DELAY_US, UNIWILL_EC_DELAY_US * 2);
return 0;
}
static int uniwill_ec_reg_read(void *context, unsigned int reg, unsigned int *val)
{
union acpi_object params[1] = {
{
.integer = {
.type = ACPI_TYPE_INTEGER,
.value = reg,
},
},
};
struct uniwill_data *data = context;
struct acpi_object_list input = {
.count = ARRAY_SIZE(params),
.pointer = params,
};
unsigned long long output;
acpi_status status;
status = acpi_evaluate_integer(data->handle, "ECRR", &input, &output);
if (ACPI_FAILURE(status))
return -EIO;
if (output > U8_MAX)
return -ENXIO;
usleep_range(UNIWILL_EC_DELAY_US, UNIWILL_EC_DELAY_US * 2);
*val = output;
return 0;
}
static const struct regmap_bus uniwill_ec_bus = {
.reg_write = uniwill_ec_reg_write,
.reg_read = uniwill_ec_reg_read,
.reg_format_endian_default = REGMAP_ENDIAN_LITTLE,
.val_format_endian_default = REGMAP_ENDIAN_LITTLE,
};
static bool uniwill_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case EC_ADDR_AP_OEM:
case EC_ADDR_LIGHTBAR_AC_CTRL:
case EC_ADDR_LIGHTBAR_AC_RED:
case EC_ADDR_LIGHTBAR_AC_GREEN:
case EC_ADDR_LIGHTBAR_AC_BLUE:
case EC_ADDR_BIOS_OEM:
case EC_ADDR_TRIGGER:
case EC_ADDR_OEM_4:
case EC_ADDR_CHARGE_CTRL:
case EC_ADDR_LIGHTBAR_BAT_CTRL:
case EC_ADDR_LIGHTBAR_BAT_RED:
case EC_ADDR_LIGHTBAR_BAT_GREEN:
case EC_ADDR_LIGHTBAR_BAT_BLUE:
return true;
default:
return false;
}
}
static bool uniwill_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case EC_ADDR_CPU_TEMP:
case EC_ADDR_GPU_TEMP:
case EC_ADDR_MAIN_FAN_RPM_1:
case EC_ADDR_MAIN_FAN_RPM_2:
case EC_ADDR_SECOND_FAN_RPM_1:
case EC_ADDR_SECOND_FAN_RPM_2:
case EC_ADDR_BAT_ALERT:
case EC_ADDR_PROJECT_ID:
case EC_ADDR_AP_OEM:
case EC_ADDR_LIGHTBAR_AC_CTRL:
case EC_ADDR_LIGHTBAR_AC_RED:
case EC_ADDR_LIGHTBAR_AC_GREEN:
case EC_ADDR_LIGHTBAR_AC_BLUE:
case EC_ADDR_BIOS_OEM:
case EC_ADDR_PWM_1:
case EC_ADDR_PWM_2:
case EC_ADDR_TRIGGER:
case EC_ADDR_SWITCH_STATUS:
case EC_ADDR_OEM_4:
case EC_ADDR_CHARGE_CTRL:
case EC_ADDR_LIGHTBAR_BAT_CTRL:
case EC_ADDR_LIGHTBAR_BAT_RED:
case EC_ADDR_LIGHTBAR_BAT_GREEN:
case EC_ADDR_LIGHTBAR_BAT_BLUE:
return true;
default:
return false;
}
}
static bool uniwill_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case EC_ADDR_CPU_TEMP:
case EC_ADDR_GPU_TEMP:
case EC_ADDR_MAIN_FAN_RPM_1:
case EC_ADDR_MAIN_FAN_RPM_2:
case EC_ADDR_SECOND_FAN_RPM_1:
case EC_ADDR_SECOND_FAN_RPM_2:
case EC_ADDR_BAT_ALERT:
case EC_ADDR_PWM_1:
case EC_ADDR_PWM_2:
case EC_ADDR_TRIGGER:
case EC_ADDR_SWITCH_STATUS:
case EC_ADDR_CHARGE_CTRL:
return true;
default:
return false;
}
}
static const struct regmap_config uniwill_ec_config = {
.reg_bits = 16,
.val_bits = 8,
.writeable_reg = uniwill_writeable_reg,
.readable_reg = uniwill_readable_reg,
.volatile_reg = uniwill_volatile_reg,
.can_sleep = true,
.max_register = 0xFFF,
.cache_type = REGCACHE_MAPLE,
.use_single_read = true,
.use_single_write = true,
};
static ssize_t fn_lock_toggle_enable_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct uniwill_data *data = dev_get_drvdata(dev);
unsigned int value;
bool enable;
int ret;
ret = kstrtobool(buf, &enable);
if (ret < 0)
return ret;
if (enable)
value = FN_LOCK_STATUS;
else
value = 0;
ret = regmap_update_bits(data->regmap, EC_ADDR_BIOS_OEM, FN_LOCK_STATUS, value);
if (ret < 0)
return ret;
return count;
}
static ssize_t fn_lock_toggle_enable_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct uniwill_data *data = dev_get_drvdata(dev);
unsigned int value;
int ret;
ret = regmap_read(data->regmap, EC_ADDR_BIOS_OEM, &value);
if (ret < 0)
return ret;
return sysfs_emit(buf, "%d\n", !!(value & FN_LOCK_STATUS));
}
static DEVICE_ATTR_RW(fn_lock_toggle_enable);
static ssize_t super_key_toggle_enable_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct uniwill_data *data = dev_get_drvdata(dev);
unsigned int value;
bool enable;
int ret;
ret = kstrtobool(buf, &enable);
if (ret < 0)
return ret;
guard(mutex)(&data->super_key_lock);
ret = regmap_read(data->regmap, EC_ADDR_SWITCH_STATUS, &value);
if (ret < 0)
return ret;
/*
* We can only toggle the super key lock, so we return early if the setting
* is already in the correct state.
*/
if (enable == !(value & SUPER_KEY_LOCK_STATUS))
return count;
ret = regmap_write_bits(data->regmap, EC_ADDR_TRIGGER, TRIGGER_SUPER_KEY_LOCK,
TRIGGER_SUPER_KEY_LOCK);
if (ret < 0)
return ret;
return count;
}
static ssize_t super_key_toggle_enable_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct uniwill_data *data = dev_get_drvdata(dev);
unsigned int value;
int ret;
ret = regmap_read(data->regmap, EC_ADDR_SWITCH_STATUS, &value);
if (ret < 0)
return ret;
return sysfs_emit(buf, "%d\n", !(value & SUPER_KEY_LOCK_STATUS));
}
static DEVICE_ATTR_RW(super_key_toggle_enable);
static ssize_t touchpad_toggle_enable_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct uniwill_data *data = dev_get_drvdata(dev);
unsigned int value;
bool enable;
int ret;
ret = kstrtobool(buf, &enable);
if (ret < 0)
return ret;
if (enable)
value = 0;
else
value = TOUCHPAD_TOGGLE_OFF;
ret = regmap_update_bits(data->regmap, EC_ADDR_OEM_4, TOUCHPAD_TOGGLE_OFF, value);
if (ret < 0)
return ret;
return count;
}
static ssize_t touchpad_toggle_enable_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct uniwill_data *data = dev_get_drvdata(dev);
unsigned int value;
int ret;
ret = regmap_read(data->regmap, EC_ADDR_OEM_4, &value);
if (ret < 0)
return ret;
return sysfs_emit(buf, "%d\n", !(value & TOUCHPAD_TOGGLE_OFF));
}
static DEVICE_ATTR_RW(touchpad_toggle_enable);
static ssize_t rainbow_animation_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct uniwill_data *data = dev_get_drvdata(dev);
unsigned int value;
bool enable;
int ret;
ret = kstrtobool(buf, &enable);
if (ret < 0)
return ret;
if (enable)
value = LIGHTBAR_WELCOME;
else
value = 0;
guard(mutex)(&data->led_lock);
ret = regmap_update_bits(data->regmap, EC_ADDR_LIGHTBAR_AC_CTRL, LIGHTBAR_WELCOME, value);
if (ret < 0)
return ret;
ret = regmap_update_bits(data->regmap, EC_ADDR_LIGHTBAR_BAT_CTRL, LIGHTBAR_WELCOME, value);
if (ret < 0)
return ret;
return count;
}
static ssize_t rainbow_animation_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct uniwill_data *data = dev_get_drvdata(dev);
unsigned int value;
int ret;
ret = regmap_read(data->regmap, EC_ADDR_LIGHTBAR_AC_CTRL, &value);
if (ret < 0)
return ret;
return sysfs_emit(buf, "%d\n", !!(value & LIGHTBAR_WELCOME));
}
static DEVICE_ATTR_RW(rainbow_animation);
static ssize_t breathing_in_suspend_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct uniwill_data *data = dev_get_drvdata(dev);
unsigned int value;
bool enable;
int ret;
ret = kstrtobool(buf, &enable);
if (ret < 0)
return ret;
if (enable)
value = 0;
else
value = LIGHTBAR_S3_OFF;
/* We only access a single register here, so we do not need to use data->led_lock */
ret = regmap_update_bits(data->regmap, EC_ADDR_LIGHTBAR_AC_CTRL, LIGHTBAR_S3_OFF, value);
if (ret < 0)
return ret;
return count;
}
static ssize_t breathing_in_suspend_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct uniwill_data *data = dev_get_drvdata(dev);
unsigned int value;
int ret;
ret = regmap_read(data->regmap, EC_ADDR_LIGHTBAR_AC_CTRL, &value);
if (ret < 0)
return ret;
return sysfs_emit(buf, "%d\n", !(value & LIGHTBAR_S3_OFF));
}
static DEVICE_ATTR_RW(breathing_in_suspend);
static struct attribute *uniwill_attrs[] = {
/* Keyboard-related */
&dev_attr_fn_lock_toggle_enable.attr,
&dev_attr_super_key_toggle_enable.attr,
&dev_attr_touchpad_toggle_enable.attr,
/* Lightbar-related */
&dev_attr_rainbow_animation.attr,
&dev_attr_breathing_in_suspend.attr,
NULL
};
static umode_t uniwill_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n)
{
if (attr == &dev_attr_fn_lock_toggle_enable.attr) {
if (supported_features & UNIWILL_FEATURE_FN_LOCK_TOGGLE)
return attr->mode;
}
if (attr == &dev_attr_super_key_toggle_enable.attr) {
if (supported_features & UNIWILL_FEATURE_SUPER_KEY_TOGGLE)
return attr->mode;
}
if (attr == &dev_attr_touchpad_toggle_enable.attr) {
if (supported_features & UNIWILL_FEATURE_TOUCHPAD_TOGGLE)
return attr->mode;
}
if (attr == &dev_attr_rainbow_animation.attr ||
attr == &dev_attr_breathing_in_suspend.attr) {
if (supported_features & UNIWILL_FEATURE_LIGHTBAR)
return attr->mode;
}
return 0;
}
static const struct attribute_group uniwill_group = {
.is_visible = uniwill_attr_is_visible,
.attrs = uniwill_attrs,
};
static const struct attribute_group *uniwill_groups[] = {
&uniwill_group,
NULL
};
static int uniwill_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel,
long *val)
{
struct uniwill_data *data = dev_get_drvdata(dev);
unsigned int value;
__be16 rpm;
int ret;
switch (type) {
case hwmon_temp:
switch (channel) {
case 0:
ret = regmap_read(data->regmap, EC_ADDR_CPU_TEMP, &value);
break;
case 1:
ret = regmap_read(data->regmap, EC_ADDR_GPU_TEMP, &value);
break;
default:
return -EOPNOTSUPP;
}
if (ret < 0)
return ret;
*val = value * MILLIDEGREE_PER_DEGREE;
return 0;
case hwmon_fan:
switch (channel) {
case 0:
ret = regmap_bulk_read(data->regmap, EC_ADDR_MAIN_FAN_RPM_1, &rpm,
sizeof(rpm));
break;
case 1:
ret = regmap_bulk_read(data->regmap, EC_ADDR_SECOND_FAN_RPM_1, &rpm,
sizeof(rpm));
break;
default:
return -EOPNOTSUPP;
}
if (ret < 0)
return ret;
*val = be16_to_cpu(rpm);
return 0;
case hwmon_pwm:
switch (channel) {
case 0:
ret = regmap_read(data->regmap, EC_ADDR_PWM_1, &value);
break;
case 1:
ret = regmap_read(data->regmap, EC_ADDR_PWM_2, &value);
break;
default:
return -EOPNOTSUPP;
}
if (ret < 0)
return ret;
*val = fixp_linear_interpolate(0, 0, PWM_MAX, U8_MAX, value);
return 0;
default:
return -EOPNOTSUPP;
}
}
static int uniwill_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr,
int channel, const char **str)
{
switch (type) {
case hwmon_temp:
*str = uniwill_temp_labels[channel];
return 0;
case hwmon_fan:
*str = uniwill_fan_labels[channel];
return 0;
default:
return -EOPNOTSUPP;
}
}
static const struct hwmon_ops uniwill_ops = {
.visible = 0444,
.read = uniwill_read,
.read_string = uniwill_read_string,
};
static const struct hwmon_channel_info * const uniwill_info[] = {
HWMON_CHANNEL_INFO(chip, HWMON_C_REGISTER_TZ),
HWMON_CHANNEL_INFO(temp,
HWMON_T_INPUT | HWMON_T_LABEL,
HWMON_T_INPUT | HWMON_T_LABEL),
HWMON_CHANNEL_INFO(fan,
HWMON_F_INPUT | HWMON_F_LABEL,
HWMON_F_INPUT | HWMON_F_LABEL),
HWMON_CHANNEL_INFO(pwm,
HWMON_PWM_INPUT,
HWMON_PWM_INPUT),
NULL
};
static const struct hwmon_chip_info uniwill_chip_info = {
.ops = &uniwill_ops,
.info = uniwill_info,
};
static int uniwill_hwmon_init(struct uniwill_data *data)
{
struct device *hdev;
if (!(supported_features & UNIWILL_FEATURE_HWMON))
return 0;
hdev = devm_hwmon_device_register_with_info(data->dev, "uniwill", data,
&uniwill_chip_info, NULL);
return PTR_ERR_OR_ZERO(hdev);
}
static const unsigned int uniwill_led_channel_to_bat_reg[LED_CHANNELS] = {
EC_ADDR_LIGHTBAR_BAT_RED,
EC_ADDR_LIGHTBAR_BAT_GREEN,
EC_ADDR_LIGHTBAR_BAT_BLUE,
};
static const unsigned int uniwill_led_channel_to_ac_reg[LED_CHANNELS] = {
EC_ADDR_LIGHTBAR_AC_RED,
EC_ADDR_LIGHTBAR_AC_GREEN,
EC_ADDR_LIGHTBAR_AC_BLUE,
};
static int uniwill_led_brightness_set(struct led_classdev *led_cdev, enum led_brightness brightness)
{
struct led_classdev_mc *led_mc_cdev = lcdev_to_mccdev(led_cdev);
struct uniwill_data *data = container_of(led_mc_cdev, struct uniwill_data, led_mc_cdev);
unsigned int value;
int ret;
ret = led_mc_calc_color_components(led_mc_cdev, brightness);
if (ret < 0)
return ret;
guard(mutex)(&data->led_lock);
for (int i = 0; i < LED_CHANNELS; i++) {
/* Prevent the brightness values from overflowing */
value = min(LED_MAX_BRIGHTNESS, data->led_mc_subled_info[i].brightness);
ret = regmap_write(data->regmap, uniwill_led_channel_to_ac_reg[i], value);
if (ret < 0)
return ret;
ret = regmap_write(data->regmap, uniwill_led_channel_to_bat_reg[i], value);
if (ret < 0)
return ret;
}
if (brightness)
value = 0;
else
value = LIGHTBAR_S0_OFF;
ret = regmap_update_bits(data->regmap, EC_ADDR_LIGHTBAR_AC_CTRL, LIGHTBAR_S0_OFF, value);
if (ret < 0)
return ret;
return regmap_update_bits(data->regmap, EC_ADDR_LIGHTBAR_BAT_CTRL, LIGHTBAR_S0_OFF, value);
}
#define LIGHTBAR_MASK (LIGHTBAR_APP_EXISTS | LIGHTBAR_S0_OFF | LIGHTBAR_S3_OFF | LIGHTBAR_WELCOME)
static int uniwill_led_init(struct uniwill_data *data)
{
struct led_init_data init_data = {
.devicename = DRIVER_NAME,
.default_label = "multicolor:" LED_FUNCTION_STATUS,
.devname_mandatory = true,
};
unsigned int color_indices[3] = {
LED_COLOR_ID_RED,
LED_COLOR_ID_GREEN,
LED_COLOR_ID_BLUE,
};
unsigned int value;
int ret;
if (!(supported_features & UNIWILL_FEATURE_LIGHTBAR))
return 0;
ret = devm_mutex_init(data->dev, &data->led_lock);
if (ret < 0)
return ret;
/*
* The EC has separate lightbar settings for AC and battery mode,
* so we have to ensure that both settings are the same.
*/
ret = regmap_read(data->regmap, EC_ADDR_LIGHTBAR_AC_CTRL, &value);
if (ret < 0)
return ret;
value |= LIGHTBAR_APP_EXISTS;
ret = regmap_write(data->regmap, EC_ADDR_LIGHTBAR_AC_CTRL, value);
if (ret < 0)
return ret;
/*
* The breathing animation during suspend is not supported when
* running on battery power.
*/
value |= LIGHTBAR_S3_OFF;
ret = regmap_update_bits(data->regmap, EC_ADDR_LIGHTBAR_BAT_CTRL, LIGHTBAR_MASK, value);
if (ret < 0)
return ret;
data->led_mc_cdev.led_cdev.color = LED_COLOR_ID_MULTI;
data->led_mc_cdev.led_cdev.max_brightness = LED_MAX_BRIGHTNESS;
data->led_mc_cdev.led_cdev.flags = LED_REJECT_NAME_CONFLICT;
data->led_mc_cdev.led_cdev.brightness_set_blocking = uniwill_led_brightness_set;
if (value & LIGHTBAR_S0_OFF)
data->led_mc_cdev.led_cdev.brightness = 0;
else
data->led_mc_cdev.led_cdev.brightness = LED_MAX_BRIGHTNESS;
for (int i = 0; i < LED_CHANNELS; i++) {
data->led_mc_subled_info[i].color_index = color_indices[i];
ret = regmap_read(data->regmap, uniwill_led_channel_to_ac_reg[i], &value);
if (ret < 0)
return ret;
/*
* Make sure that the initial intensity value is not greater than
* the maximum brightness.
*/
value = min(LED_MAX_BRIGHTNESS, value);
ret = regmap_write(data->regmap, uniwill_led_channel_to_ac_reg[i], value);
if (ret < 0)
return ret;
ret = regmap_write(data->regmap, uniwill_led_channel_to_bat_reg[i], value);
if (ret < 0)
return ret;
data->led_mc_subled_info[i].intensity = value;
data->led_mc_subled_info[i].channel = i;
}
data->led_mc_cdev.subled_info = data->led_mc_subled_info;
data->led_mc_cdev.num_colors = LED_CHANNELS;
return devm_led_classdev_multicolor_register_ext(data->dev, &data->led_mc_cdev,
&init_data);
}
static int uniwill_get_property(struct power_supply *psy, const struct power_supply_ext *ext,
void *drvdata, enum power_supply_property psp,
union power_supply_propval *val)
{
struct uniwill_data *data = drvdata;
union power_supply_propval prop;
unsigned int regval;
int ret;
switch (psp) {
case POWER_SUPPLY_PROP_HEALTH:
ret = power_supply_get_property_direct(psy, POWER_SUPPLY_PROP_PRESENT, &prop);
if (ret < 0)
return ret;
if (!prop.intval) {
val->intval = POWER_SUPPLY_HEALTH_NO_BATTERY;
return 0;
}
ret = power_supply_get_property_direct(psy, POWER_SUPPLY_PROP_STATUS, &prop);
if (ret < 0)
return ret;
if (prop.intval == POWER_SUPPLY_STATUS_UNKNOWN) {
val->intval = POWER_SUPPLY_HEALTH_UNKNOWN;
return 0;
}
ret = regmap_read(data->regmap, EC_ADDR_BAT_ALERT, &regval);
if (ret < 0)
return ret;
if (regval) {
/* Charging issue */
val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE;
return 0;
}
val->intval = POWER_SUPPLY_HEALTH_GOOD;
return 0;
case POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD:
ret = regmap_read(data->regmap, EC_ADDR_CHARGE_CTRL, &regval);
if (ret < 0)
return ret;
val->intval = clamp_val(FIELD_GET(CHARGE_CTRL_MASK, regval), 0, 100);
return 0;
default:
return -EINVAL;
}
}
static int uniwill_set_property(struct power_supply *psy, const struct power_supply_ext *ext,
void *drvdata, enum power_supply_property psp,
const union power_supply_propval *val)
{
struct uniwill_data *data = drvdata;
switch (psp) {
case POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD:
if (val->intval < 1 || val->intval > 100)
return -EINVAL;
return regmap_update_bits(data->regmap, EC_ADDR_CHARGE_CTRL, CHARGE_CTRL_MASK,
val->intval);
default:
return -EINVAL;
}
}
static int uniwill_property_is_writeable(struct power_supply *psy,
const struct power_supply_ext *ext, void *drvdata,
enum power_supply_property psp)
{
if (psp == POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD)
return true;
return false;
}
static const enum power_supply_property uniwill_properties[] = {
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD,
};
static const struct power_supply_ext uniwill_extension = {
.name = DRIVER_NAME,
.properties = uniwill_properties,
.num_properties = ARRAY_SIZE(uniwill_properties),
.get_property = uniwill_get_property,
.set_property = uniwill_set_property,
.property_is_writeable = uniwill_property_is_writeable,
};
static int uniwill_add_battery(struct power_supply *battery, struct acpi_battery_hook *hook)
{
struct uniwill_data *data = container_of(hook, struct uniwill_data, hook);
struct uniwill_battery_entry *entry;
int ret;
entry = kzalloc(sizeof(*entry), GFP_KERNEL);
if (!entry)
return -ENOMEM;
ret = power_supply_register_extension(battery, &uniwill_extension, data->dev, data);
if (ret < 0) {
kfree(entry);
return ret;
}
guard(mutex)(&data->battery_lock);
entry->battery = battery;
list_add(&entry->head, &data->batteries);
return 0;
}
static int uniwill_remove_battery(struct power_supply *battery, struct acpi_battery_hook *hook)
{
struct uniwill_data *data = container_of(hook, struct uniwill_data, hook);
struct uniwill_battery_entry *entry, *tmp;
scoped_guard(mutex, &data->battery_lock) {
list_for_each_entry_safe(entry, tmp, &data->batteries, head) {
if (entry->battery == battery) {
list_del(&entry->head);
kfree(entry);
break;
}
}
}
power_supply_unregister_extension(battery, &uniwill_extension);
return 0;
}
static int uniwill_battery_init(struct uniwill_data *data)
{
int ret;
if (!(supported_features & UNIWILL_FEATURE_BATTERY))
return 0;
ret = devm_mutex_init(data->dev, &data->battery_lock);
if (ret < 0)
return ret;
INIT_LIST_HEAD(&data->batteries);
data->hook.name = "Uniwill Battery Extension";
data->hook.add_battery = uniwill_add_battery;
data->hook.remove_battery = uniwill_remove_battery;
return devm_battery_hook_register(data->dev, &data->hook);
}
static int uniwill_notifier_call(struct notifier_block *nb, unsigned long action, void *dummy)
{
struct uniwill_data *data = container_of(nb, struct uniwill_data, nb);
struct uniwill_battery_entry *entry;
switch (action) {
case UNIWILL_OSD_BATTERY_ALERT:
mutex_lock(&data->battery_lock);
list_for_each_entry(entry, &data->batteries, head) {
power_supply_changed(entry->battery);
}
mutex_unlock(&data->battery_lock);
return NOTIFY_OK;
case UNIWILL_OSD_DC_ADAPTER_CHANGED:
/* noop for the time being, will change once charging priority
* gets implemented.
*/
return NOTIFY_OK;
default:
mutex_lock(&data->input_lock);
sparse_keymap_report_event(data->input_device, action, 1, true);
mutex_unlock(&data->input_lock);
return NOTIFY_OK;
}
}
static int uniwill_input_init(struct uniwill_data *data)
{
int ret;
ret = devm_mutex_init(data->dev, &data->input_lock);
if (ret < 0)
return ret;
data->input_device = devm_input_allocate_device(data->dev);
if (!data->input_device)
return -ENOMEM;
ret = sparse_keymap_setup(data->input_device, uniwill_keymap, NULL);
if (ret < 0)
return ret;
data->input_device->name = "Uniwill WMI hotkeys";
data->input_device->phys = "wmi/input0";
data->input_device->id.bustype = BUS_HOST;
ret = input_register_device(data->input_device);
if (ret < 0)
return ret;
data->nb.notifier_call = uniwill_notifier_call;
return devm_uniwill_wmi_register_notifier(data->dev, &data->nb);
}
static void uniwill_disable_manual_control(void *context)
{
struct uniwill_data *data = context;
regmap_clear_bits(data->regmap, EC_ADDR_AP_OEM, ENABLE_MANUAL_CTRL);
}
static int uniwill_ec_init(struct uniwill_data *data)
{
unsigned int value;
int ret;
ret = regmap_read(data->regmap, EC_ADDR_PROJECT_ID, &value);
if (ret < 0)
return ret;
dev_dbg(data->dev, "Project ID: %u\n", value);
ret = regmap_set_bits(data->regmap, EC_ADDR_AP_OEM, ENABLE_MANUAL_CTRL);
if (ret < 0)
return ret;
return devm_add_action_or_reset(data->dev, uniwill_disable_manual_control, data);
}
static int uniwill_probe(struct platform_device *pdev)
{
struct uniwill_data *data;
struct regmap *regmap;
acpi_handle handle;
int ret;
handle = ACPI_HANDLE(&pdev->dev);
if (!handle)
return -ENODEV;
data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->dev = &pdev->dev;
data->handle = handle;
platform_set_drvdata(pdev, data);
regmap = devm_regmap_init(&pdev->dev, &uniwill_ec_bus, data, &uniwill_ec_config);
if (IS_ERR(regmap))
return PTR_ERR(regmap);
data->regmap = regmap;
ret = devm_mutex_init(&pdev->dev, &data->super_key_lock);
if (ret < 0)
return ret;
ret = uniwill_ec_init(data);
if (ret < 0)
return ret;
ret = uniwill_battery_init(data);
if (ret < 0)
return ret;
ret = uniwill_led_init(data);
if (ret < 0)
return ret;
ret = uniwill_hwmon_init(data);
if (ret < 0)
return ret;
return uniwill_input_init(data);
}
static void uniwill_shutdown(struct platform_device *pdev)
{
struct uniwill_data *data = platform_get_drvdata(pdev);
regmap_clear_bits(data->regmap, EC_ADDR_AP_OEM, ENABLE_MANUAL_CTRL);
}
static int uniwill_suspend_keyboard(struct uniwill_data *data)
{
if (!(supported_features & UNIWILL_FEATURE_SUPER_KEY_TOGGLE))
return 0;
/*
* The EC_ADDR_SWITCH_STATUS is marked as volatile, so we have to restore it
* ourselves.
*/
return regmap_read(data->regmap, EC_ADDR_SWITCH_STATUS, &data->last_switch_status);
}
static int uniwill_suspend_battery(struct uniwill_data *data)
{
if (!(supported_features & UNIWILL_FEATURE_BATTERY))
return 0;
/*
* Save the current charge limit in order to restore it during resume.
* We cannot use the regmap code for that since this register needs to
* be declared as volatile due to CHARGE_CTRL_REACHED.
*/
return regmap_read(data->regmap, EC_ADDR_CHARGE_CTRL, &data->last_charge_ctrl);
}
static int uniwill_suspend(struct device *dev)
{
struct uniwill_data *data = dev_get_drvdata(dev);
int ret;
ret = uniwill_suspend_keyboard(data);
if (ret < 0)
return ret;
ret = uniwill_suspend_battery(data);
if (ret < 0)
return ret;
regcache_cache_only(data->regmap, true);
regcache_mark_dirty(data->regmap);
return 0;
}
static int uniwill_resume_keyboard(struct uniwill_data *data)
{
unsigned int value;
int ret;
if (!(supported_features & UNIWILL_FEATURE_SUPER_KEY_TOGGLE))
return 0;
ret = regmap_read(data->regmap, EC_ADDR_SWITCH_STATUS, &value);
if (ret < 0)
return ret;
if ((data->last_switch_status & SUPER_KEY_LOCK_STATUS) == (value & SUPER_KEY_LOCK_STATUS))
return 0;
return regmap_write_bits(data->regmap, EC_ADDR_TRIGGER, TRIGGER_SUPER_KEY_LOCK,
TRIGGER_SUPER_KEY_LOCK);
}
static int uniwill_resume_battery(struct uniwill_data *data)
{
if (!(supported_features & UNIWILL_FEATURE_BATTERY))
return 0;
return regmap_update_bits(data->regmap, EC_ADDR_CHARGE_CTRL, CHARGE_CTRL_MASK,
data->last_charge_ctrl);
}
static int uniwill_resume(struct device *dev)
{
struct uniwill_data *data = dev_get_drvdata(dev);
int ret;
regcache_cache_only(data->regmap, false);
ret = regcache_sync(data->regmap);
if (ret < 0)
return ret;
ret = uniwill_resume_keyboard(data);
if (ret < 0)
return ret;
return uniwill_resume_battery(data);
}
static DEFINE_SIMPLE_DEV_PM_OPS(uniwill_pm_ops, uniwill_suspend, uniwill_resume);
/*
* We only use the DMI table for auoloading because the ACPI device itself
* does not guarantee that the underlying EC implementation is supported.
*/
static const struct acpi_device_id uniwill_id_table[] = {
{ "INOU0000" },
{ },
};
static struct platform_driver uniwill_driver = {
.driver = {
.name = DRIVER_NAME,
.dev_groups = uniwill_groups,
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.acpi_match_table = uniwill_id_table,
.pm = pm_sleep_ptr(&uniwill_pm_ops),
},
.probe = uniwill_probe,
.shutdown = uniwill_shutdown,
};
static const struct dmi_system_id uniwill_dmi_table[] __initconst = {
{
.ident = "XMG FUSION 15",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "SchenkerTechnologiesGmbH"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "LAPQC71A"),
},
},
{
.ident = "XMG FUSION 15",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "SchenkerTechnologiesGmbH"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "LAPQC71B"),
},
},
{
.ident = "Intel NUC x15",
.matches = {
DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Intel(R) Client Systems"),
DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "LAPAC71H"),
},
.driver_data = (void *)(UNIWILL_FEATURE_FN_LOCK_TOGGLE |
UNIWILL_FEATURE_SUPER_KEY_TOGGLE |
UNIWILL_FEATURE_TOUCHPAD_TOGGLE |
UNIWILL_FEATURE_BATTERY |
UNIWILL_FEATURE_HWMON),
},
{
.ident = "Intel NUC x15",
.matches = {
DMI_EXACT_MATCH(DMI_SYS_VENDOR, "Intel(R) Client Systems"),
DMI_EXACT_MATCH(DMI_PRODUCT_NAME, "LAPKC71F"),
},
.driver_data = (void *)(UNIWILL_FEATURE_FN_LOCK_TOGGLE |
UNIWILL_FEATURE_SUPER_KEY_TOGGLE |
UNIWILL_FEATURE_TOUCHPAD_TOGGLE |
UNIWILL_FEATURE_LIGHTBAR |
UNIWILL_FEATURE_BATTERY |
UNIWILL_FEATURE_HWMON),
},
{
.ident = "TUXEDO InfinityBook Pro 14 Gen6 Intel",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "PHxTxX1"),
},
},
{
.ident = "TUXEDO InfinityBook Pro 14 Gen6 Intel",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "PHxTQx1"),
},
},
{
.ident = "TUXEDO InfinityBook Pro 14/16 Gen7 Intel",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "PHxARX1_PHxAQF1"),
},
},
{
.ident = "TUXEDO InfinityBook Pro 16 Gen7 Intel/Commodore Omnia-Book Pro Gen 7",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "PH6AG01_PH6AQ71_PH6AQI1"),
},
},
{
.ident = "TUXEDO InfinityBook Pro 14/16 Gen8 Intel/Commodore Omnia-Book Pro Gen 8",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "PH4PRX1_PH6PRX1"),
},
},
{
.ident = "TUXEDO InfinityBook Pro 14 Gen8 Intel/Commodore Omnia-Book Pro Gen 8",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "PH4PG31"),
},
},
{
.ident = "TUXEDO InfinityBook Pro 16 Gen8 Intel",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "PH6PG01_PH6PG71"),
},
},
{
.ident = "TUXEDO InfinityBook Pro 14/15 Gen9 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "GXxHRXx"),
},
},
{
.ident = "TUXEDO InfinityBook Pro 14/15 Gen9 Intel/Commodore Omnia-Book 15 Gen9",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "GXxMRXx"),
},
},
{
.ident = "TUXEDO InfinityBook Pro 14/15 Gen10 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "XxHP4NAx"),
},
},
{
.ident = "TUXEDO InfinityBook Pro 14/15 Gen10 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "XxKK4NAx_XxSP4NAx"),
},
},
{
.ident = "TUXEDO InfinityBook Pro 15 Gen10 Intel",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "XxAR4NAx"),
},
},
{
.ident = "TUXEDO InfinityBook Max 15 Gen10 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "X5KK45xS_X5SP45xS"),
},
},
{
.ident = "TUXEDO InfinityBook Max 16 Gen10 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "X6HP45xU"),
},
},
{
.ident = "TUXEDO InfinityBook Max 16 Gen10 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "X6KK45xU_X6SP45xU"),
},
},
{
.ident = "TUXEDO InfinityBook Max 15 Gen10 Intel",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "X5AR45xS"),
},
},
{
.ident = "TUXEDO InfinityBook Max 16 Gen10 Intel",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "X6AR55xU"),
},
},
{
.ident = "TUXEDO Polaris 15 Gen1 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "POLARIS1501A1650TI"),
},
},
{
.ident = "TUXEDO Polaris 15 Gen1 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "POLARIS1501A2060"),
},
},
{
.ident = "TUXEDO Polaris 17 Gen1 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "POLARIS1701A1650TI"),
},
},
{
.ident = "TUXEDO Polaris 17 Gen1 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "POLARIS1701A2060"),
},
},
{
.ident = "TUXEDO Polaris 15 Gen1 Intel",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "POLARIS1501I1650TI"),
},
},
{
.ident = "TUXEDO Polaris 15 Gen1 Intel",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "POLARIS1501I2060"),
},
},
{
.ident = "TUXEDO Polaris 17 Gen1 Intel",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "POLARIS1701I1650TI"),
},
},
{
.ident = "TUXEDO Polaris 17 Gen1 Intel",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "POLARIS1701I2060"),
},
},
{
.ident = "TUXEDO Trinity 15 Intel Gen1",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "TRINITY1501I"),
},
},
{
.ident = "TUXEDO Trinity 17 Intel Gen1",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "TRINITY1701I"),
},
},
{
.ident = "TUXEDO Polaris 15/17 Gen2 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "GMxMGxx"),
},
},
{
.ident = "TUXEDO Polaris 15/17 Gen2 Intel",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "GMxNGxx"),
},
},
{
.ident = "TUXEDO Stellaris/Polaris 15/17 Gen3 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "GMxZGxx"),
},
},
{
.ident = "TUXEDO Stellaris/Polaris 15/17 Gen3 Intel",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "GMxTGxx"),
},
},
{
.ident = "TUXEDO Stellaris/Polaris 15/17 Gen4 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "GMxRGxx"),
},
},
{
.ident = "TUXEDO Stellaris 15 Gen4 Intel",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "GMxAGxx"),
},
},
{
.ident = "TUXEDO Polaris 15/17 Gen5 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "GMxXGxx"),
},
},
{
.ident = "TUXEDO Stellaris 16 Gen5 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "GM6XGxX"),
},
},
{
.ident = "TUXEDO Stellaris 16/17 Gen5 Intel/Commodore ORION Gen 5",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "GMxPXxx"),
},
},
{
.ident = "TUXEDO Stellaris Slim 15 Gen6 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "GMxHGxx"),
},
},
{
.ident = "TUXEDO Stellaris Slim 15 Gen6 Intel/Commodore ORION Slim 15 Gen6",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "GM5IXxA"),
},
},
{
.ident = "TUXEDO Stellaris 16 Gen6 Intel/Commodore ORION 16 Gen6",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "GM6IXxB_MB1"),
},
},
{
.ident = "TUXEDO Stellaris 16 Gen6 Intel/Commodore ORION 16 Gen6",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "GM6IXxB_MB2"),
},
},
{
.ident = "TUXEDO Stellaris 17 Gen6 Intel/Commodore ORION 17 Gen6",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "GM7IXxN"),
},
},
{
.ident = "TUXEDO Stellaris 16 Gen7 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "X6FR5xxY"),
},
},
{
.ident = "TUXEDO Stellaris 16 Gen7 Intel",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "X6AR5xxY"),
},
},
{
.ident = "TUXEDO Stellaris 16 Gen7 Intel",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "X6AR5xxY_mLED"),
},
},
{
.ident = "TUXEDO Pulse 14 Gen1 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "PULSE1401"),
},
},
{
.ident = "TUXEDO Pulse 15 Gen1 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "PULSE1501"),
},
},
{
.ident = "TUXEDO Pulse 15 Gen2 AMD",
.matches = {
DMI_MATCH(DMI_SYS_VENDOR, "TUXEDO"),
DMI_EXACT_MATCH(DMI_BOARD_NAME, "PF5LUXG"),
},
},
{ }
};
MODULE_DEVICE_TABLE(dmi, uniwill_dmi_table);
static int __init uniwill_init(void)
{
const struct dmi_system_id *id;
int ret;
id = dmi_first_match(uniwill_dmi_table);
if (!id) {
if (!force)
return -ENODEV;
/* Assume that the device supports all features */
supported_features = UINT_MAX;
pr_warn("Loading on a potentially unsupported device\n");
} else {
supported_features = (uintptr_t)id->driver_data;
}
ret = platform_driver_register(&uniwill_driver);
if (ret < 0)
return ret;
ret = uniwill_wmi_register_driver();
if (ret < 0) {
platform_driver_unregister(&uniwill_driver);
return ret;
}
return 0;
}
module_init(uniwill_init);
static void __exit uniwill_exit(void)
{
uniwill_wmi_unregister_driver();
platform_driver_unregister(&uniwill_driver);
}
module_exit(uniwill_exit);
MODULE_AUTHOR("Armin Wolf <W_Armin@gmx.de>");
MODULE_DESCRIPTION("Uniwill notebook driver");
MODULE_LICENSE("GPL");