mirror-linux/drivers/iio/accel/adxl345_core.c

2027 lines
53 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* ADXL345 3-Axis Digital Accelerometer IIO core driver
*
* Copyright (c) 2017 Eva Rachel Retuya <eraretuya@gmail.com>
*
* Datasheet: https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/units.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/kfifo_buf.h>
#include "adxl345.h"
#define ADXL345_FIFO_BYPASS 0
#define ADXL345_FIFO_FIFO 1
#define ADXL345_FIFO_STREAM 2
#define ADXL345_DIRS 3
#define ADXL345_INT_NONE 0xff
#define ADXL345_INT1 0
#define ADXL345_INT2 1
#define ADXL345_REG_TAP_AXIS_MSK GENMASK(2, 0)
#define ADXL345_REG_TAP_SUPPRESS_MSK BIT(3)
#define ADXL345_REG_TAP_SUPPRESS BIT(3)
#define ADXL345_POWER_CTL_INACT_MSK (ADXL345_POWER_CTL_AUTO_SLEEP | ADXL345_POWER_CTL_LINK)
#define ADXL345_TAP_Z_EN BIT(0)
#define ADXL345_TAP_Y_EN BIT(1)
#define ADXL345_TAP_X_EN BIT(2)
#define ADXL345_REG_TAP_SUPPRESS BIT(3)
#define ADXL345_INACT_Z_EN BIT(0)
#define ADXL345_INACT_Y_EN BIT(1)
#define ADXL345_INACT_X_EN BIT(2)
#define ADXL345_REG_INACT_ACDC BIT(3)
#define ADXL345_ACT_INACT_NO_AXIS_EN 0x00
#define ADXL345_INACT_XYZ_EN (ADXL345_INACT_Z_EN | ADXL345_INACT_Y_EN | ADXL345_INACT_X_EN)
#define ADXL345_ACT_Z_EN BIT(4)
#define ADXL345_ACT_Y_EN BIT(5)
#define ADXL345_ACT_X_EN BIT(6)
#define ADXL345_REG_ACT_ACDC BIT(7)
#define ADXL345_ACT_XYZ_EN (ADXL345_ACT_Z_EN | ADXL345_ACT_Y_EN | ADXL345_ACT_X_EN)
#define ADXL345_COUPLING_DC 0
#define ADXL345_COUPLING_AC 1
#define ADXL345_REG_NO_ACDC 0x00
/* single/double tap */
enum adxl345_tap_type {
ADXL345_SINGLE_TAP,
ADXL345_DOUBLE_TAP,
};
static const unsigned int adxl345_tap_int_reg[] = {
[ADXL345_SINGLE_TAP] = ADXL345_INT_SINGLE_TAP,
[ADXL345_DOUBLE_TAP] = ADXL345_INT_DOUBLE_TAP,
};
enum adxl345_tap_time_type {
ADXL345_TAP_TIME_LATENT,
ADXL345_TAP_TIME_WINDOW,
ADXL345_TAP_TIME_DUR,
};
static const unsigned int adxl345_tap_time_reg[] = {
[ADXL345_TAP_TIME_LATENT] = ADXL345_REG_LATENT,
[ADXL345_TAP_TIME_WINDOW] = ADXL345_REG_WINDOW,
[ADXL345_TAP_TIME_DUR] = ADXL345_REG_DUR,
};
/* activity/inactivity */
enum adxl345_activity_type {
ADXL345_ACTIVITY,
ADXL345_INACTIVITY,
ADXL345_ACTIVITY_AC,
ADXL345_INACTIVITY_AC,
ADXL345_INACTIVITY_FF,
};
static const unsigned int adxl345_act_int_reg[] = {
[ADXL345_ACTIVITY] = ADXL345_INT_ACTIVITY,
[ADXL345_INACTIVITY] = ADXL345_INT_INACTIVITY,
[ADXL345_ACTIVITY_AC] = ADXL345_INT_ACTIVITY,
[ADXL345_INACTIVITY_AC] = ADXL345_INT_INACTIVITY,
[ADXL345_INACTIVITY_FF] = ADXL345_INT_FREE_FALL,
};
static const unsigned int adxl345_act_thresh_reg[] = {
[ADXL345_ACTIVITY] = ADXL345_REG_THRESH_ACT,
[ADXL345_INACTIVITY] = ADXL345_REG_THRESH_INACT,
[ADXL345_ACTIVITY_AC] = ADXL345_REG_THRESH_ACT,
[ADXL345_INACTIVITY_AC] = ADXL345_REG_THRESH_INACT,
[ADXL345_INACTIVITY_FF] = ADXL345_REG_THRESH_FF,
};
static const unsigned int adxl345_act_acdc_msk[] = {
[ADXL345_ACTIVITY] = ADXL345_REG_ACT_ACDC,
[ADXL345_INACTIVITY] = ADXL345_REG_INACT_ACDC,
[ADXL345_ACTIVITY_AC] = ADXL345_REG_ACT_ACDC,
[ADXL345_INACTIVITY_AC] = ADXL345_REG_INACT_ACDC,
[ADXL345_INACTIVITY_FF] = ADXL345_REG_NO_ACDC,
};
enum adxl345_odr {
ADXL345_ODR_0P10HZ = 0,
ADXL345_ODR_0P20HZ,
ADXL345_ODR_0P39HZ,
ADXL345_ODR_0P78HZ,
ADXL345_ODR_1P56HZ,
ADXL345_ODR_3P13HZ,
ADXL345_ODR_6P25HZ,
ADXL345_ODR_12P50HZ,
ADXL345_ODR_25HZ,
ADXL345_ODR_50HZ,
ADXL345_ODR_100HZ,
ADXL345_ODR_200HZ,
ADXL345_ODR_400HZ,
ADXL345_ODR_800HZ,
ADXL345_ODR_1600HZ,
ADXL345_ODR_3200HZ,
};
enum adxl345_range {
ADXL345_2G_RANGE = 0,
ADXL345_4G_RANGE,
ADXL345_8G_RANGE,
ADXL345_16G_RANGE,
};
/* Certain features recommend 12.5 Hz - 400 Hz ODR */
static const int adxl345_odr_tbl[][2] = {
[ADXL345_ODR_0P10HZ] = { 0, 97000 },
[ADXL345_ODR_0P20HZ] = { 0, 195000 },
[ADXL345_ODR_0P39HZ] = { 0, 390000 },
[ADXL345_ODR_0P78HZ] = { 0, 781000 },
[ADXL345_ODR_1P56HZ] = { 1, 562000 },
[ADXL345_ODR_3P13HZ] = { 3, 125000 },
[ADXL345_ODR_6P25HZ] = { 6, 250000 },
[ADXL345_ODR_12P50HZ] = { 12, 500000 },
[ADXL345_ODR_25HZ] = { 25, 0 },
[ADXL345_ODR_50HZ] = { 50, 0 },
[ADXL345_ODR_100HZ] = { 100, 0 },
[ADXL345_ODR_200HZ] = { 200, 0 },
[ADXL345_ODR_400HZ] = { 400, 0 },
[ADXL345_ODR_800HZ] = { 800, 0 },
[ADXL345_ODR_1600HZ] = { 1600, 0 },
[ADXL345_ODR_3200HZ] = { 3200, 0 },
};
/*
* Full resolution frequency table:
* (g * 2 * 9.80665) / (2^(resolution) - 1)
*
* resolution := 13 (full)
* g := 2|4|8|16
*
* 2g at 13bit: 0.004789
* 4g at 13bit: 0.009578
* 8g at 13bit: 0.019156
* 16g at 16bit: 0.038312
*/
static const int adxl345_fullres_range_tbl[][2] = {
[ADXL345_2G_RANGE] = { 0, 4789 },
[ADXL345_4G_RANGE] = { 0, 9578 },
[ADXL345_8G_RANGE] = { 0, 19156 },
[ADXL345_16G_RANGE] = { 0, 38312 },
};
/* scaling */
static const int adxl345_range_factor_tbl[] = {
[ADXL345_2G_RANGE] = 1,
[ADXL345_4G_RANGE] = 2,
[ADXL345_8G_RANGE] = 4,
[ADXL345_16G_RANGE] = 8,
};
struct adxl345_state {
const struct adxl345_chip_info *info;
struct regmap *regmap;
bool fifo_delay; /* delay: delay is needed for SPI */
u8 watermark;
u8 fifo_mode;
u8 inact_threshold;
u32 inact_time_ms;
u32 tap_duration_us;
u32 tap_latent_us;
u32 tap_window_us;
__le16 fifo_buf[ADXL345_DIRS * ADXL345_FIFO_SIZE + 1] __aligned(IIO_DMA_MINALIGN);
};
static const struct iio_event_spec adxl345_events[] = {
{
/* activity */
.type = IIO_EV_TYPE_MAG,
.dir = IIO_EV_DIR_RISING,
.mask_shared_by_type =
BIT(IIO_EV_INFO_ENABLE) |
BIT(IIO_EV_INFO_VALUE),
},
{
/* activity, ac bit set */
.type = IIO_EV_TYPE_MAG_ADAPTIVE,
.dir = IIO_EV_DIR_RISING,
.mask_shared_by_type =
BIT(IIO_EV_INFO_ENABLE) |
BIT(IIO_EV_INFO_VALUE),
},
{
/* single tap */
.type = IIO_EV_TYPE_GESTURE,
.dir = IIO_EV_DIR_SINGLETAP,
.mask_separate = BIT(IIO_EV_INFO_ENABLE),
.mask_shared_by_type = BIT(IIO_EV_INFO_VALUE) |
BIT(IIO_EV_INFO_TIMEOUT),
},
{
/* double tap */
.type = IIO_EV_TYPE_GESTURE,
.dir = IIO_EV_DIR_DOUBLETAP,
.mask_shared_by_type = BIT(IIO_EV_INFO_ENABLE) |
BIT(IIO_EV_INFO_RESET_TIMEOUT) |
BIT(IIO_EV_INFO_TAP2_MIN_DELAY),
},
};
#define ADXL345_CHANNEL(index, reg, axis) { \
.type = IIO_ACCEL, \
.modified = 1, \
.channel2 = IIO_MOD_##axis, \
.address = (reg), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_CALIBBIAS), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = (index), \
.scan_type = { \
.sign = 's', \
.realbits = 13, \
.storagebits = 16, \
.endianness = IIO_LE, \
}, \
.event_spec = adxl345_events, \
.num_event_specs = ARRAY_SIZE(adxl345_events), \
}
enum adxl345_chans {
chan_x, chan_y, chan_z,
};
static const struct iio_event_spec adxl345_fake_chan_events[] = {
{
/* inactivity */
.type = IIO_EV_TYPE_MAG,
.dir = IIO_EV_DIR_FALLING,
.mask_separate = BIT(IIO_EV_INFO_ENABLE),
.mask_shared_by_type =
BIT(IIO_EV_INFO_VALUE) |
BIT(IIO_EV_INFO_PERIOD),
},
{
/* inactivity, AC bit set */
.type = IIO_EV_TYPE_MAG_ADAPTIVE,
.dir = IIO_EV_DIR_FALLING,
.mask_separate = BIT(IIO_EV_INFO_ENABLE),
.mask_shared_by_type =
BIT(IIO_EV_INFO_VALUE) |
BIT(IIO_EV_INFO_PERIOD),
},
};
static const struct iio_chan_spec adxl345_channels[] = {
ADXL345_CHANNEL(0, chan_x, X),
ADXL345_CHANNEL(1, chan_y, Y),
ADXL345_CHANNEL(2, chan_z, Z),
{
.type = IIO_ACCEL,
.modified = 1,
.channel2 = IIO_MOD_X_AND_Y_AND_Z,
.scan_index = -1, /* Fake channel */
.event_spec = adxl345_fake_chan_events,
.num_event_specs = ARRAY_SIZE(adxl345_fake_chan_events),
},
};
static const unsigned long adxl345_scan_masks[] = {
BIT(chan_x) | BIT(chan_y) | BIT(chan_z),
0
};
bool adxl345_is_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case ADXL345_REG_DATA_AXIS(0):
case ADXL345_REG_DATA_AXIS(1):
case ADXL345_REG_DATA_AXIS(2):
case ADXL345_REG_DATA_AXIS(3):
case ADXL345_REG_DATA_AXIS(4):
case ADXL345_REG_DATA_AXIS(5):
case ADXL345_REG_ACT_TAP_STATUS:
case ADXL345_REG_FIFO_STATUS:
case ADXL345_REG_INT_SOURCE:
return true;
default:
return false;
}
}
EXPORT_SYMBOL_NS_GPL(adxl345_is_volatile_reg, "IIO_ADXL345");
/**
* adxl345_set_measure_en() - Enable and disable measuring.
*
* @st: The device data.
* @en: Enable measurements, else standby mode.
*
* For lowest power operation, standby mode can be used. In standby mode,
* current consumption is supposed to be reduced to 0.1uA (typical). In this
* mode no measurements are made. Placing the device into standby mode
* preserves the contents of FIFO.
*
* Return: Returns 0 if successful, or a negative error value.
*/
static int adxl345_set_measure_en(struct adxl345_state *st, bool en)
{
return regmap_assign_bits(st->regmap, ADXL345_REG_POWER_CTL,
ADXL345_POWER_CTL_MEASURE, en);
}
/* activity / inactivity */
static int adxl345_set_inact_threshold(struct adxl345_state *st,
unsigned int threshold)
{
int ret;
st->inact_threshold = min(U8_MAX, threshold);
ret = regmap_write(st->regmap,
adxl345_act_thresh_reg[ADXL345_INACTIVITY],
st->inact_threshold);
if (ret)
return ret;
return regmap_write(st->regmap,
adxl345_act_thresh_reg[ADXL345_INACTIVITY_FF],
st->inact_threshold);
}
static int adxl345_set_default_time(struct adxl345_state *st)
{
int max_boundary = U8_MAX;
int min_boundary = 10;
enum adxl345_odr odr;
unsigned int regval;
unsigned int val;
int ret;
/* Generated inactivity time based on ODR */
ret = regmap_read(st->regmap, ADXL345_REG_BW_RATE, &regval);
if (ret)
return ret;
odr = FIELD_GET(ADXL345_BW_RATE_MSK, regval);
val = clamp(max_boundary - adxl345_odr_tbl[odr][0],
min_boundary, max_boundary);
st->inact_time_ms = MILLI * val;
/* Inactivity time in s */
return regmap_write(st->regmap, ADXL345_REG_TIME_INACT, val);
}
static int adxl345_set_inactivity_time(struct adxl345_state *st, u32 val_int)
{
st->inact_time_ms = MILLI * val_int;
return regmap_write(st->regmap, ADXL345_REG_TIME_INACT, val_int);
}
static int adxl345_set_freefall_time(struct adxl345_state *st, u32 val_fract)
{
/*
* Datasheet max. value is 255 * 5000 us = 1.275000 seconds.
*
* Recommended values between 100ms and 350ms (0x14 to 0x46)
*/
st->inact_time_ms = DIV_ROUND_UP(val_fract, MILLI);
return regmap_write(st->regmap, ADXL345_REG_TIME_FF,
DIV_ROUND_CLOSEST(val_fract, 5));
}
/**
* adxl345_set_inact_time - Configure inactivity time explicitly or by ODR.
* @st: The sensor state instance.
* @val_int: The inactivity time, integer part.
* @val_fract: The inactivity time, fractional part when val_int is 0.
*
* Inactivity time can be configured between 1 and 255 seconds. If a user sets
* val_s to 0, a default inactivity time is calculated automatically (since 0 is
* also invalid and undefined by the sensor).
*
* In such cases, power consumption should be considered: the inactivity period
* should be shorter at higher sampling frequencies and longer at lower ones.
* Specifically, for frequencies above 255 Hz, the default is set to 10 seconds;
* for frequencies below 10 Hz, it defaults to 255 seconds.
*
* The calculation method subtracts the integer part of the configured sample
* frequency from 255 to estimate the inactivity time in seconds. Sub-Hertz
* values are ignored in this approximation. Since the recommended output data
* rates (ODRs) for features like activity/inactivity detection, sleep modes,
* and free fall range between 12.5 Hz and 400 Hz, frequencies outside this
* range will either use the defined boundary defaults or require explicit
* configuration via val_s.
*
* Return: 0 or error value.
*/
static int adxl345_set_inact_time(struct adxl345_state *st, u32 val_int,
u32 val_fract)
{
if (val_int > 0) {
/* Time >= 1s, inactivity */
return adxl345_set_inactivity_time(st, val_int);
} else if (val_int == 0) {
if (val_fract > 0) {
/* Time < 1s, free-fall */
return adxl345_set_freefall_time(st, val_fract);
} else if (val_fract == 0) {
/* Time == 0.0s */
return adxl345_set_default_time(st);
}
}
/* Do not support negative or wrong input. */
return -EINVAL;
}
/**
* adxl345_is_act_inact_ac() - Verify if AC or DC coupling is currently enabled.
*
* @st: The device data.
* @type: The activity or inactivity type.
*
* Given a type of activity / inactivity combined with either AC coupling set or
* default to DC, this function verifies if the combination is currently
* configured, hence enabled or not.
*
* Return: true if configured coupling matches the provided type, else a negative
* error value.
*/
static int adxl345_is_act_inact_ac(struct adxl345_state *st,
enum adxl345_activity_type type)
{
unsigned int regval;
bool coupling;
int ret;
if (type == ADXL345_INACTIVITY_FF)
return true;
ret = regmap_read(st->regmap, ADXL345_REG_ACT_INACT_CTRL, &regval);
if (ret)
return ret;
coupling = adxl345_act_acdc_msk[type] & regval;
switch (type) {
case ADXL345_ACTIVITY:
case ADXL345_INACTIVITY:
return coupling == ADXL345_COUPLING_DC;
case ADXL345_ACTIVITY_AC:
case ADXL345_INACTIVITY_AC:
return coupling == ADXL345_COUPLING_AC;
default:
return -EINVAL;
}
}
/**
* adxl345_set_act_inact_ac() - Configure AC coupling or DC coupling.
*
* @st: The device data.
* @type: Provide a type of activity or inactivity.
* @cmd_en: enable or disable AC coupling.
*
* Enables AC coupling or DC coupling depending on the provided type argument.
* Note: Activity and inactivity can be either AC coupled or DC coupled not
* both at the same time.
*
* Return: 0 if successful, else error value.
*/
static int adxl345_set_act_inact_ac(struct adxl345_state *st,
enum adxl345_activity_type type,
bool cmd_en)
{
unsigned int act_inact_ac;
if (type == ADXL345_ACTIVITY_AC || type == ADXL345_INACTIVITY_AC)
act_inact_ac = ADXL345_COUPLING_AC && cmd_en;
else
act_inact_ac = ADXL345_COUPLING_DC && cmd_en;
/*
* A setting of false selects dc-coupled operation, and a setting of
* true enables ac-coupled operation. In dc-coupled operation, the
* current acceleration magnitude is compared directly with
* ADXL345_REG_THRESH_ACT and ADXL345_REG_THRESH_INACT to determine
* whether activity or inactivity is detected.
*
* In ac-coupled operation for activity detection, the acceleration
* value at the start of activity detection is taken as a reference
* value. New samples of acceleration are then compared to this
* reference value, and if the magnitude of the difference exceeds the
* ADXL345_REG_THRESH_ACT value, the device triggers an activity
* interrupt.
*
* Similarly, in ac-coupled operation for inactivity detection, a
* reference value is used for comparison and is updated whenever the
* device exceeds the inactivity threshold. After the reference value
* is selected, the device compares the magnitude of the difference
* between the reference value and the current acceleration with
* ADXL345_REG_THRESH_INACT. If the difference is less than the value in
* ADXL345_REG_THRESH_INACT for the time in ADXL345_REG_TIME_INACT, the
* device is considered inactive and the inactivity interrupt is
* triggered. [quoted from p. 24, ADXL345 datasheet Rev. G]
*
* In a conclusion, the first acceleration snapshot sample which hit the
* threshold in a particular direction is always taken as acceleration
* reference value to that direction. Since for the hardware activity
* and inactivity depend on the x/y/z axis, so do ac and dc coupling.
* Note, this sw driver always enables or disables all three x/y/z axis
* for detection via act_axis_ctrl and inact_axis_ctrl, respectively.
* Where in dc-coupling samples are compared against the thresholds, in
* ac-coupling measurement difference to the first acceleration
* reference value are compared against the threshold. So, ac-coupling
* allows for a bit more dynamic compensation depending on the initial
* sample.
*/
return regmap_assign_bits(st->regmap, ADXL345_REG_ACT_INACT_CTRL,
adxl345_act_acdc_msk[type], act_inact_ac);
}
static int adxl345_is_act_inact_en(struct adxl345_state *st,
enum adxl345_activity_type type)
{
unsigned int axis_ctrl;
unsigned int regval;
bool int_en, en;
int ret;
ret = regmap_read(st->regmap, ADXL345_REG_ACT_INACT_CTRL, &axis_ctrl);
if (ret)
return ret;
/* Check if axis for activity are enabled */
switch (type) {
case ADXL345_ACTIVITY:
case ADXL345_ACTIVITY_AC:
en = FIELD_GET(ADXL345_ACT_XYZ_EN, axis_ctrl);
if (!en)
return false;
break;
case ADXL345_INACTIVITY:
case ADXL345_INACTIVITY_AC:
en = FIELD_GET(ADXL345_INACT_XYZ_EN, axis_ctrl);
if (!en)
return false;
break;
case ADXL345_INACTIVITY_FF:
en = true;
break;
default:
return -EINVAL;
}
/* Check if specific interrupt is enabled */
ret = regmap_read(st->regmap, ADXL345_REG_INT_ENABLE, &regval);
if (ret)
return ret;
int_en = adxl345_act_int_reg[type] & regval;
if (!int_en)
return false;
/* Check if configured coupling matches provided type */
return adxl345_is_act_inact_ac(st, type);
}
static int adxl345_set_act_inact_linkbit(struct adxl345_state *st,
enum adxl345_activity_type type,
bool en)
{
int act_ac_en, inact_ac_en;
int act_en, inact_en;
act_en = adxl345_is_act_inact_en(st, ADXL345_ACTIVITY);
if (act_en < 0)
return act_en;
act_ac_en = adxl345_is_act_inact_en(st, ADXL345_ACTIVITY_AC);
if (act_ac_en < 0)
return act_ac_en;
if (type == ADXL345_INACTIVITY_FF) {
inact_en = false;
} else {
inact_en = adxl345_is_act_inact_en(st, ADXL345_INACTIVITY);
if (inact_en < 0)
return inact_en;
inact_ac_en = adxl345_is_act_inact_en(st, ADXL345_INACTIVITY_AC);
if (inact_ac_en < 0)
return inact_ac_en;
inact_en = inact_en || inact_ac_en;
}
act_en = act_en || act_ac_en;
return regmap_assign_bits(st->regmap, ADXL345_REG_POWER_CTL,
ADXL345_POWER_CTL_INACT_MSK,
en && act_en && inact_en);
}
static int adxl345_set_act_inact_en(struct adxl345_state *st,
enum adxl345_activity_type type,
bool cmd_en)
{
unsigned int axis_ctrl;
unsigned int threshold;
unsigned int period;
int ret;
if (cmd_en) {
/* When turning on, check if threshold is valid */
if (type == ADXL345_ACTIVITY || type == ADXL345_ACTIVITY_AC) {
ret = regmap_read(st->regmap,
adxl345_act_thresh_reg[type],
&threshold);
if (ret)
return ret;
} else {
threshold = st->inact_threshold;
}
if (!threshold) /* Just ignore the command if threshold is 0 */
return 0;
/* When turning on inactivity, check if inact time is valid */
if (type == ADXL345_INACTIVITY || type == ADXL345_INACTIVITY_AC) {
ret = regmap_read(st->regmap,
ADXL345_REG_TIME_INACT,
&period);
if (ret)
return ret;
if (!period)
return 0;
}
} else {
/*
* When turning off an activity, ensure that the correct
* coupling event is specified. This step helps prevent misuse -
* for example, if an AC-coupled activity is active and the
* current call attempts to turn off a DC-coupled activity, this
* inconsistency should be detected here.
*/
if (adxl345_is_act_inact_ac(st, type) <= 0)
return 0;
}
/* Start modifying configuration registers */
ret = adxl345_set_measure_en(st, false);
if (ret)
return ret;
/* Enable axis according to the command */
switch (type) {
case ADXL345_ACTIVITY:
case ADXL345_ACTIVITY_AC:
axis_ctrl = ADXL345_ACT_XYZ_EN;
break;
case ADXL345_INACTIVITY:
case ADXL345_INACTIVITY_AC:
axis_ctrl = ADXL345_INACT_XYZ_EN;
break;
case ADXL345_INACTIVITY_FF:
axis_ctrl = ADXL345_ACT_INACT_NO_AXIS_EN;
break;
default:
return -EINVAL;
}
ret = regmap_assign_bits(st->regmap, ADXL345_REG_ACT_INACT_CTRL,
axis_ctrl, cmd_en);
if (ret)
return ret;
/* Update AC/DC-coupling according to the command */
ret = adxl345_set_act_inact_ac(st, type, cmd_en);
if (ret)
return ret;
/* Enable the interrupt line, according to the command */
ret = regmap_assign_bits(st->regmap, ADXL345_REG_INT_ENABLE,
adxl345_act_int_reg[type], cmd_en);
if (ret)
return ret;
/* Set link-bit and auto-sleep only when ACT and INACT are enabled */
ret = adxl345_set_act_inact_linkbit(st, type, cmd_en);
if (ret)
return ret;
return adxl345_set_measure_en(st, true);
}
/* tap */
static int _adxl345_set_tap_int(struct adxl345_state *st,
enum adxl345_tap_type type, bool state)
{
unsigned int int_map = 0x00;
unsigned int tap_threshold;
bool axis_valid;
bool singletap_args_valid = false;
bool doubletap_args_valid = false;
bool en = false;
u32 axis_ctrl;
int ret;
ret = regmap_read(st->regmap, ADXL345_REG_TAP_AXIS, &axis_ctrl);
if (ret)
return ret;
axis_valid = FIELD_GET(ADXL345_REG_TAP_AXIS_MSK, axis_ctrl) > 0;
ret = regmap_read(st->regmap, ADXL345_REG_THRESH_TAP, &tap_threshold);
if (ret)
return ret;
/*
* Note: A value of 0 for threshold and/or dur may result in undesirable
* behavior if single tap/double tap interrupts are enabled.
*/
singletap_args_valid = tap_threshold > 0 && st->tap_duration_us > 0;
if (type == ADXL345_SINGLE_TAP) {
en = axis_valid && singletap_args_valid;
} else {
/* doubletap: Window must be equal or greater than latent! */
doubletap_args_valid = st->tap_latent_us > 0 &&
st->tap_window_us > 0 &&
st->tap_window_us >= st->tap_latent_us;
en = axis_valid && singletap_args_valid && doubletap_args_valid;
}
if (state && en)
int_map |= adxl345_tap_int_reg[type];
return regmap_update_bits(st->regmap, ADXL345_REG_INT_ENABLE,
adxl345_tap_int_reg[type], int_map);
}
static int adxl345_is_tap_en(struct adxl345_state *st,
enum iio_modifier axis,
enum adxl345_tap_type type, bool *en)
{
unsigned int regval;
u32 axis_ctrl;
int ret;
ret = regmap_read(st->regmap, ADXL345_REG_TAP_AXIS, &axis_ctrl);
if (ret)
return ret;
/* Verify if axis is enabled for the tap detection. */
switch (axis) {
case IIO_MOD_X:
*en = FIELD_GET(ADXL345_TAP_X_EN, axis_ctrl);
break;
case IIO_MOD_Y:
*en = FIELD_GET(ADXL345_TAP_Y_EN, axis_ctrl);
break;
case IIO_MOD_Z:
*en = FIELD_GET(ADXL345_TAP_Z_EN, axis_ctrl);
break;
default:
*en = false;
return -EINVAL;
}
if (*en) {
/*
* If axis allow for tap detection, verify if the interrupt is
* enabled for tap detection.
*/
ret = regmap_read(st->regmap, ADXL345_REG_INT_ENABLE, &regval);
if (ret)
return ret;
*en = adxl345_tap_int_reg[type] & regval;
}
return 0;
}
static int adxl345_set_singletap_en(struct adxl345_state *st,
enum iio_modifier axis, bool en)
{
int ret;
u32 axis_ctrl;
switch (axis) {
case IIO_MOD_X:
axis_ctrl = ADXL345_TAP_X_EN;
break;
case IIO_MOD_Y:
axis_ctrl = ADXL345_TAP_Y_EN;
break;
case IIO_MOD_Z:
axis_ctrl = ADXL345_TAP_Z_EN;
break;
default:
return -EINVAL;
}
if (en)
ret = regmap_set_bits(st->regmap, ADXL345_REG_TAP_AXIS,
axis_ctrl);
else
ret = regmap_clear_bits(st->regmap, ADXL345_REG_TAP_AXIS,
axis_ctrl);
if (ret)
return ret;
return _adxl345_set_tap_int(st, ADXL345_SINGLE_TAP, en);
}
static int adxl345_set_doubletap_en(struct adxl345_state *st, bool en)
{
int ret;
/*
* Generally suppress detection of spikes during the latency period as
* double taps here, this is fully optional for double tap detection
*/
ret = regmap_assign_bits(st->regmap, ADXL345_REG_TAP_AXIS,
ADXL345_REG_TAP_SUPPRESS, en);
if (ret)
return ret;
return _adxl345_set_tap_int(st, ADXL345_DOUBLE_TAP, en);
}
static int _adxl345_set_tap_time(struct adxl345_state *st,
enum adxl345_tap_time_type type, u32 val_us)
{
unsigned int regval;
switch (type) {
case ADXL345_TAP_TIME_WINDOW:
st->tap_window_us = val_us;
break;
case ADXL345_TAP_TIME_LATENT:
st->tap_latent_us = val_us;
break;
case ADXL345_TAP_TIME_DUR:
st->tap_duration_us = val_us;
break;
}
/*
* The scale factor is 1250us / LSB for tap_window_us and tap_latent_us.
* For tap_duration_us the scale factor is 625us / LSB.
*/
if (type == ADXL345_TAP_TIME_DUR)
regval = DIV_ROUND_CLOSEST(val_us, 625);
else
regval = DIV_ROUND_CLOSEST(val_us, 1250);
return regmap_write(st->regmap, adxl345_tap_time_reg[type], regval);
}
static int adxl345_set_tap_duration(struct adxl345_state *st, u32 val_int,
u32 val_fract_us)
{
/*
* Max value is 255 * 625 us = 0.159375 seconds
*
* Note: the scaling is similar to the scaling in the ADXL380
*/
if (val_int || val_fract_us > 159375)
return -EINVAL;
return _adxl345_set_tap_time(st, ADXL345_TAP_TIME_DUR, val_fract_us);
}
static int adxl345_set_tap_window(struct adxl345_state *st, u32 val_int,
u32 val_fract_us)
{
/*
* Max value is 255 * 1250 us = 0.318750 seconds
*
* Note: the scaling is similar to the scaling in the ADXL380
*/
if (val_int || val_fract_us > 318750)
return -EINVAL;
return _adxl345_set_tap_time(st, ADXL345_TAP_TIME_WINDOW, val_fract_us);
}
static int adxl345_set_tap_latent(struct adxl345_state *st, u32 val_int,
u32 val_fract_us)
{
/*
* Max value is 255 * 1250 us = 0.318750 seconds
*
* Note: the scaling is similar to the scaling in the ADXL380
*/
if (val_int || val_fract_us > 318750)
return -EINVAL;
return _adxl345_set_tap_time(st, ADXL345_TAP_TIME_LATENT, val_fract_us);
}
static int adxl345_find_odr(struct adxl345_state *st, int val,
int val2, enum adxl345_odr *odr)
{
int i;
for (i = 0; i < ARRAY_SIZE(adxl345_odr_tbl); i++) {
if (val == adxl345_odr_tbl[i][0] &&
val2 == adxl345_odr_tbl[i][1]) {
*odr = i;
return 0;
}
}
return -EINVAL;
}
static int adxl345_set_odr(struct adxl345_state *st, enum adxl345_odr odr)
{
int ret;
ret = regmap_update_bits(st->regmap, ADXL345_REG_BW_RATE,
ADXL345_BW_RATE_MSK,
FIELD_PREP(ADXL345_BW_RATE_MSK, odr));
if (ret)
return ret;
/* update inactivity time by ODR */
return adxl345_set_inact_time(st, 0, 0);
}
static int adxl345_find_range(struct adxl345_state *st, int val, int val2,
enum adxl345_range *range)
{
int i;
for (i = 0; i < ARRAY_SIZE(adxl345_fullres_range_tbl); i++) {
if (val == adxl345_fullres_range_tbl[i][0] &&
val2 == adxl345_fullres_range_tbl[i][1]) {
*range = i;
return 0;
}
}
return -EINVAL;
}
static int adxl345_set_range(struct adxl345_state *st, enum adxl345_range range)
{
unsigned int act_threshold, inact_threshold;
unsigned int range_old;
unsigned int regval;
int ret;
ret = regmap_read(st->regmap, ADXL345_REG_DATA_FORMAT, &regval);
if (ret)
return ret;
range_old = FIELD_GET(ADXL345_DATA_FORMAT_RANGE, regval);
ret = regmap_read(st->regmap,
adxl345_act_thresh_reg[ADXL345_ACTIVITY],
&act_threshold);
if (ret)
return ret;
ret = regmap_update_bits(st->regmap, ADXL345_REG_DATA_FORMAT,
ADXL345_DATA_FORMAT_RANGE,
FIELD_PREP(ADXL345_DATA_FORMAT_RANGE, range));
if (ret)
return ret;
act_threshold = act_threshold * adxl345_range_factor_tbl[range_old]
/ adxl345_range_factor_tbl[range];
act_threshold = min(U8_MAX, max(1, act_threshold));
inact_threshold = st->inact_threshold;
inact_threshold = inact_threshold * adxl345_range_factor_tbl[range_old]
/ adxl345_range_factor_tbl[range];
inact_threshold = min(U8_MAX, max(1, inact_threshold));
ret = regmap_write(st->regmap, adxl345_act_thresh_reg[ADXL345_ACTIVITY],
act_threshold);
if (ret)
return ret;
return adxl345_set_inact_threshold(st, inact_threshold);
}
static int adxl345_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type,
int *length, long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SCALE:
*vals = (int *)adxl345_fullres_range_tbl;
*type = IIO_VAL_INT_PLUS_MICRO;
*length = ARRAY_SIZE(adxl345_fullres_range_tbl) * 2;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_SAMP_FREQ:
*vals = (int *)adxl345_odr_tbl;
*type = IIO_VAL_INT_PLUS_MICRO;
*length = ARRAY_SIZE(adxl345_odr_tbl) * 2;
return IIO_AVAIL_LIST;
}
return -EINVAL;
}
static int adxl345_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct adxl345_state *st = iio_priv(indio_dev);
__le16 accel;
unsigned int regval;
enum adxl345_odr odr;
enum adxl345_range range;
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
/*
* Data is stored in adjacent registers:
* ADXL345_REG_DATA(X0/Y0/Z0) contain the least significant byte
* and ADXL345_REG_DATA(X0/Y0/Z0) + 1 the most significant byte
*/
ret = regmap_bulk_read(st->regmap,
ADXL345_REG_DATA_AXIS(chan->address),
&accel, sizeof(accel));
if (ret)
return ret;
*val = sign_extend32(le16_to_cpu(accel), 12);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
ret = regmap_read(st->regmap, ADXL345_REG_DATA_FORMAT, &regval);
if (ret)
return ret;
range = FIELD_GET(ADXL345_DATA_FORMAT_RANGE, regval);
*val = adxl345_fullres_range_tbl[range][0];
*val2 = adxl345_fullres_range_tbl[range][1];
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_CALIBBIAS:
ret = regmap_read(st->regmap,
ADXL345_REG_OFS_AXIS(chan->address), &regval);
if (ret)
return ret;
/*
* 8-bit resolution at +/- 2g, that is 4x accel data scale
* factor
*/
*val = sign_extend32(regval, 7) * 4;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = regmap_read(st->regmap, ADXL345_REG_BW_RATE, &regval);
if (ret)
return ret;
odr = FIELD_GET(ADXL345_BW_RATE_MSK, regval);
*val = adxl345_odr_tbl[odr][0];
*val2 = adxl345_odr_tbl[odr][1];
return IIO_VAL_INT_PLUS_MICRO;
}
return -EINVAL;
}
static int adxl345_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct adxl345_state *st = iio_priv(indio_dev);
enum adxl345_range range;
enum adxl345_odr odr;
int ret;
ret = adxl345_set_measure_en(st, false);
if (ret)
return ret;
switch (mask) {
case IIO_CHAN_INFO_CALIBBIAS:
/*
* 8-bit resolution at +/- 2g, that is 4x accel data scale
* factor
*/
ret = regmap_write(st->regmap,
ADXL345_REG_OFS_AXIS(chan->address),
val / 4);
if (ret)
return ret;
break;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = adxl345_find_odr(st, val, val2, &odr);
if (ret)
return ret;
ret = adxl345_set_odr(st, odr);
if (ret)
return ret;
break;
case IIO_CHAN_INFO_SCALE:
ret = adxl345_find_range(st, val, val2, &range);
if (ret)
return ret;
ret = adxl345_set_range(st, range);
if (ret)
return ret;
break;
default:
return -EINVAL;
}
return adxl345_set_measure_en(st, true);
}
static int adxl345_read_mag_config(struct adxl345_state *st,
enum iio_event_direction dir,
enum adxl345_activity_type type_act,
enum adxl345_activity_type type_inact)
{
switch (dir) {
case IIO_EV_DIR_RISING:
return !!adxl345_is_act_inact_en(st, type_act);
case IIO_EV_DIR_FALLING:
return !!adxl345_is_act_inact_en(st, type_inact);
default:
return -EINVAL;
}
}
static int adxl345_write_mag_config(struct adxl345_state *st,
enum iio_event_direction dir,
enum adxl345_activity_type type_act,
enum adxl345_activity_type type_inact,
bool state)
{
switch (dir) {
case IIO_EV_DIR_RISING:
return adxl345_set_act_inact_en(st, type_act, state);
case IIO_EV_DIR_FALLING:
return adxl345_set_act_inact_en(st, type_inact, state);
default:
return -EINVAL;
}
}
static int adxl345_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir)
{
struct adxl345_state *st = iio_priv(indio_dev);
bool int_en;
int ret;
switch (type) {
case IIO_EV_TYPE_MAG:
return adxl345_read_mag_config(st, dir,
ADXL345_ACTIVITY,
ADXL345_INACTIVITY);
case IIO_EV_TYPE_MAG_ADAPTIVE:
return adxl345_read_mag_config(st, dir,
ADXL345_ACTIVITY_AC,
ADXL345_INACTIVITY_AC);
case IIO_EV_TYPE_GESTURE:
switch (dir) {
case IIO_EV_DIR_SINGLETAP:
ret = adxl345_is_tap_en(st, chan->channel2,
ADXL345_SINGLE_TAP, &int_en);
if (ret)
return ret;
return int_en;
case IIO_EV_DIR_DOUBLETAP:
ret = adxl345_is_tap_en(st, chan->channel2,
ADXL345_DOUBLE_TAP, &int_en);
if (ret)
return ret;
return int_en;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int adxl345_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
bool state)
{
struct adxl345_state *st = iio_priv(indio_dev);
switch (type) {
case IIO_EV_TYPE_MAG:
return adxl345_write_mag_config(st, dir,
ADXL345_ACTIVITY,
ADXL345_INACTIVITY,
state);
case IIO_EV_TYPE_MAG_ADAPTIVE:
return adxl345_write_mag_config(st, dir,
ADXL345_ACTIVITY_AC,
ADXL345_INACTIVITY_AC,
state);
case IIO_EV_TYPE_GESTURE:
switch (dir) {
case IIO_EV_DIR_SINGLETAP:
return adxl345_set_singletap_en(st, chan->channel2, state);
case IIO_EV_DIR_DOUBLETAP:
return adxl345_set_doubletap_en(st, state);
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int adxl345_read_mag_value(struct adxl345_state *st,
enum iio_event_direction dir,
enum iio_event_info info,
enum adxl345_activity_type type_act,
enum adxl345_activity_type type_inact,
int *val, int *val2)
{
unsigned int threshold;
int ret;
switch (info) {
case IIO_EV_INFO_VALUE:
switch (dir) {
case IIO_EV_DIR_RISING:
ret = regmap_read(st->regmap,
adxl345_act_thresh_reg[type_act],
&threshold);
if (ret)
return ret;
*val = 62500 * threshold;
*val2 = MICRO;
return IIO_VAL_FRACTIONAL;
case IIO_EV_DIR_FALLING:
*val = 62500 * st->inact_threshold;
*val2 = MICRO;
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
case IIO_EV_INFO_PERIOD:
*val = st->inact_time_ms;
*val2 = MILLI;
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
}
static int adxl345_write_mag_value(struct adxl345_state *st,
enum iio_event_direction dir,
enum iio_event_info info,
enum adxl345_activity_type type_act,
enum adxl345_activity_type type_inact,
int val, int val2)
{
switch (info) {
case IIO_EV_INFO_VALUE:
/* Scaling factor 62.5mg/LSB, i.e. ~16g corresponds to 0xff */
val = DIV_ROUND_CLOSEST(val * MICRO + val2, 62500);
switch (dir) {
case IIO_EV_DIR_RISING:
return regmap_write(st->regmap,
adxl345_act_thresh_reg[type_act],
val);
case IIO_EV_DIR_FALLING:
return adxl345_set_inact_threshold(st, val);
default:
return -EINVAL;
}
case IIO_EV_INFO_PERIOD:
return adxl345_set_inact_time(st, val, val2);
default:
return -EINVAL;
}
}
static int adxl345_read_event_value(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int *val, int *val2)
{
struct adxl345_state *st = iio_priv(indio_dev);
unsigned int tap_threshold;
int ret;
switch (type) {
case IIO_EV_TYPE_MAG:
return adxl345_read_mag_value(st, dir, info,
ADXL345_ACTIVITY,
ADXL345_INACTIVITY,
val, val2);
case IIO_EV_TYPE_MAG_ADAPTIVE:
return adxl345_read_mag_value(st, dir, info,
ADXL345_ACTIVITY_AC,
ADXL345_INACTIVITY_AC,
val, val2);
case IIO_EV_TYPE_GESTURE:
switch (info) {
case IIO_EV_INFO_VALUE:
/*
* The scale factor would be 62.5mg/LSB (i.e. 0xFF = 16g) but
* not applied here. In context of this general purpose sensor,
* what imports is rather signal intensity than the absolute
* measured g value.
*/
ret = regmap_read(st->regmap, ADXL345_REG_THRESH_TAP,
&tap_threshold);
if (ret)
return ret;
*val = sign_extend32(tap_threshold, 7);
return IIO_VAL_INT;
case IIO_EV_INFO_TIMEOUT:
*val = st->tap_duration_us;
*val2 = MICRO;
return IIO_VAL_FRACTIONAL;
case IIO_EV_INFO_RESET_TIMEOUT:
*val = st->tap_window_us;
*val2 = MICRO;
return IIO_VAL_FRACTIONAL;
case IIO_EV_INFO_TAP2_MIN_DELAY:
*val = st->tap_latent_us;
*val2 = MICRO;
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int adxl345_write_event_value(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int val, int val2)
{
struct adxl345_state *st = iio_priv(indio_dev);
int ret;
ret = adxl345_set_measure_en(st, false);
if (ret)
return ret;
switch (type) {
case IIO_EV_TYPE_MAG:
ret = adxl345_write_mag_value(st, dir, info,
ADXL345_ACTIVITY,
ADXL345_INACTIVITY,
val, val2);
if (ret)
return ret;
break;
case IIO_EV_TYPE_MAG_ADAPTIVE:
ret = adxl345_write_mag_value(st, dir, info,
ADXL345_ACTIVITY_AC,
ADXL345_INACTIVITY_AC,
val, val2);
if (ret)
return ret;
break;
case IIO_EV_TYPE_GESTURE:
switch (info) {
case IIO_EV_INFO_VALUE:
ret = regmap_write(st->regmap, ADXL345_REG_THRESH_TAP,
min(val, 0xFF));
if (ret)
return ret;
break;
case IIO_EV_INFO_TIMEOUT:
ret = adxl345_set_tap_duration(st, val, val2);
if (ret)
return ret;
break;
case IIO_EV_INFO_RESET_TIMEOUT:
ret = adxl345_set_tap_window(st, val, val2);
if (ret)
return ret;
break;
case IIO_EV_INFO_TAP2_MIN_DELAY:
ret = adxl345_set_tap_latent(st, val, val2);
if (ret)
return ret;
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
return adxl345_set_measure_en(st, true);
}
static int adxl345_reg_access(struct iio_dev *indio_dev, unsigned int reg,
unsigned int writeval, unsigned int *readval)
{
struct adxl345_state *st = iio_priv(indio_dev);
if (readval)
return regmap_read(st->regmap, reg, readval);
return regmap_write(st->regmap, reg, writeval);
}
static int adxl345_set_watermark(struct iio_dev *indio_dev, unsigned int value)
{
struct adxl345_state *st = iio_priv(indio_dev);
const unsigned int fifo_mask = 0x1F, watermark_mask = 0x02;
int ret;
value = min(value, ADXL345_FIFO_SIZE - 1);
ret = regmap_update_bits(st->regmap, ADXL345_REG_FIFO_CTL, fifo_mask, value);
if (ret)
return ret;
st->watermark = value;
return regmap_update_bits(st->regmap, ADXL345_REG_INT_ENABLE,
watermark_mask, ADXL345_INT_WATERMARK);
}
static int adxl345_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_CALIBBIAS:
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SAMP_FREQ:
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
static void adxl345_powerdown(void *ptr)
{
struct adxl345_state *st = ptr;
adxl345_set_measure_en(st, false);
}
static int adxl345_set_fifo(struct adxl345_state *st)
{
unsigned int intio;
int ret;
/* FIFO should only be configured while in standby mode */
ret = adxl345_set_measure_en(st, false);
if (ret)
return ret;
ret = regmap_read(st->regmap, ADXL345_REG_INT_MAP, &intio);
if (ret)
return ret;
ret = regmap_write(st->regmap, ADXL345_REG_FIFO_CTL,
FIELD_PREP(ADXL345_FIFO_CTL_SAMPLES_MSK,
st->watermark) |
FIELD_PREP(ADXL345_FIFO_CTL_TRIGGER_MSK, intio) |
FIELD_PREP(ADXL345_FIFO_CTL_MODE_MSK,
st->fifo_mode));
if (ret)
return ret;
return adxl345_set_measure_en(st, true);
}
/**
* adxl345_get_samples() - Read number of FIFO entries.
* @st: The initialized state instance of this driver.
*
* The sensor does not support treating any axis individually, or exclude them
* from measuring.
*
* Return: negative error, or value.
*/
static int adxl345_get_samples(struct adxl345_state *st)
{
unsigned int regval = 0;
int ret;
ret = regmap_read(st->regmap, ADXL345_REG_FIFO_STATUS, &regval);
if (ret)
return ret;
return FIELD_GET(ADXL345_REG_FIFO_STATUS_MSK, regval);
}
/**
* adxl345_fifo_transfer() - Read samples number of elements.
* @st: The instance of the state object of this sensor.
* @samples: The number of lines in the FIFO referred to as fifo_entry.
*
* It is recommended that a multiple-byte read of all registers be performed to
* prevent a change in data between reads of sequential registers. That is to
* read out the data registers X0, X1, Y0, Y1, Z0, Z1, i.e. 6 bytes at once.
*
* Return: 0 or error value.
*/
static int adxl345_fifo_transfer(struct adxl345_state *st, int samples)
{
int i, ret = 0;
for (i = 0; i < samples; i++) {
ret = regmap_bulk_read(st->regmap, ADXL345_REG_XYZ_BASE,
st->fifo_buf + (i * ADXL345_DIRS),
sizeof(st->fifo_buf[0]) * ADXL345_DIRS);
if (ret)
return ret;
/*
* To ensure that the FIFO has completely popped, there must be at least 5
* us between the end of reading the data registers, signified by the
* transition to register 0x38 from 0x37 or the CS pin going high, and the
* start of new reads of the FIFO or reading the FIFO_STATUS register. For
* SPI operation at 1.5 MHz or lower, the register addressing portion of the
* transmission is sufficient delay to ensure the FIFO has completely
* popped. It is necessary for SPI operation greater than 1.5 MHz to
* de-assert the CS pin to ensure a total of 5 us, which is at most 3.4 us
* at 5 MHz operation.
*/
if (st->fifo_delay && samples > 1)
udelay(3);
}
return ret;
}
/**
* adxl345_fifo_reset() - Empty the FIFO in error condition.
* @st: The instance to the state object of the sensor.
*
* Read all elements of the FIFO. Reading the interrupt source register
* resets the sensor.
*/
static void adxl345_fifo_reset(struct adxl345_state *st)
{
int regval;
int samples;
adxl345_set_measure_en(st, false);
samples = adxl345_get_samples(st);
if (samples > 0)
adxl345_fifo_transfer(st, samples);
regmap_read(st->regmap, ADXL345_REG_INT_SOURCE, &regval);
adxl345_set_measure_en(st, true);
}
static int adxl345_buffer_postenable(struct iio_dev *indio_dev)
{
struct adxl345_state *st = iio_priv(indio_dev);
st->fifo_mode = ADXL345_FIFO_STREAM;
return adxl345_set_fifo(st);
}
static int adxl345_buffer_predisable(struct iio_dev *indio_dev)
{
struct adxl345_state *st = iio_priv(indio_dev);
int ret;
st->fifo_mode = ADXL345_FIFO_BYPASS;
ret = adxl345_set_fifo(st);
if (ret)
return ret;
return regmap_write(st->regmap, ADXL345_REG_INT_ENABLE, 0x00);
}
static const struct iio_buffer_setup_ops adxl345_buffer_ops = {
.postenable = adxl345_buffer_postenable,
.predisable = adxl345_buffer_predisable,
};
static int adxl345_fifo_push(struct iio_dev *indio_dev,
int samples)
{
struct adxl345_state *st = iio_priv(indio_dev);
int i, ret;
if (samples <= 0)
return -EINVAL;
ret = adxl345_fifo_transfer(st, samples);
if (ret)
return ret;
for (i = 0; i < ADXL345_DIRS * samples; i += ADXL345_DIRS)
iio_push_to_buffers(indio_dev, &st->fifo_buf[i]);
return 0;
}
static int adxl345_push_event(struct iio_dev *indio_dev, int int_stat,
enum iio_modifier act_dir,
enum iio_modifier tap_dir)
{
s64 ts = iio_get_time_ns(indio_dev);
struct adxl345_state *st = iio_priv(indio_dev);
unsigned int regval;
int samples;
int ret = -ENOENT;
if (FIELD_GET(ADXL345_INT_SINGLE_TAP, int_stat)) {
ret = iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, tap_dir,
IIO_EV_TYPE_GESTURE,
IIO_EV_DIR_SINGLETAP),
ts);
if (ret)
return ret;
}
if (FIELD_GET(ADXL345_INT_DOUBLE_TAP, int_stat)) {
ret = iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, tap_dir,
IIO_EV_TYPE_GESTURE,
IIO_EV_DIR_DOUBLETAP),
ts);
if (ret)
return ret;
}
if (FIELD_GET(ADXL345_INT_ACTIVITY, int_stat)) {
ret = regmap_read(st->regmap, ADXL345_REG_ACT_INACT_CTRL, &regval);
if (ret)
return ret;
if (FIELD_GET(ADXL345_REG_ACT_ACDC, regval)) {
/* AC coupled */
ret = iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, act_dir,
IIO_EV_TYPE_MAG_ADAPTIVE,
IIO_EV_DIR_RISING),
ts);
} else {
/* DC coupled, relying on THRESH */
ret = iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, act_dir,
IIO_EV_TYPE_MAG,
IIO_EV_DIR_RISING),
ts);
}
if (ret)
return ret;
}
if (FIELD_GET(ADXL345_INT_INACTIVITY, int_stat)) {
ret = regmap_read(st->regmap, ADXL345_REG_ACT_INACT_CTRL, &regval);
if (ret)
return ret;
if (FIELD_GET(ADXL345_REG_INACT_ACDC, regval)) {
/* AC coupled */
ret = iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL, 0,
IIO_MOD_X_AND_Y_AND_Z,
IIO_EV_TYPE_MAG_ADAPTIVE,
IIO_EV_DIR_FALLING),
ts);
} else {
/* DC coupled, relying on THRESH */
ret = iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL, 0,
IIO_MOD_X_AND_Y_AND_Z,
IIO_EV_TYPE_MAG,
IIO_EV_DIR_FALLING),
ts);
}
if (ret)
return ret;
}
if (FIELD_GET(ADXL345_INT_FREE_FALL, int_stat)) {
ret = iio_push_event(indio_dev,
IIO_MOD_EVENT_CODE(IIO_ACCEL, 0,
IIO_MOD_X_AND_Y_AND_Z,
IIO_EV_TYPE_MAG,
IIO_EV_DIR_FALLING),
ts);
if (ret)
return ret;
}
if (FIELD_GET(ADXL345_INT_WATERMARK, int_stat)) {
samples = adxl345_get_samples(st);
if (samples < 0)
return -EINVAL;
if (adxl345_fifo_push(indio_dev, samples) < 0)
return -EINVAL;
ret = 0;
}
return ret;
}
/**
* adxl345_irq_handler() - Handle irqs of the ADXL345.
* @irq: The irq being handled.
* @p: The struct iio_device pointer for the device.
*
* Return: The interrupt was handled.
*/
static irqreturn_t adxl345_irq_handler(int irq, void *p)
{
struct iio_dev *indio_dev = p;
struct adxl345_state *st = iio_priv(indio_dev);
unsigned int regval;
enum iio_modifier tap_dir = IIO_NO_MOD;
enum iio_modifier act_dir = IIO_NO_MOD;
u32 axis_ctrl;
int int_stat;
int ret;
ret = regmap_read(st->regmap, ADXL345_REG_TAP_AXIS, &axis_ctrl);
if (ret)
return IRQ_NONE;
if (FIELD_GET(ADXL345_REG_TAP_AXIS_MSK, axis_ctrl) ||
FIELD_GET(ADXL345_ACT_XYZ_EN, axis_ctrl)) {
ret = regmap_read(st->regmap, ADXL345_REG_ACT_TAP_STATUS, &regval);
if (ret)
return IRQ_NONE;
if (FIELD_GET(ADXL345_TAP_Z_EN, regval))
tap_dir = IIO_MOD_Z;
else if (FIELD_GET(ADXL345_TAP_Y_EN, regval))
tap_dir = IIO_MOD_Y;
else if (FIELD_GET(ADXL345_TAP_X_EN, regval))
tap_dir = IIO_MOD_X;
if (FIELD_GET(ADXL345_ACT_Z_EN, regval))
act_dir = IIO_MOD_Z;
else if (FIELD_GET(ADXL345_ACT_Y_EN, regval))
act_dir = IIO_MOD_Y;
else if (FIELD_GET(ADXL345_ACT_X_EN, regval))
act_dir = IIO_MOD_X;
}
if (regmap_read(st->regmap, ADXL345_REG_INT_SOURCE, &int_stat))
return IRQ_NONE;
if (adxl345_push_event(indio_dev, int_stat, act_dir, tap_dir))
goto err;
if (FIELD_GET(ADXL345_INT_OVERRUN, int_stat))
goto err;
return IRQ_HANDLED;
err:
adxl345_fifo_reset(st);
return IRQ_HANDLED;
}
static const struct iio_info adxl345_info = {
.read_raw = adxl345_read_raw,
.write_raw = adxl345_write_raw,
.read_avail = adxl345_read_avail,
.write_raw_get_fmt = adxl345_write_raw_get_fmt,
.read_event_config = adxl345_read_event_config,
.write_event_config = adxl345_write_event_config,
.read_event_value = adxl345_read_event_value,
.write_event_value = adxl345_write_event_value,
.debugfs_reg_access = &adxl345_reg_access,
.hwfifo_set_watermark = adxl345_set_watermark,
};
static int adxl345_get_int_line(struct device *dev, int *irq)
{
*irq = fwnode_irq_get_byname(dev_fwnode(dev), "INT1");
if (*irq > 0)
return ADXL345_INT1;
*irq = fwnode_irq_get_byname(dev_fwnode(dev), "INT2");
if (*irq > 0)
return ADXL345_INT2;
return ADXL345_INT_NONE;
}
/**
* adxl345_core_probe() - Probe and setup for the accelerometer.
* @dev: Driver model representation of the device
* @regmap: Regmap instance for the device
* @fifo_delay_default: Using FIFO with SPI needs delay
* @setup: Setup routine to be executed right before the standard device
* setup
*
* For SPI operation greater than 1.6 MHz, it is necessary to deassert the CS
* pin to ensure a total delay of 5 us; otherwise, the delay is not sufficient.
* The total delay necessary for 5 MHz operation is at most 3.4 us. This is not
* a concern when using I2C mode because the communication rate is low enough
* to ensure a sufficient delay between FIFO reads.
* Ref: "Retrieving Data from FIFO", p. 21 of 36, Data Sheet ADXL345 Rev. G
*
* Return: 0 on success, negative errno on error
*/
int adxl345_core_probe(struct device *dev, struct regmap *regmap,
bool fifo_delay_default,
int (*setup)(struct device*, struct regmap*))
{
struct adxl345_state *st;
struct iio_dev *indio_dev;
u32 regval;
u8 intio = ADXL345_INT1;
unsigned int data_format_mask = (ADXL345_DATA_FORMAT_RANGE |
ADXL345_DATA_FORMAT_JUSTIFY |
ADXL345_DATA_FORMAT_FULL_RES |
ADXL345_DATA_FORMAT_SELF_TEST);
unsigned int tap_threshold;
int irq;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
st->regmap = regmap;
st->info = device_get_match_data(dev);
if (!st->info)
return -ENODEV;
st->fifo_delay = fifo_delay_default;
/* Init with reasonable values */
tap_threshold = 48; /* 48 [0x30] -> ~3g */
st->tap_duration_us = 16; /* 16 [0x10] -> .010 */
st->tap_window_us = 64; /* 64 [0x40] -> .080 */
st->tap_latent_us = 16; /* 16 [0x10] -> .020 */
indio_dev->name = st->info->name;
indio_dev->info = &adxl345_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = adxl345_channels;
indio_dev->num_channels = ARRAY_SIZE(adxl345_channels);
indio_dev->available_scan_masks = adxl345_scan_masks;
/*
* Using I2C at 100kHz would limit the maximum ODR to 200Hz, operation
* at an output rate above the recommended maximum may result in
* undesired behavior.
*/
ret = adxl345_set_odr(st, ADXL345_ODR_200HZ);
if (ret)
return ret;
ret = adxl345_set_range(st, ADXL345_16G_RANGE);
if (ret)
return ret;
/* Reset interrupts at start up */
ret = regmap_write(st->regmap, ADXL345_REG_INT_ENABLE, 0x00);
if (ret)
return ret;
if (setup) {
/* Perform optional initial bus specific configuration */
ret = setup(dev, st->regmap);
if (ret)
return ret;
/* Enable full-resolution mode */
ret = regmap_update_bits(st->regmap, ADXL345_REG_DATA_FORMAT,
data_format_mask,
ADXL345_DATA_FORMAT_FULL_RES);
if (ret)
return dev_err_probe(dev, ret,
"Failed to set data range\n");
} else {
/* Enable full-resolution mode (init all data_format bits) */
ret = regmap_write(st->regmap, ADXL345_REG_DATA_FORMAT,
ADXL345_DATA_FORMAT_FULL_RES);
if (ret)
return dev_err_probe(dev, ret,
"Failed to set data range\n");
}
ret = regmap_read(st->regmap, ADXL345_REG_DEVID, &regval);
if (ret)
return dev_err_probe(dev, ret, "Error reading device ID\n");
if (regval != ADXL345_DEVID)
return dev_err_probe(dev, -ENODEV, "Invalid device ID: %x, expected %x\n",
regval, ADXL345_DEVID);
/* Enable measurement mode */
ret = adxl345_set_measure_en(st, true);
if (ret)
return dev_err_probe(dev, ret, "Failed to enable measurement mode\n");
ret = devm_add_action_or_reset(dev, adxl345_powerdown, st);
if (ret)
return ret;
intio = adxl345_get_int_line(dev, &irq);
if (intio != ADXL345_INT_NONE) {
/*
* In the INT map register, bits set to 0 route their
* corresponding interrupts to the INT1 pin, while bits set to 1
* route them to the INT2 pin. The intio should handle this
* mapping accordingly.
*/
ret = regmap_assign_bits(st->regmap, ADXL345_REG_INT_MAP,
U8_MAX, intio);
if (ret)
return ret;
/*
* Initialized with sensible default values to streamline
* sensor operation. These defaults are partly derived from
* the previous input driver for the ADXL345 and partly
* based on the recommendations provided in the datasheet.
*/
ret = regmap_write(st->regmap, ADXL345_REG_ACT_INACT_CTRL, 0);
if (ret)
return ret;
ret = regmap_write(st->regmap, ADXL345_REG_THRESH_ACT, 6);
if (ret)
return ret;
ret = adxl345_set_inact_threshold(st, 4);
if (ret)
return ret;
ret = regmap_write(st->regmap, ADXL345_REG_THRESH_TAP, tap_threshold);
if (ret)
return ret;
/* FIFO_STREAM mode is going to be activated later */
ret = devm_iio_kfifo_buffer_setup(dev, indio_dev, &adxl345_buffer_ops);
if (ret)
return ret;
ret = devm_request_threaded_irq(dev, irq, NULL,
&adxl345_irq_handler,
IRQF_SHARED | IRQF_ONESHOT,
indio_dev->name, indio_dev);
if (ret)
return ret;
} else {
ret = regmap_write(st->regmap, ADXL345_REG_FIFO_CTL,
FIELD_PREP(ADXL345_FIFO_CTL_MODE_MSK,
ADXL345_FIFO_BYPASS));
if (ret)
return ret;
}
return devm_iio_device_register(dev, indio_dev);
}
EXPORT_SYMBOL_NS_GPL(adxl345_core_probe, "IIO_ADXL345");
MODULE_AUTHOR("Eva Rachel Retuya <eraretuya@gmail.com>");
MODULE_DESCRIPTION("ADXL345 3-Axis Digital Accelerometer core driver");
MODULE_LICENSE("GPL v2");