mirror-linux/drivers/hv/hv.c

657 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2009, Microsoft Corporation.
*
* Authors:
* Haiyang Zhang <haiyangz@microsoft.com>
* Hank Janssen <hjanssen@microsoft.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/hyperv.h>
#include <linux/random.h>
#include <linux/clockchips.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/export.h>
#include <clocksource/hyperv_timer.h>
#include <asm/mshyperv.h>
#include <linux/set_memory.h>
#include "hyperv_vmbus.h"
/* The one and only */
struct hv_context hv_context;
EXPORT_SYMBOL_FOR_MODULES(hv_context, "mshv_vtl");
/*
* hv_init - Main initialization routine.
*
* This routine must be called before any other routines in here are called
*/
int hv_init(void)
{
hv_context.cpu_context = alloc_percpu(struct hv_per_cpu_context);
if (!hv_context.cpu_context)
return -ENOMEM;
return 0;
}
/*
* hv_post_message - Post a message using the hypervisor message IPC.
*
* This involves a hypercall.
*/
int hv_post_message(union hv_connection_id connection_id,
enum hv_message_type message_type,
void *payload, size_t payload_size)
{
struct hv_input_post_message *aligned_msg;
unsigned long flags;
u64 status;
if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT)
return -EMSGSIZE;
local_irq_save(flags);
/*
* A TDX VM with the paravisor must use the decrypted post_msg_page: see
* the comment in struct hv_per_cpu_context. A SNP VM with the paravisor
* can use the encrypted hyperv_pcpu_input_arg because it copies the
* input into the GHCB page, which has been decrypted by the paravisor.
*/
if (hv_isolation_type_tdx() && ms_hyperv.paravisor_present)
aligned_msg = this_cpu_ptr(hv_context.cpu_context)->post_msg_page;
else
aligned_msg = *this_cpu_ptr(hyperv_pcpu_input_arg);
aligned_msg->connectionid = connection_id;
aligned_msg->reserved = 0;
aligned_msg->message_type = message_type;
aligned_msg->payload_size = payload_size;
memcpy((void *)aligned_msg->payload, payload, payload_size);
if (ms_hyperv.paravisor_present && !vmbus_is_confidential()) {
/*
* If the VMBus isn't confidential, use the CoCo-specific
* mechanism to communicate with the hypervisor.
*/
if (hv_isolation_type_tdx())
status = hv_tdx_hypercall(HVCALL_POST_MESSAGE,
virt_to_phys(aligned_msg), 0);
else if (hv_isolation_type_snp())
status = hv_ghcb_hypercall(HVCALL_POST_MESSAGE,
aligned_msg, NULL,
sizeof(*aligned_msg));
else
status = HV_STATUS_INVALID_PARAMETER;
} else {
u64 control = HVCALL_POST_MESSAGE;
control |= hv_nested ? HV_HYPERCALL_NESTED : 0;
/*
* If there is no paravisor, this will go to the hypervisor.
* In the Confidential VMBus case, there is the paravisor
* to which this will trap.
*/
status = hv_do_hypercall(control, aligned_msg, NULL);
}
local_irq_restore(flags);
return hv_result(status);
}
EXPORT_SYMBOL_FOR_MODULES(hv_post_message, "mshv_vtl");
static int hv_alloc_page(void **page, bool decrypt, const char *note)
{
int ret = 0;
/*
* After the page changes its encryption status, its contents might
* appear scrambled on some hardware. Thus `get_zeroed_page` would
* zero the page out in vain, so do that explicitly exactly once.
*
* By default, the page is allocated encrypted in a CoCo VM.
*/
*page = (void *)__get_free_page(GFP_KERNEL);
if (!*page)
return -ENOMEM;
if (decrypt)
ret = set_memory_decrypted((unsigned long)*page, 1);
if (ret)
goto failed;
memset(*page, 0, PAGE_SIZE);
return 0;
failed:
/*
* Report the failure but don't put the page back on the free list as
* its encryption status is unknown.
*/
pr_err("allocation failed for %s page, error %d, decrypted %d\n",
note, ret, decrypt);
*page = NULL;
return ret;
}
static int hv_free_page(void **page, bool encrypt, const char *note)
{
int ret = 0;
if (!*page)
return 0;
if (encrypt)
ret = set_memory_encrypted((unsigned long)*page, 1);
/*
* In the case of the failure, the page is leaked. Something is wrong,
* prefer to lose the page with the unknown encryption status and stay afloat.
*/
if (ret)
pr_err("deallocation failed for %s page, error %d, encrypt %d\n",
note, ret, encrypt);
else
free_page((unsigned long)*page);
*page = NULL;
return ret;
}
int hv_synic_alloc(void)
{
int cpu, ret = -ENOMEM;
struct hv_per_cpu_context *hv_cpu;
const bool decrypt = !vmbus_is_confidential();
/*
* First, zero all per-cpu memory areas so hv_synic_free() can
* detect what memory has been allocated and cleanup properly
* after any failures.
*/
for_each_present_cpu(cpu) {
hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
memset(hv_cpu, 0, sizeof(*hv_cpu));
}
hv_context.hv_numa_map = kcalloc(nr_node_ids, sizeof(struct cpumask),
GFP_KERNEL);
if (!hv_context.hv_numa_map) {
pr_err("Unable to allocate NUMA map\n");
goto err;
}
for_each_present_cpu(cpu) {
hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
tasklet_init(&hv_cpu->msg_dpc,
vmbus_on_msg_dpc, (unsigned long)hv_cpu);
if (ms_hyperv.paravisor_present && hv_isolation_type_tdx()) {
ret = hv_alloc_page(&hv_cpu->post_msg_page,
decrypt, "post msg");
if (ret)
goto err;
}
/*
* If these SynIC pages are not allocated, SIEF and SIM pages
* are configured using what the root partition or the paravisor
* provides upon reading the SIEFP and SIMP registers.
*/
if (!ms_hyperv.paravisor_present && !hv_root_partition()) {
ret = hv_alloc_page(&hv_cpu->hyp_synic_message_page,
decrypt, "hypervisor SynIC msg");
if (ret)
goto err;
ret = hv_alloc_page(&hv_cpu->hyp_synic_event_page,
decrypt, "hypervisor SynIC event");
if (ret)
goto err;
}
if (vmbus_is_confidential()) {
ret = hv_alloc_page(&hv_cpu->para_synic_message_page,
false, "paravisor SynIC msg");
if (ret)
goto err;
ret = hv_alloc_page(&hv_cpu->para_synic_event_page,
false, "paravisor SynIC event");
if (ret)
goto err;
}
}
return 0;
err:
/*
* Any memory allocations that succeeded will be freed when
* the caller cleans up by calling hv_synic_free()
*/
return ret;
}
void hv_synic_free(void)
{
int cpu;
const bool encrypt = !vmbus_is_confidential();
for_each_present_cpu(cpu) {
struct hv_per_cpu_context *hv_cpu =
per_cpu_ptr(hv_context.cpu_context, cpu);
if (ms_hyperv.paravisor_present && hv_isolation_type_tdx())
hv_free_page(&hv_cpu->post_msg_page,
encrypt, "post msg");
if (!ms_hyperv.paravisor_present && !hv_root_partition()) {
hv_free_page(&hv_cpu->hyp_synic_event_page,
encrypt, "hypervisor SynIC event");
hv_free_page(&hv_cpu->hyp_synic_message_page,
encrypt, "hypervisor SynIC msg");
}
if (vmbus_is_confidential()) {
hv_free_page(&hv_cpu->para_synic_event_page,
false, "paravisor SynIC event");
hv_free_page(&hv_cpu->para_synic_message_page,
false, "paravisor SynIC msg");
}
}
kfree(hv_context.hv_numa_map);
}
/*
* hv_hyp_synic_enable_regs - Initialize the Synthetic Interrupt Controller
* with the hypervisor.
*/
void hv_hyp_synic_enable_regs(unsigned int cpu)
{
struct hv_per_cpu_context *hv_cpu =
per_cpu_ptr(hv_context.cpu_context, cpu);
union hv_synic_simp simp;
union hv_synic_siefp siefp;
union hv_synic_sint shared_sint;
/* Setup the Synic's message page with the hypervisor. */
simp.as_uint64 = hv_get_msr(HV_MSR_SIMP);
simp.simp_enabled = 1;
if (ms_hyperv.paravisor_present || hv_root_partition()) {
/* Mask out vTOM bit. ioremap_cache() maps decrypted */
u64 base = (simp.base_simp_gpa << HV_HYP_PAGE_SHIFT) &
~ms_hyperv.shared_gpa_boundary;
hv_cpu->hyp_synic_message_page =
(void *)ioremap_cache(base, HV_HYP_PAGE_SIZE);
if (!hv_cpu->hyp_synic_message_page)
pr_err("Fail to map synic message page.\n");
} else {
simp.base_simp_gpa = virt_to_phys(hv_cpu->hyp_synic_message_page)
>> HV_HYP_PAGE_SHIFT;
}
hv_set_msr(HV_MSR_SIMP, simp.as_uint64);
/* Setup the Synic's event page with the hypervisor. */
siefp.as_uint64 = hv_get_msr(HV_MSR_SIEFP);
siefp.siefp_enabled = 1;
if (ms_hyperv.paravisor_present || hv_root_partition()) {
/* Mask out vTOM bit. ioremap_cache() maps decrypted */
u64 base = (siefp.base_siefp_gpa << HV_HYP_PAGE_SHIFT) &
~ms_hyperv.shared_gpa_boundary;
hv_cpu->hyp_synic_event_page =
(void *)ioremap_cache(base, HV_HYP_PAGE_SIZE);
if (!hv_cpu->hyp_synic_event_page)
pr_err("Fail to map synic event page.\n");
} else {
siefp.base_siefp_gpa = virt_to_phys(hv_cpu->hyp_synic_event_page)
>> HV_HYP_PAGE_SHIFT;
}
hv_set_msr(HV_MSR_SIEFP, siefp.as_uint64);
hv_enable_coco_interrupt(cpu, vmbus_interrupt, true);
/* Setup the shared SINT. */
if (vmbus_irq != -1)
enable_percpu_irq(vmbus_irq, 0);
shared_sint.as_uint64 = hv_get_msr(HV_MSR_SINT0 + VMBUS_MESSAGE_SINT);
shared_sint.vector = vmbus_interrupt;
shared_sint.masked = false;
shared_sint.auto_eoi = hv_recommend_using_aeoi();
hv_set_msr(HV_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
}
static void hv_hyp_synic_enable_interrupts(void)
{
union hv_synic_scontrol sctrl;
/* Enable the global synic bit */
sctrl.as_uint64 = hv_get_msr(HV_MSR_SCONTROL);
sctrl.enable = 1;
hv_set_msr(HV_MSR_SCONTROL, sctrl.as_uint64);
}
static void hv_para_synic_enable_regs(unsigned int cpu)
{
union hv_synic_simp simp;
union hv_synic_siefp siefp;
struct hv_per_cpu_context *hv_cpu
= per_cpu_ptr(hv_context.cpu_context, cpu);
/* Setup the Synic's message page with the paravisor. */
simp.as_uint64 = hv_para_get_synic_register(HV_MSR_SIMP);
simp.simp_enabled = 1;
simp.base_simp_gpa = virt_to_phys(hv_cpu->para_synic_message_page)
>> HV_HYP_PAGE_SHIFT;
hv_para_set_synic_register(HV_MSR_SIMP, simp.as_uint64);
/* Setup the Synic's event page with the paravisor. */
siefp.as_uint64 = hv_para_get_synic_register(HV_MSR_SIEFP);
siefp.siefp_enabled = 1;
siefp.base_siefp_gpa = virt_to_phys(hv_cpu->para_synic_event_page)
>> HV_HYP_PAGE_SHIFT;
hv_para_set_synic_register(HV_MSR_SIEFP, siefp.as_uint64);
}
static void hv_para_synic_enable_interrupts(void)
{
union hv_synic_scontrol sctrl;
/* Enable the global synic bit */
sctrl.as_uint64 = hv_para_get_synic_register(HV_MSR_SCONTROL);
sctrl.enable = 1;
hv_para_set_synic_register(HV_MSR_SCONTROL, sctrl.as_uint64);
}
int hv_synic_init(unsigned int cpu)
{
if (vmbus_is_confidential())
hv_para_synic_enable_regs(cpu);
/*
* The SINT is set in hv_hyp_synic_enable_regs() by calling
* hv_set_msr(). hv_set_msr() in turn has special case code for the
* SINT MSRs that write to the hypervisor version of the MSR *and*
* the paravisor version of the MSR (but *without* the proxy bit when
* VMBus is confidential).
*
* Then enable interrupts via the paravisor if VMBus is confidential,
* and otherwise via the hypervisor.
*/
hv_hyp_synic_enable_regs(cpu);
if (vmbus_is_confidential())
hv_para_synic_enable_interrupts();
else
hv_hyp_synic_enable_interrupts();
hv_stimer_legacy_init(cpu, VMBUS_MESSAGE_SINT);
return 0;
}
void hv_hyp_synic_disable_regs(unsigned int cpu)
{
struct hv_per_cpu_context *hv_cpu =
per_cpu_ptr(hv_context.cpu_context, cpu);
union hv_synic_sint shared_sint;
union hv_synic_simp simp;
union hv_synic_siefp siefp;
shared_sint.as_uint64 = hv_get_msr(HV_MSR_SINT0 + VMBUS_MESSAGE_SINT);
shared_sint.masked = 1;
/* Need to correctly cleanup in the case of SMP!!! */
/* Disable the interrupt */
hv_set_msr(HV_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
hv_enable_coco_interrupt(cpu, vmbus_interrupt, false);
simp.as_uint64 = hv_get_msr(HV_MSR_SIMP);
/*
* In Isolation VM, simp and sief pages are allocated by
* paravisor. These pages also will be used by kdump
* kernel. So just reset enable bit here and keep page
* addresses.
*/
simp.simp_enabled = 0;
if (ms_hyperv.paravisor_present || hv_root_partition()) {
if (hv_cpu->hyp_synic_message_page) {
iounmap(hv_cpu->hyp_synic_message_page);
hv_cpu->hyp_synic_message_page = NULL;
}
} else {
simp.base_simp_gpa = 0;
}
hv_set_msr(HV_MSR_SIMP, simp.as_uint64);
siefp.as_uint64 = hv_get_msr(HV_MSR_SIEFP);
siefp.siefp_enabled = 0;
if (ms_hyperv.paravisor_present || hv_root_partition()) {
if (hv_cpu->hyp_synic_event_page) {
iounmap(hv_cpu->hyp_synic_event_page);
hv_cpu->hyp_synic_event_page = NULL;
}
} else {
siefp.base_siefp_gpa = 0;
}
hv_set_msr(HV_MSR_SIEFP, siefp.as_uint64);
}
static void hv_hyp_synic_disable_interrupts(void)
{
union hv_synic_scontrol sctrl;
/* Disable the global synic bit */
sctrl.as_uint64 = hv_get_msr(HV_MSR_SCONTROL);
sctrl.enable = 0;
hv_set_msr(HV_MSR_SCONTROL, sctrl.as_uint64);
}
static void hv_para_synic_disable_regs(unsigned int cpu)
{
union hv_synic_simp simp;
union hv_synic_siefp siefp;
/* Disable SynIC's message page in the paravisor. */
simp.as_uint64 = hv_para_get_synic_register(HV_MSR_SIMP);
simp.simp_enabled = 0;
hv_para_set_synic_register(HV_MSR_SIMP, simp.as_uint64);
/* Disable SynIC's event page in the paravisor. */
siefp.as_uint64 = hv_para_get_synic_register(HV_MSR_SIEFP);
siefp.siefp_enabled = 0;
hv_para_set_synic_register(HV_MSR_SIEFP, siefp.as_uint64);
}
static void hv_para_synic_disable_interrupts(void)
{
union hv_synic_scontrol sctrl;
/* Disable the global synic bit */
sctrl.as_uint64 = hv_para_get_synic_register(HV_MSR_SCONTROL);
sctrl.enable = 0;
hv_para_set_synic_register(HV_MSR_SCONTROL, sctrl.as_uint64);
}
#define HV_MAX_TRIES 3
/*
* Scan the event flags page of 'this' CPU looking for any bit that is set. If we find one
* bit set, then wait for a few milliseconds. Repeat these steps for a maximum of 3 times.
* Return 'true', if there is still any set bit after this operation; 'false', otherwise.
*
* If a bit is set, that means there is a pending channel interrupt. The expectation is
* that the normal interrupt handling mechanism will find and process the channel interrupt
* "very soon", and in the process clear the bit.
*/
static bool __hv_synic_event_pending(union hv_synic_event_flags *event, int sint)
{
unsigned long *recv_int_page;
bool pending;
u32 relid;
int tries = 0;
if (!event)
return false;
event += sint;
recv_int_page = event->flags; /* assumes VMBus version >= VERSION_WIN8 */
retry:
pending = false;
for_each_set_bit(relid, recv_int_page, HV_EVENT_FLAGS_COUNT) {
/* Special case - VMBus channel protocol messages */
if (relid == 0)
continue;
pending = true;
break;
}
if (pending && tries++ < HV_MAX_TRIES) {
usleep_range(10000, 20000);
goto retry;
}
return pending;
}
static bool hv_synic_event_pending(void)
{
struct hv_per_cpu_context *hv_cpu = this_cpu_ptr(hv_context.cpu_context);
union hv_synic_event_flags *hyp_synic_event_page = hv_cpu->hyp_synic_event_page;
union hv_synic_event_flags *para_synic_event_page = hv_cpu->para_synic_event_page;
return
__hv_synic_event_pending(hyp_synic_event_page, VMBUS_MESSAGE_SINT) ||
__hv_synic_event_pending(para_synic_event_page, VMBUS_MESSAGE_SINT);
}
static int hv_pick_new_cpu(struct vmbus_channel *channel)
{
int ret = -EBUSY;
int start;
int cpu;
lockdep_assert_cpus_held();
lockdep_assert_held(&vmbus_connection.channel_mutex);
/*
* We can't assume that the relevant interrupts will be sent before
* the cpu is offlined on older versions of hyperv.
*/
if (vmbus_proto_version < VERSION_WIN10_V5_3)
return -EBUSY;
start = get_random_u32_below(nr_cpu_ids);
for_each_cpu_wrap(cpu, cpu_online_mask, start) {
if (channel->target_cpu == cpu ||
channel->target_cpu == VMBUS_CONNECT_CPU)
continue;
ret = vmbus_channel_set_cpu(channel, cpu);
if (!ret)
break;
}
if (ret)
ret = vmbus_channel_set_cpu(channel, VMBUS_CONNECT_CPU);
return ret;
}
/*
* hv_synic_cleanup - Cleanup routine for hv_synic_init().
*/
int hv_synic_cleanup(unsigned int cpu)
{
struct vmbus_channel *channel, *sc;
int ret = 0;
if (vmbus_connection.conn_state != CONNECTED)
goto always_cleanup;
/*
* Hyper-V does not provide a way to change the connect CPU once
* it is set; we must prevent the connect CPU from going offline
* while the VM is running normally. But in the panic or kexec()
* path where the vmbus is already disconnected, the CPU must be
* allowed to shut down.
*/
if (cpu == VMBUS_CONNECT_CPU)
return -EBUSY;
/*
* Search for channels which are bound to the CPU we're about to
* cleanup.
*/
mutex_lock(&vmbus_connection.channel_mutex);
list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
if (channel->target_cpu == cpu) {
ret = hv_pick_new_cpu(channel);
if (ret) {
mutex_unlock(&vmbus_connection.channel_mutex);
return ret;
}
}
list_for_each_entry(sc, &channel->sc_list, sc_list) {
if (sc->target_cpu == cpu) {
ret = hv_pick_new_cpu(sc);
if (ret) {
mutex_unlock(&vmbus_connection.channel_mutex);
return ret;
}
}
}
}
mutex_unlock(&vmbus_connection.channel_mutex);
/*
* Scan the event flags page looking for bits that are set and waiting
* with a timeout for vmbus_chan_sched() to process such bits. If bits
* are still set after this operation and VMBus is connected, fail the
* CPU offlining operation.
*/
if (vmbus_proto_version >= VERSION_WIN10_V4_1 && hv_synic_event_pending())
return -EBUSY;
always_cleanup:
hv_stimer_legacy_cleanup(cpu);
/*
* First, disable the event and message pages
* used for communicating with the host, and then
* disable the host interrupts if VMBus is not
* confidential.
*/
hv_hyp_synic_disable_regs(cpu);
if (!vmbus_is_confidential())
hv_hyp_synic_disable_interrupts();
/*
* Perform the same steps for the Confidential VMBus.
* The sequencing provides the guarantee that no data
* may be posted for processing before disabling interrupts.
*/
if (vmbus_is_confidential()) {
hv_para_synic_disable_regs(cpu);
hv_para_synic_disable_interrupts();
}
if (vmbus_irq != -1)
disable_percpu_irq(vmbus_irq);
return ret;
}